1
|
Rebouillat B, Barascud N, Kouider S. Partial awareness during voluntary endogenous decision. Conscious Cogn 2024; 125:103769. [PMID: 39413689 DOI: 10.1016/j.concog.2024.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Despite our feeling of control over decisions, our ability to consciously access choices before execution remains debated. Recent research reveals prospective access to intention to act, allowing potential vetoes of impending decisions. However, whether the content of impending decision can be accessed remain debated. Here we track neural signals during participants' early deliberation in free decisions. Participants chose freely between two options but sometimes had to reject their current decision just before execution. The initially preferred option, tracked in real time, significantly predicts the upcoming choice, but remain mostly outside of conscious awareness. Participants often display overconfidence in their access to this content. Instead, confidence is associated with a neural marker of self-initiated decision, indicating a qualitative confusion in the confidence evaluation process. Our results challenge the notion of complete agency over choices, suggesting inflated awareness of forthcoming decisions and providing insights into metacognitive processes in free decision-making.
Collapse
Affiliation(s)
- Benjamin Rebouillat
- Laboratoire DysCo, Université Paris 8, Saint-Denis, France; Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France; Ecole Doctorale Cerveau Cognition Comportement, ENS/ Paris VI / Paris V, Paris 75005, France.
| | - Nicolas Barascud
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France
| | - Sid Kouider
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France
| |
Collapse
|
2
|
Nichelli PF, Grafman J. The place of Free Will: the freedom of the prisoner. Neurol Sci 2024; 45:861-871. [PMID: 37870645 DOI: 10.1007/s10072-023-07138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Debates about the concept of Free Will date back to ancient times. About 40 years ago, Benjamin Libet designed an experiment showing that the conscious intention to move is preceded by a specific pattern of brain activation. His finding suggested that unconscious processes determine our decisions. Libet-style experiments have continued to dominate the debate about Free Will, pushing some authors to argue that the existence of Free Will is a mere illusion. We believe that this dispute is because we often measure Free Will using arbitrary human decisions rather than deliberate actions. After reviewing the definition of Free Will and the related literature, we conclude that the scientific evidence does not disprove the existence of Free Will. However, our will encounters several constraints and limitations that should be considered when evaluating our deeds' personal responsibility.
Collapse
Affiliation(s)
- Paolo F Nichelli
- University of Modena and Reggio Emilia, Via Romolo Benzi, 48, 41126, Modena, Italy.
| | - Jordan Grafman
- Brain Injury Research, Cognitive Neuroscience Lab, Think and Speak Lab, 25th Floor, Northeast Corner, Shirley Ryan AbilityLab, 355 E. Erie Street, Chicago, IL, 60611-5146, USA
| |
Collapse
|
3
|
Dominik T, Mele A, Schurger A, Maoz U. Libet's legacy: A primer to the neuroscience of volition. Neurosci Biobehav Rev 2024; 157:105503. [PMID: 38072144 DOI: 10.1016/j.neubiorev.2023.105503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The neuroscience of volition is an emerging subfield of the brain sciences, with hundreds of papers on the role of consciousness in action formation published each year. This makes the state-of-the-art in the discipline poorly accessible to newcomers and difficult to follow even for experts in the field. Here we provide a comprehensive summary of research in this field since its inception that will be useful to both groups. We also discuss important ideas that have received little coverage in the literature so far. We systematically reviewed a set of 2220 publications, with detailed consideration of almost 500 of the most relevant papers. We provide a thorough introduction to the seminal work of Benjamin Libet from the 1960s to 1980s. We also discuss common criticisms of Libet's method, including temporal introspection, the interpretation of the assumed physiological correlates of volition, and various conceptual issues. We conclude with recent advances and potential future directions in the field, highlighting modern methodological approaches to volition, as well as important recent findings.
Collapse
Affiliation(s)
| | - Alfred Mele
- Department of Philosophy, Florida State University, FL, USA
| | | | - Uri Maoz
- Brain Institute, Chapman University, CA, USA
| |
Collapse
|
4
|
Triggiani AI, Kreiman G, Lewis C, Maoz U, Mele A, Mudrik L, Roskies AL, Schurger A, Hallett M. What is the intention to move and when does it occur? Neurosci Biobehav Rev 2023; 151:105199. [PMID: 37119992 PMCID: PMC10330627 DOI: 10.1016/j.neubiorev.2023.105199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
In 1983 Benjamin Libet and colleagues published a paper apparently challenging the view that the conscious intention to move precedes the brain's preparation for movement. The experiment initiated debates about the nature of intention, the neurophysiology of movement, and philosophical and legal understanding of free will and moral responsibility. Here we review the concept of "conscious intention" and attempts to measure its timing. Scalp electroencephalographic activity prior to movement, the Bereitschaftspotential, clearly begins prior to the reported onset of conscious intent. However, the interpretation of this finding remains controversial. Numerous studies show that the Libet method for determining intent, W time, is not accurate and may be misleading. We conclude that intention has many different aspects, and although we now understand much more about how the brain makes movements, identifying the time of conscious intention is still elusive.
