1
|
Howe CA, Verges S, Nowak-Flück D, Talbot JS, Champigneulle B, Stauffer E, Brugniaux JV, Doutreleau S, Hancco I, Niroula S, Pichon A, McManus AM, Stembridge M, Ainslie PN. Cerebral blood flow in Andean children and adolescents living above 5,000 m. J Neurophysiol 2025; 133:1138-1145. [PMID: 40049741 DOI: 10.1152/jn.00513.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
A number of indigenous populations have resided at high-altitude for generations, resulting in various phenotypical adaptations promoting successful high-altitude adaptation. Although many of these adaptations have been investigated in adults, little is known regarding how children residing at high-altitudes adapt, particularly with regards to the cerebrovasculature. Under hypoxic environments, compensatory changes in cerebral blood flow (CBF) are necessary to couple oxygen delivery to metabolic demand in the face of reduced oxygen availability. In this study, we aimed to evaluate regional and global cerebral blood flow (CBF) in Andean children and adolescents living in the highest city in the world at 5,100 m. Eighteen Andeans (ages 6-17 yr) living in La Rinconada, Peru (5,100 m) were compared with sex-, age-, size-, and maturity-matched high-altitude Sherpa (3,800 m) living in the Khumbu valley of Nepal (n = 18) and lowlanders (44 m) living at sea-level in Cardiff, Wales (n = 18). Volumetric measurements of CBF were assessed using duplex ultrasound of the internal carotid and vertebral arteries to assess regional and global CBF. End-tidal gases and oxygen saturation were measured in all groups, while hemoglobin concentration was assessed in Andeans. Despite Andeans living under a more severe hypoxic environment, global CBF was similar between Andeans (687.01 ± 138.49 mL/min), Sherpa (711.27 ± 110.27 mL/min), and lowlanders (704.88 ± 59.23 mL/min). In contrast, vertebral artery blood flow was 24% lower in Andeans (72.93 ± 31.60 mL/min) compared with lowlanders (96.09 ± 19.23 mL/min). The similar global CBF in Andean children might be achieved through elevated hemoglobin concentration. However, lower posterior perfusion in Andeans requires further investigation to determine whether it represents an adaptive or maladaptive response.NEW & NOTEWORTHY We have, for the first time, quantified volumetric regional and global cerebral blood flow in indigenous Andean children and adolescents living above 5,000 m in the highest city in the world. Compared with Sherpa living at moderate altitude (3,800 m), and lowlanders residing at sea level, Andeans present with similar global cerebral blood flow, but lower posterior flow despite being more hypoxemic. Similar to adults, differences in high hemoglobin concentration may drive this pattern of cerebral blood flow.
Collapse
Affiliation(s)
- Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Samuel Verges
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jack S Talbot
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Benoit Champigneulle
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Julien V Brugniaux
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Stéphane Doutreleau
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, Inserm, University of Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | | | | | - Ali M McManus
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A systematic review of air pollution exposure and brain structure and function during development. ENVIRONMENTAL RESEARCH 2025; 275:121368. [PMID: 40073924 DOI: 10.1016/j.envres.2025.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). METHODS Using PubMed, Web of Science, and Scopus we conducted an updated literature search and systematic review of articles published through January 2025, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews used to inform the World Health Organization Global Air Quality Guidelines. RESULTS We identified 29 relevant papers, and 20 new studies met our inclusion criteria. Including six studies from our 2019 review, the 26 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. CONCLUSION Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review comprised of only cross-sectional studies, the current literature now includes longitudinal studies and more advanced neuroimaging methods. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Long X, Long M, Roeske J, Reynolds JE, Lebel C. Developmental Mismatch Across Brain Modalities in Young Children. Brain Connect 2025; 15:71-83. [PMID: 39706591 DOI: 10.1089/brain.2024.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Background: Brain development during the preschool period is complex and extensive and underlies ongoing behavioral and cognitive maturation. Increasing understanding of typical brain maturation during this time is critical to early identification of atypical development and could inform treatments and interventions. Previous studies have suggested mismatches between brain structural and functional development in later childhood and adolescence. The current study aimed to delineate the developmental matches and mismatches between brain measures from multiple magnetic resonance imaging modalities in young children. Methods: Brain volume, cortical thickness, fractional anisotropy, cerebral blood flow (CBF), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and eigenvector centrality mapping (ECM) were included. Multi-modal neuroimages for 159 datasets from 67 typically developing preschoolers (2.0-7.6 years old) were collected and analyzed. Results: Functional measures (CBF, ECM, ReHo, ALFF) had similar developmental trajectories across regions, whereas development trajectories for brain volumes and cortical thickness were more heterogeneous. Furthermore, within individuals, brain volumes and cortical thickness were very good at predicting individual scans from prior longitudinal scans. Conclusions: These findings provide a more detailed characterization of the complex interplay of different types of brain development in the early years, laying the foundation for future studies on the impact of environmental factors and neurodevelopmental disorders on the development matches/mismatches patterns between brain areas and modalities.