Collapse
Affiliation(s)
- Antonio I Triggiani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gabriel Kreiman
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, Center for Brains, Minds, and Machines, Cambridge, MA, USA
| | - Cara Lewis
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Uri Maoz
- Department of Psychology, Chapman University, Orange, CA 92866, USA; Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Irvine, CA 92618, USA; Anderson School of Management, University of California Los Angeles, Los Angeles, CA 90095, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alfred Mele
- Department of Philosophy, Florida State University, Tallahassee, FL, USA
| | - Liad Mudrik
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Adina L Roskies
- Department of Philosophy, Dartmouth College, Hanover, NH 03755, USA
| | - Aaron Schurger
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Irvine, CA 92618, USA; INSERM U992, Cognitive Neuroimaging Unit, Neurospin Center, Gif-sur-Yvette 91191, France; Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, NeuroSpin Center, I2BM, Gif sur Yvette 91191, France
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Zhang L, Ren H, Zhang R, Chen M, Li R, Shi L, Yao D, Gao J, Hu Y. Time-estimation process could cause the disappearence of readiness potential. Cogn Neurodyn 2022; 16:1003-1011. [PMID: 36237414 PMCID: PMC9508310 DOI: 10.1007/s11571-021-09766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Generally, the readiness potential (RP) is considered to be the scalp electroencephalography (EEG) activity preceding movement. In our previous study, we found early RP was absent among approximately half of the subjects during instructed action, but we did not identify the mechanism causing the disappearance of the RP. In this study, we investigated whether the time-estimation process could cause the disappearance of the RP. First, we designed experiments consisting of motor execution (ME), motor execution after time estimation (MEATE), and time estimation (TE) tasks, and we collected and preprocessed the EEG data of 16 subjects. Second, we compared the event related potential (ERP) waveform and scalp topography between ME and MEATE tasks. Then, to explore the influence of time-estimation, we analyzed the difference in ERP between MEATE and TE tasks. Finally, we used source imaging to probe the activation of brain regions during the three tasks, and we calculated the average activation amplitude of eight motor related brain regions. We found that the RP occurred in the ME task but not in the MEATE task. We also found that the waveform of the difference in ERP between the MEATE and TE tasks was similar to that of the ME task. The results of source imaging indicated that, compared to the ME task, the activation amplitude of the supplementary motor area (SMA) decreased significantly for the MEATE task. Our results suggested that the time estimation process could cause the disappearance of the RP. This phenomenon might be caused by the counteraction of neural electrical activity related to time estimation and motor preparation in the SMA.
Collapse
Affiliation(s)
- Lipeng Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Haikun Ren
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Mingming Chen
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Ruiqi Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Beijing, China
| | - Dezhong Yao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinfeng Gao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| | - Yuxia Hu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and pBrain-Computer Interface Technology, Zhengzhou, China
| |
Collapse
|
6
|
Neafsey EJ. Conscious intention and human action: Review of the rise and fall of the readiness potential and Libet's clock. Conscious Cogn 2021; 94:103171. [PMID: 34325185 DOI: 10.1016/j.concog.2021.103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/26/2021] [Accepted: 07/04/2021] [Indexed: 11/15/2022]
Abstract
Is consciousness-the subjective awareness of the sensations, perceptions, beliefs, desires, and intentions of mental life-a genuine cause of human action or a mere impotent epiphenomenon accompanying the brain's physical activity but utterly incapable of making anything actually happen? This article will review the history and current status of experiments and commentary related to Libet's influential paper (Brain 106:623-664, 1983) whose conclusion "that cerebral initiation even of a spontaneous voluntary act …can and usually does begin unconsciously" has had a huge effect on debate about the efficacy of conscious intentions. Early (up to 2008) and more recent (2008 on) experiments replicating and criticizing Libet's conclusions and especially his methods will be discussed, focusing especially on recent observations that the readiness potential (RP) may only be an "artifact of averaging" and that, when intention is measured using "tone probes," the onset of intention is found much earlier and often before the onset of the RP. Based on these findings, Libet's methodology was flawed and his results are no longer valid reasons for rejecting Fodor's "good old commonsense belief/desire psychology" that "my wanting is causally responsible for my reaching.".