Collapse
Affiliation(s)
- Xiangyu Long
- Department of Radiology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Madison Long
- Department of Radiology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jamie Roeske
- Department of Radiology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jess E Reynolds
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Catherine Lebel
- Department of Radiology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Miller KB, Moir ME, Fico BG. Vascular health and exercise in females throughout the lifespan: Exploring puberty, pregnancy and menopause. Exp Physiol 2025. [PMID: 39887530 DOI: 10.1113/ep092170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
This narrative review highlights the impact of exercise on vascular health in females over the lifespan with an emphasis on puberty, pregnancy and menopause. These events encompass substantial changes in sex hormone levels, particularly oestrogens and progesterone. They are also accompanied by distinct adaptations of the central, peripheral and cerebral vasculature. Regular exercise is an effective mechanism to reduce vascular risk in females of all ages, especially for those at higher risk for vascular disorders. However, there are large variabilities in the vascular adaptations to exercise in females that may be related to circulating sex hormone levels. In addition, exogenous hormones, such as oral contraceptives taken after puberty or hormonal replacement therapy taken to mitigate symptoms of menopause, may interact with exercise-induced changes in vascular function. We highlight how more research is needed to understand the optimal exercise interventions to promote vascular health in females across the lifespan, especially during times of hormonal transition.
Collapse
Affiliation(s)
- Kathleen B Miller
- Department of Health and Exercise Science, Morrison Family College of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - M Erin Moir
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brandon G Fico
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
5
|
Barrit S, Al Barajraji M, El Hadwe S, Niset A, Foreman B, Park S, Lazaridis C, Shutter L, Appavu B, Kirschen MP, Montellano FA, Rass V, Torcida N, Pinggera D, Gilmore E, Ben-Hamouda N, Massager N, Bernard F, Robba C, Taccone FS. Intracranial multimodal monitoring in neurocritical care (Neurocore-iMMM): an open, decentralized consensus. Crit Care 2024; 28:427. [PMID: 39707556 DOI: 10.1186/s13054-024-05211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Intracranial multimodal monitoring (iMMM) is increasingly used in neurocritical care, but a lack of standardization hinders its evidence-based development. Here, we devised core outcome sets (COS) and reporting guidelines to harmonize iMMM practices and research. METHODS An open, decentralized, three-round Delphi consensus study involved experts between December 2023 and June 2024. Items-spanning three domains: (i) patient characteristics, (ii) practices, and (iii) outcomes-with ≥ 75% agreement were classified as strong agreement, while those with 50-75% were reconsidered in subsequent rounds, requiring ≥ 66% for moderate agreement. RESULTS An international, multidisciplinary panel comprised 58 neurocritical physicians and researchers with low attrition (12%). They were predominantly from Western regions (96%), actively involved in iMMM (82%), at least weekly (72.4%), with more than 10 years of specific experience (57%). Of the 127 items assessed for inclusion in COS and reporting guidelines, 45 (35.4%) reached strong and 8 (6.3%) moderate agreement. Main strong agreement items were: (i) demographics: age (98%) and sex/gender (90%); comorbidities: coagulation/platelet disorders (95%); initial scoring: Glasgow Coma Scale (97%) and pathology-specific scores (90%); active treatments: antithrombotics (95%) (ii) clinical practice: iMMM implantation indications (98%) and iMMM-guided interventions (91%); surgical practice: targeting strategies (97%) and concomitant external ventricular drainage (97%); technical details: recording modalities (98%); (iii) monitoring parameters: duration (97%) and triggered interventions (95%); standardized outcome reporting (93%); surgical complications (e.g., postoperative intracranial hemorrhages, CNS infections, and probe misplacement, all > 90%) and adverse events (accidental dislodgement, probe breakage, and technical malfunctions, all > 90%). CONCLUSION This consensus establishes foundational COS and reporting guidelines for iMMM in neurocritical care. These harmonization tools can enhance research quality, comparability, and reproducibility, facilitating evidence-based practices for this emerging technology. However, challenges remain in developing purpose-specific guidelines and adapting them to diverse clinical and research settings.
Collapse
Affiliation(s)
- Sami Barrit
- Department of Neurosurgery, CHU Tivoli, Université Libre de Bruxelles, Brussels, Belgium.
| | - Mejdeddine Al Barajraji
- Department of Neurosurgery, University Hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Salim El Hadwe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexandre Niset
- Pediatric Intensive Care Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Brandon Foreman
- Department of Neurology and Rehabilitation, University of Cincinnati, Cincinnati, OH, USA
| | - Soojin Park
- Department of Neurology, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Christos Lazaridis
- Section of Neurocritical Care, Departments of Neurology and Neurosurgery, The University of Chicago, Chicago, IL, USA
| | - Lori Shutter
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian Appavu
- Department of Neurology, Phoenix Children's, Phoenix, AZ, USA
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nathan Torcida
- Department of Neurology, Hôpital Universitaire de Bruxelles, HUB, Brussels, Belgium
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Emily Gilmore
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Massager
- Department of Neurological Surgery, CHU Tivoli, La Louvière, Belgium
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Weston ME, Barker AR, Tomlinson OW, Coombes JS, Bailey TG, Bond B. Middle cerebral artery blood velocity and end-tidal carbon dioxide responses to moderate intensity cycling in children, adolescents, and adults. J Appl Physiol (1985) 2024; 137:1117-1129. [PMID: 39262338 PMCID: PMC11573276 DOI: 10.1152/japplphysiol.00688.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
This study investigated the middle cerebral artery blood velocity (MCAv) response to constant work-rate moderate-intensity cycling exercise in 21 children (9.3 ± 0.8 yr), 17 adolescents (12.3 ± 0.4 yr), and 20 young adults (23.6 ± 2.4 yr). Participants completed an incremental ramp test to exhaustion on a cycle ergometer to determine maximal oxygen uptake and gas exchange threshold (GET) before completing three 6-min transitions at a moderate intensity (90% GET) on separate visits. On each visit, bilateral MCAv was measured by transcranial Doppler ultrasonography and breath-by-breath end-tidal carbon dioxide ([Formula: see text]) via a metabolic cart. Data were ensemble-averaged for each participant and analyzed using a monoexponential model. Absolute MCAv was significantly higher throughout exercise in children and adolescents compared with adults (P < 0.001). Children had a significantly lower relative increase in MCAv from baseline (∼12%) compared with adolescents (∼20%) and adults (∼18%, P < 0.040). All adolescents and adults had a monoexponential rise in MCAv and [Formula: see text], but this was observed in only eight children. Children and adolescents had a significantly faster MCAv time constant (τ, 12 ± 6 and 14 ± 8 s, respectively) compared with adults (27 ± 9 s, P < 0.001). MCAv τ was positively associated with faster [Formula: see text] τ in adolescents (r = 0.70, P = 0.002) but not in children (r = -0.20, P = 0.640). Time- and amplitude-based response parameters of MCAv kinetics were significantly associated with [Formula: see text] kinetics in adults (r = 0.50-0.74, P ≤ 0.025), but not in children (r = -0.19 to -0.48, P > 0.227). These findings suggest that the transition from childhood to adulthood impacts the MCAv response to exercise and the relationships between [Formula: see text] and MCAv kinetics during exercise.NEW & NOTEWORTHY This is the first study to find that children have smaller increases in Δ%MCAv (∼12%) during moderate-intensity exercise compared with adolescents and adults (∼18%-20%). Furthermore, MCAv kinetics were significantly faster in children and adolescents, compared with adults. MCAv kinetic responses were significantly and positively associated with [Formula: see text] kinetics in adults, but not in children. These novel data also suggest that the regulatory role of [Formula: see text] on MCAv during exercise begins to strengthen during adolescence.