Collapse
Affiliation(s)
- Edward J Neafsey
- Loyola University Chicago Stritch School of Medicine, Department of Molecular Pharmacology and Neuroscience, 2160 S. First Ave., Maywood, IL 60153, United States.
| |
Collapse
|
7
|
Schurger A, Hu P'B, Pak J, Roskies AL. What Is the Readiness Potential? Trends Cogn Sci 2021; 25:558-570. [PMID: 33931306 PMCID: PMC8192467 DOI: 10.1016/j.tics.2021.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
The readiness potential (RP), a slow buildup of electrical potential recorded at the scalp using electroencephalography, has been associated with neural activity involved in movement preparation. It became famous thanks to Benjamin Libet (Brain 1983;106:623-642), who used the time difference between the RP and self-reported time of conscious intention to move to argue that we lack free will. The RP's informativeness about self-generated action and derivatively about free will has prompted continued research on this neural phenomenon. Here, we argue that recent advances in our understanding of the RP, including computational modeling of the phenomenon, call for a reassessment of its relevance for understanding volition and the philosophical problem of free will.
Collapse
Affiliation(s)
- Aaron Schurger
- Department of Psychology, Crean College of Health and Behavioral Sciences, Chapman University, One University Drive, Orange, CA 92867, USA; Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, 14725 Alton Parkway, Irvine, CA 92618, USA; INSERM, Cognitive Neuroimaging Unit, NeuroSpin Center, Gif sur Yvette 91191, France; Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, I2BM, NeuroSpin Center, Gif sur Yvette 91191, France.
| | - Pengbo 'Ben' Hu
- Department of Linguistics and Cognitive Science, Pomona College, Claremont, CA 91711, USA
| | - Joanna Pak
- Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, 14725 Alton Parkway, Irvine, CA 92618, USA
| | - Adina L Roskies
- Department of Philosophy and Program in Cognitive Science, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
8
|
Rebouillat B, Leonetti JM, Kouider S. People confabulate with high confidence when their decisions are supported by weak internal variables. Neurosci Conscious 2021; 2021:niab004. [PMID: 33747547 PMCID: PMC7959213 DOI: 10.1093/nc/niab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
People can introspect on their internal state and report the reasons driving their decisions but choice blindness (CB) experiments suggest that this ability can sometimes be a retrospective illusion. Indeed, when presented with deceptive cues, people justify choices they did not make in the first place, suggesting that external cues largely contribute to introspective processes. Yet, it remains unclear what are the respective contributions of external cues and internal decision variables in forming introspective report. Here, using a brain–computer interface, we show that internal variables continue to be monitored but are less impactful than deceptive external cues during CB episodes. Moreover, we show that deceptive cues overturn the classical relationship between confidence and accuracy: introspective failures are associated with higher confidence than genuine introspective reports. We tracked back the origin of these overconfident confabulations by revealing their prominence when internal decision evidence is weak and variable. Thus, introspection is neither a direct reading of internal variables nor a mere retrospective illusion, but rather reflects the integration of internal decision evidence and external cues, with CB being a special instance where internal evidence is inconsistent.
Collapse
Affiliation(s)
- Benjamin Rebouillat
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, 75005 Paris, France.,Ecole Doctorale Cerveau Cognition Comportement, ENS/ParisVI/ParisV, Paris 75005, France
| | - Jean Maurice Leonetti
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, 75005 Paris, France.,Ecole Doctorale Cerveau Cognition Comportement, ENS/ParisVI/ParisV, Paris 75005, France
| | - Sid Kouider
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, 75005 Paris, France
| |
Collapse
|
9
|
Suppress Me if You Can: Neurofeedback of the Readiness Potential. eNeuro 2021; 8:ENEURO.0425-20.2020. [PMID: 33568461 PMCID: PMC7986527 DOI: 10.1523/eneuro.0425-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Voluntary movements are usually preceded by a slow, negative-going brain signal over motor areas, the so-called readiness potential (RP). To date, the exact nature and causal role of the RP in movement preparation have remained heavily debated. Although the RP is influenced by several motorical and cognitive factors, it has remained unclear whether people can learn to exert mental control over their RP, for example, by deliberately suppressing it. If people were able to initiate spontaneous movements without eliciting an RP, this would challenge the idea that the RP is a necessary stage of the causal chain leading up to a voluntary movement. We tested the ability of participants to control the magnitude of their RP in a neurofeedback experiment. Participants performed self-initiated movements, and after every movement, they were provided with immediate feedback about the magnitude of their RP. They were asked to find a strategy to perform voluntary movements such that the RPs were as small as possible. We found no evidence that participants were able to to willfully modulate or suppress their RPs while still eliciting voluntary movements. This suggests that the RP might be an involuntary component of voluntary action over which people cannot exert conscious control.