Collapse
Affiliation(s)
- Max E Weston
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Alan R Barker
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| | - Owen W Tomlinson
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
- School of Nursing Midwifery and Social Work, The University of Queensland, Brisbane, Australia
| | - Bert Bond
- Faculty of Health and Life Sciences, Public Health and Sports Sciences, Children's Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A Systematic Review of Air Pollution Exposure and Brain Structure and Function during Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313629. [PMID: 39314970 PMCID: PMC11419233 DOI: 10.1101/2024.09.13.24313629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). Methods Using PubMed and Web of Science, we conducted an updated literature search and systematic review of articles published through March 2024, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews informing the World Health Organization Global Air Quality Guidelines. Results We identified 222 relevant papers, and 14 new studies met our inclusion criteria. Including six studies from our 2019 review, the 20 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. Conclusion Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review, publications doubled-an increase that testifies to the importance of this public health issue. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Simarro J, Meyer MI, Van Eyndhoven S, Phan TV, Billiet T, Sima DM, Ortibus E. A deep learning model for brain segmentation across pediatric and adult populations. Sci Rep 2024; 14:11735. [PMID: 38778071 PMCID: PMC11111768 DOI: 10.1038/s41598-024-61798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Automated quantification of brain tissues on MR images has greatly contributed to the diagnosis and follow-up of neurological pathologies across various life stages. However, existing solutions are specifically designed for certain age ranges, limiting their applicability in monitoring brain development from infancy to late adulthood. This retrospective study aims to develop and validate a brain segmentation model across pediatric and adult populations. First, we trained a deep learning model to segment tissues and brain structures using T1-weighted MR images from 390 patients (age range: 2-81 years) across four different datasets. Subsequently, the model was validated on a cohort of 280 patients from six distinct test datasets (age range: 4-90 years). In the initial experiment, the proposed deep learning-based pipeline, icobrain-dl, demonstrated segmentation accuracy comparable to both pediatric and adult-specific models across diverse age groups. Subsequently, we evaluated intra- and inter-scanner variability in measurements of various tissues and structures in both pediatric and adult populations computed by icobrain-dl. Results demonstrated significantly higher reproducibility compared to similar brain quantification tools, including childmetrix, FastSurfer, and the medical device icobrain v5.9 (p-value< 0.01). Finally, we explored the potential clinical applications of icobrain-dl measurements in diagnosing pediatric patients with Cerebral Visual Impairment and adult patients with Alzheimer's Disease.
Collapse
Affiliation(s)
- Jaime Simarro
- icometrix, Leuven, Belgium.
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Neurology, UZ Leuven, Leuven, Belgium
- Child and Youth Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Gennari AG, Bicciato G, Lo Biundo SP, Kottke R, Stefanos-Yakoub I, Cserpan D, O'Gorman Tuura R, Ramantani G. Lesion volume and spike frequency on EEG impact perfusion values in focal cortical dysplasia: a pediatric arterial spin labeling study. Sci Rep 2024; 14:7601. [PMID: 38556543 PMCID: PMC10982306 DOI: 10.1038/s41598-024-58352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Arterial spin labelling (ASL), an MRI sequence non-invasively imaging brain perfusion, has yielded promising results in the presurgical workup of children with focal cortical dysplasia (FCD)-related epilepsy. However, the interpretation of ASL-derived perfusion patterns remains unclear. Hence, we compared ASL qualitative and quantitative findings to their clinical, EEG, and MRI counterparts. We included children with focal structural epilepsy related to an MRI-detectable FCD who underwent single delay pseudo-continuous ASL. ASL perfusion changes were assessed qualitatively by visual inspection and quantitatively by estimating the asymmetry index (AI). We considered 18 scans from 15 children. 16 of 18 (89%) scans showed FCD-related perfusion changes: 10 were hypoperfused, whereas six were hyperperfused. Nine scans had perfusion changes larger than and seven equal to the FCD extent on anatomical images. Hyperperfusion was associated with frequent interictal spikes on EEG (p = 0.047). Perfusion changes in ASL larger than the FCD corresponded to larger lesions (p = 0.017). Higher AI values were determined by frequent interictal spikes on EEG (p = 0.004). ASL showed FCD-related perfusion changes in most cases. Further, higher spike frequency on EEG may increase ASL changes in affected children. These observations may facilitate the interpretation of ASL findings, improving treatment management, counselling, and prognostication in children with FCD-related epilepsy.
Collapse
Affiliation(s)
- Antonio Giulio Gennari
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
- MR-Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giulio Bicciato
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Santo Pietro Lo Biundo
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
| | - Raimund Kottke
- Department of Radiology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ilona Stefanos-Yakoub
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
| | - Dorottya Cserpan
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland
| | - Ruth O'Gorman Tuura
- MR-Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, 75, 8032, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
- Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Mitchell RHB, Grigorian A, Robertson A, Toma S, Luciw NJ, Karthikeyan S, Mutsaerts HJMM, Fiksenbaum L, Metcalfe AWS, MacIntosh BJ, Goldstein BI. Sex differences in cerebral blood flow among adolescents with bipolar disorder. Bipolar Disord 2024; 26:33-43. [PMID: 37217255 DOI: 10.1111/bdi.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Abnormalities in cerebral blood flow (CBF) are common in bipolar disorder (BD). Despite known differences in CBF between healthy adolescent males and females, sex differences in CBF among adolescents with BD have never been studied. OBJECTIVE To examine sex differences in CBF among adolescents with BD versus healthy controls (HC). METHODS CBF images were acquired using arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) in 123 adolescents (72 BD: 30M, 42F; 51 HC: 22M, 29F) matched for age (13-20 years). Whole brain voxel-wise analysis was performed in a general linear model with sex and diagnosis as fixed factors, sex-diagnosis interaction effect, and age as a covariate. We tested for main effects of sex, diagnosis, and their interaction. Results were thresholded at cluster forming p = 0.0125, with posthoc Bonferroni correction (p = 0.05/4 groups). RESULTS A main effect of diagnosis (BD > HC) was observed in the superior longitudinal fasciculus (SLF), underlying the left precentral gyrus (F =10.24 (3), p < 0.0001). A main effect of sex (F > M) on CBF was detected in the precuneus/posterior cingulate cortex (PCC), left frontal and occipital poles, left thalamus, left SLF, and right inferior longitudinal fasciculus (ILF). No regions demonstrated a significant sex-by-diagnosis interaction. Exploratory pairwise testing in regions with a main effect of sex revealed greater CBF in females with BD versus HC in the precuneus/PCC (F = 7.1 (3), p < 0.01). CONCLUSION Greater CBF in female adolescents with BD versus HC in the precuneus/PCC may reflect the role of this region in the neurobiological sex differences of adolescent-onset BD. Larger studies targeting underlying mechanisms, such as mitochondrial dysfunction or oxidative stress, are warranted.
Collapse
Affiliation(s)
- Rachel H B Mitchell
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Andrew Robertson
- Department of Kinesiology, Research Institute for Aging, University of Waterloo, Ontario, Canada
| | - Simina Toma
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Sudhir Karthikeyan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Henri J M M Mutsaerts
- Radiology and Nuclear Medicine Vrje Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Lisa Fiksenbaum
- Department of Applied Psychology and Human Development, University of Toronto, Toronto, Ontario, Canada
| | - Arron W S Metcalfe
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program , Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program , Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Courtney KE, Baca R, Thompson C, Andrade G, Doran N, Jacobson A, Liu TT, Jacobus J. The effects of nicotine use during adolescence and young adulthood on gray matter cerebral blood flow estimates. Brain Imaging Behav 2024; 18:34-43. [PMID: 37851272 PMCID: PMC10844445 DOI: 10.1007/s11682-023-00810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Nicotine and tobacco product (NTP) use remains prevalent in adolescence/young adulthood. The effects of NTPs on markers of brain health during this vulnerable neurodevelopmental period remain largely unknown. This report investigates associations between NTP use and gray matter cerebral blood flow (CBF) in adolescents/young adults. Adolescent/young adult (16-22 years-old) nicotine users (NTP; N = 99; 40 women) and non-users (non-NTP; N = 95; 56 women) underwent neuroimaging sessions including anatomical and optimized pseudo-continuous arterial spin labeling scans. Groups were compared on whole-brain gray matter CBF estimates and their relation to age and sex at birth. Follow-up analyses assessed correlations between identified CBF clusters and NTP recency and dependence measures. Controlling for age and sex, the NTP vs. non-NTP contrast revealed a single cluster that survived thresholding which included portions of bilateral precuneus (voxel-wise alpha < 0.001, cluster-wise alpha < 0.05; ≥7 contiguous voxels). An interaction between NTP group contrast and age was observed in two clusters including regions of the left posterior cingulate (PCC)/lingual gyrus and right anterior cingulate cortex (ACC): non-NTP exhibited positive correlations between CBF and age in these clusters, whereas NTP exhibited negative correlations between CBF and age. Lower CBF from these three clusters correlated with urine cotinine (rs=-0.21 - - 0.16; ps < 0.04) and nicotine dependence severity (rs=-0.16 - - 0.13; ps < 0.07). This is the first investigation of gray matter CBF in adolescent/young adult users of NTPs. The results are consistent with literature on adults showing age- and nicotine-related declines in CBF and identify the precuneus/PCC and ACC as potential key regions subserving the development of nicotine dependence.