Collapse
|
10
|
Zhang L, Zhang R, Yao D, Shi L, Gao J, Hu Y. Differences in Intersubject Early Readiness Potentials Between Voluntary and Instructed Actions. Front Psychol 2020; 11:529821. [PMID: 33117215 PMCID: PMC7549661 DOI: 10.3389/fpsyg.2020.529821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/26/2020] [Indexed: 12/05/2022] Open
Abstract
Readiness potential (RP) is a slow negative electroencephalogram (EEG) potential prior to voluntary action and was first described by Kornhuber and Deecke (1965). Recent studies have demonstrated that a few subjects do not exhibit standard RP before voluntary action. In our previous study, we also found that some subjects did not show an early RP preceding instructed action. Although this phenomenon may be meaningful, no studies have yet investigated its origins. In the present study, we designed and implemented an experimental paradigm involving voluntary and instructed actions in the form of hand movements from 29 subjects with concurrent acquisition of EEGs. According to whether the subjects showed a standard RP waveform during instructed action, they were divided into the SHOW and NOSHOW group. Then, the RPs and voltage topographies were plotted for each group. Finally, the slope of each epoch at the early RP phase was estimated. We showed that early RPs were absent in 14 of 29 subjects during instructed actions. Besides, based on the slow cortical potential (SCP) sampling hypothesis, we also showed a decreased proportion in the negative potential for the NOSHOW group. Our results suggested that early RP is absent among approximately half of subjects during instructed action and that the decreased proportion of negative potential shifts may account for the absence of early RP in the NOSHOW group.
Collapse
Affiliation(s)
- Lipeng Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| | - Rui Zhang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
- Key Laboratory for Neuroinformation, University of Electronic Science and Technology, Chengdu, China
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology, Beijing, China
| | - Jinfeng Gao
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| | - Yuxia Hu
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, Zhengzhou, China
| |
Collapse
|
11
|
Schultze-Kraft M, Parés-Pujolràs E, Matić K, Haggard P, Haynes JD. Preparation and execution of voluntary action both contribute to awareness of intention. Proc Biol Sci 2020; 287:20192928. [PMID: 32208835 DOI: 10.1098/rspb.2019.2928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How and when motor intentions form has long been controversial. In particular, the extent to which motor preparation and action-related processes produce a conscious experience of intention remains unknown. Here, we used a brain-computer interface (BCI) while participants performed a self-paced movement task to trigger cues upon the detection of a readiness potential (a well-characterized brain signal that precedes movement) or in its absence. The BCI-triggered cues instructed participants either to move or not to move. Following this instruction, participants reported whether they felt they were about to move at the time the cue was presented. Participants were more likely to report an intention (i) when the cue was triggered by the presence of a readiness potential than when the same cue was triggered by its absence, and (ii) when they had just made an action than when they had not. We further describe a time-dependent integration of these two factors: the probability of reporting an intention was maximal when cues were triggered in the presence of a readiness potential, and when participants also executed an action shortly afterwards. Our results provide a first systematic investigation of how prospective and retrospective components are integrated in forming a conscious intention to move.
Collapse
Affiliation(s)
- Matthias Schultze-Kraft
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany.,SFB 940 Volition and Cognitive Control, Technische Universität Dresden, Dresden, Germany
| | | | - Karla Matić
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Laboratory of Experimental Psychology, KU Leuven, Louvain, Belgium
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK.,Laboratoire des Neuroscience Cognitives, Département d'Études Cognitives, École Normale Supérieure, PSL University, Paris, France
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Clinic of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,SFB 940 Volition and Cognitive Control, Technische Universität Dresden, Dresden, Germany.,Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany.,Excellence Cluster Science of Intelligence, Technische Universität Berlin and Humbold Universität zu Berlin, Berlin, Germany
| |
Collapse
|