Collapse
Affiliation(s)
- Kelly E Courtney
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Rachel Baca
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Courtney Thompson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Gianna Andrade
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Neal Doran
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Aaron Jacobson
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Joanna Jacobus
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Zhao MY, Tong E, Armindo RD, Woodward A, Yeom KW, Moseley ME, Zaharchuk G. Measuring Quantitative Cerebral Blood Flow in Healthy Children: A Systematic Review of Neuroimaging Techniques. J Magn Reson Imaging 2024; 59:70-81. [PMID: 37170640 PMCID: PMC10638464 DOI: 10.1002/jmri.28758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
Cerebral blood flow (CBF) is an important hemodynamic parameter to evaluate brain health. It can be obtained quantitatively using medical imaging modalities such as magnetic resonance imaging and positron emission tomography (PET). Although CBF in adults has been widely studied and linked with cerebrovascular and neurodegenerative diseases, CBF data in healthy children are sparse due to the challenges in pediatric neuroimaging. An understanding of the factors affecting pediatric CBF and its normal range is crucial to determine the optimal CBF measuring techniques in pediatric neuroradiology. This review focuses on pediatric CBF studies using neuroimaging techniques in 32 articles including 2668 normal subjects ranging from birth to 18 years old. A systematic literature search was conducted in PubMed, Embase, and Scopus and reported following the preferred reporting items for systematic reviews and meta-analyses (PRISMA). We identified factors (such as age, gender, mood, sedation, and fitness) that have significant effects on pediatric CBF quantification. We also investigated factors influencing the CBF measurements in infants. Based on this review, we recommend best practices to improve CBF measurements in pediatric neuroimaging. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Elizabeth Tong
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Rui Duarte Armindo
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Neuroradiology, Hospital Beatriz Ângelo, Loures, Lisbon, Portugal
| | - Amanda Woodward
- Lane Medical Library, Stanford University, Stanford, CA, USA
| | - Kristen W. Yeom
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Dennis EL, Keleher F, Bartnik-Olson B. Neuroimaging Correlates of Functional Outcome Following Pediatric TBI. ADVANCES IN NEUROBIOLOGY 2024; 42:33-84. [PMID: 39432037 DOI: 10.1007/978-3-031-69832-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Neuroimaging plays an important role in assessing the consequences of TBI across the postinjury period. While identifying alterations to the brain is important, associating those changes to functional, cognitive, and behavioral outcomes is an essential step to establishing the value of advanced neuroimaging for pediatric TBI. Here we highlight research that has revealed links between advanced neuroimaging and outcome after TBI and point to opportunities where neuroimaging could expand our ability to prognosticate and potentially uncover opportunities to intervene.
Collapse
Affiliation(s)
- Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Finian Keleher
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, School of Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
14
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
15
|
Talbot JS, Perkins DR, Tallon CM, Dawkins TG, Douglas AJM, Beckerleg R, Crofts A, Wright ME, Davies S, Steventon JJ, Murphy K, Lord RN, Pugh CJA, Oliver JL, Lloyd RS, Ainslie PN, McManus AM, Stembridge M. Cerebral blood flow and cerebrovascular reactivity are modified by maturational stage and exercise training status during youth. Exp Physiol 2023; 108:1500-1515. [PMID: 37742137 PMCID: PMC10988468 DOI: 10.1113/ep091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
NEW FINDINGS What is the central question of this study? Gonadal hormones modulate cerebrovascular function while insulin-like growth factor 1 (IGF-1) facilitates exercise-mediated cerebral angiogenesis; puberty is a critical period of neurodevelopment alongside elevated gonadal hormone and IGF-1 activity: but whether exercise training across puberty enhances cerebrovascular function is unkown. What is the main finding and its importance? Cerebral blood flow is elevated in endurance trained adolescent males when compared to untrained counterparts. However, cerebrovascular reactivity to hypercapnia is faster in trained vs. untrained children, but not adolescents. Exercise-induced improvements in cerebrovascular function are attainable as early as the first decade of life. ABSTRACT Global cerebral blood flow (gCBF) and cerebrovascular reactivity to hypercapnia (CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) are modulated by gonadal hormone activity, while insulin-like growth factor 1 facilitates exercise-mediated cerebral angiogenesis in adults. Whether critical periods of heightened hormonal and neural development during puberty represent an opportunity to further enhance gCBF andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ is currently unknown. Therefore, we used duplex ultrasound to assess gCBF andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ in n = 128 adolescents characterised as endurance-exercise trained (males: n = 30, females: n = 36) or untrained (males: n = 29, females: n = 33). Participants were further categorised as pre- (males: n = 35, females: n = 33) or post- (males: n = 24, females: n = 36) peak height velocity (PHV) to determine pubertal or 'maturity' status. Three-factor ANOVA was used to identify main and interaction effects of maturity status, biological sex and training status on gCBF andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Data are reported as group means (SD). Pre-PHV youth demonstrated elevated gCBF and slowerCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response times than post-PHV counterparts (both: P ≤ 0.001). gCBF was only elevated in post-PHV trained males when compared to untrained counterparts (634 (43) vs. 578 (46) ml min-1 ; P = 0.007). However,CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time was faster in pre- (72 (20) vs. 95 (29) s; P ≤ 0.001), but not post-PHV (P = 0.721) trained youth when compared to untrained counterparts. Cardiorespiratory fitness was associated with gCBF in post-PHV youth (r2 = 0.19; P ≤ 0.001) andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time in pre-PHV youth (r2 = 0.13; P = 0.014). Higher cardiorespiratory fitness during adolescence can elevate gCBF while exercise training during childhood primes the development of cerebrovascular function, highlighting the importance of exercise training during the early stages of life in shaping the cerebrovascular phenotype.
Collapse
Affiliation(s)
- Jack S. Talbot
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Dean R. Perkins
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Christine M. Tallon
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Tony G. Dawkins
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Andrew J. M. Douglas
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Ryan Beckerleg
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Andrew Crofts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Melissa E. Wright
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Saajan Davies
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Jessica J. Steventon
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Rachel N. Lord
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Christopher J. A. Pugh
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Jon L. Oliver
- Youth Physical Development CentreCardiff Metropolitan UniversityCardiffUK
- Sports Performance Research Institute New ZealandAUT UniversityAucklandNew Zealand
| | - Rhodri S. Lloyd
- Youth Physical Development CentreCardiff Metropolitan UniversityCardiffUK
- Sports Performance Research Institute New ZealandAUT UniversityAucklandNew Zealand
- Centre for Sport Science and Human PerformanceWaikato Institute of TechnologyWaikatoNew Zealand
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Ali M. McManus
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Mike Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
- Youth Physical Development CentreCardiff Metropolitan UniversityCardiffUK
| |
Collapse
|
16
|
Abbott N, Love T. Bridging the Divide: Brain and Behavior in Developmental Language Disorder. Brain Sci 2023; 13:1606. [PMID: 38002565 PMCID: PMC10670267 DOI: 10.3390/brainsci13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Developmental language disorder (DLD) is a heterogenous neurodevelopmental disorder that affects a child's ability to comprehend and/or produce spoken and/or written language, yet it cannot be attributed to hearing loss or overt neurological damage. It is widely believed that some combination of genetic, biological, and environmental factors influences brain and language development in this population, but it has been difficult to bridge theoretical accounts of DLD with neuroimaging findings, due to heterogeneity in language impairment profiles across individuals and inconsistent neuroimaging findings. Therefore, the purpose of this overview is two-fold: (1) to summarize the neuroimaging literature (while drawing on findings from other language-impaired populations, where appropriate); and (2) to briefly review the theoretical accounts of language impairment patterns in DLD, with the goal of bridging the disparate findings. As will be demonstrated with this overview, the current state of the field suggests that children with DLD have atypical brain volume, laterality, and activation/connectivity patterns in key language regions that likely contribute to language difficulties. However, the precise nature of these differences and the underlying neural mechanisms contributing to them remain an open area of investigation.
Collapse
Affiliation(s)
- Noelle Abbott
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| | - Tracy Love
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| |
Collapse
|
17
|
Mitchell DL, Shlobin NA, LoPresti MA, Scoville JP, Winterhalter E, Lam S. Post-Surgical Cognitive Outcomes of Moyamoya Disease: A Systematic Review. World Neurosurg 2023; 178:181-190.e1. [PMID: 37506837 DOI: 10.1016/j.wneu.2023.07.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Moyamoya disease (MMD) is an occlusive arteriopathy leading to stroke. Progressive if left untreated, revascularization surgery has become the mainstay of treatment. Although clinical and radiographic outcomes of MMD after intervention are well-characterized, cognitive outcomes in pediatric patients remain unclear. We aimed to examine postoperative cognitive outcomes in children with MMD, examine factors associated with cognitive changes after intervention, and define the effect of revascularization surgery on cognitive outcomes. METHODS A systematic review was conducted following PRISMA guidelines searching PubMed, Embase, and Scopus databases. Articles met inclusion criteria if they studied pediatric patients undergoing revascularization surgery for MMD and examined cognitive outcomes either qualitatively or quantitatively. All data extracted from included articles was examined descriptively. RESULTS Of 1091 resultant articles, 12 articles containing 446 patients were included. Surgery was associated with maintained or improved full scale intellectual quotient (IQ), performance IQ, perceptual IQ, memory quotient and verbal memory. However, 70% of patients had impaired cognitive function, with associated poor school performance. Improvements in cognition were associated with increased cerebral blood flow, particularly to the middle cerebral artery, due to the development of collaterals. Female sex, shorter duration from symptom onset to surgery, and surgery after age 7 were predictive of cognitive improvement. Completed ischemic stroke prior to surgery was associated with poorer cognitive outcomes. CONCLUSIONS Although children with MMD have improved cognitive outcomes following revascularization overall, a distinct subset experience cognitive impairment. Consideration of patient-specific and treatment-related factors is important to enable proper risk stratification and inform management approaches.
Collapse
Affiliation(s)
- Devon L Mitchell
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Nathan A Shlobin
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Melissa A LoPresti
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Jonathan P Scoville
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Emily Winterhalter
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Sandi Lam
- Division of Pediatric Neurosurgery, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital, Chicago, Illinois, USA.
| |
Collapse
|
18
|
Ha EJ, Phi JH, Lee JY, Koh EJ, Kim KH, Wang KC, Cho BK, Kim SK. Long-Term Surgical Outcome of Indirect Bypass Surgery in Young Children With Moyamoya Disease. Neurosurgery 2023; 93:901-909. [PMID: 37561505 DOI: 10.1227/neu.0000000000002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The prognosis of moyamoya disease (MMD) in young children (younger than 4 years) is worse than that of older adults. The effectiveness of surgery is still inconclusive. OBJECTIVE To evaluate long-term outcomes after indirect bypass in young children with MMD. METHODS A total of 1417 MMD children underwent indirect bypass from August 1988 to October 2020. This study included 135 patients who were younger than 4 years at the time of surgery. The clinical features and surgical outcomes of these patients were assessed. We analyzed the long-term outcome of 102 children who were followed up for more than 5 years (mean: 18.8 years, range: 5-27.3 years). Cross-sectional analysis was performed to evaluate overall outcomes based on the Lansky Play Performance Scale (LPS). The annual risk of symptomatic stroke after surgery was calculated with a person-year method, and the event-free survival rate was evaluated using the Kaplan-Meier method. RESULTS The overall clinical outcome was favorable (LPS ≥ 80) in 88% of the patients. The overall postoperative adverse event rate was 15%, including 1 death. At the last follow-up, 86% of patients who had seizures at diagnosis were seizure-free. During the follow-up, there were 3 symptomatic infarctions on the operated hemisphere (postoperative 3, 3, and 10 months each). There was no hemorrhagic event. The annual infarction rate was 0.16% per person-year. The 20-year event-free survival rates for symptomatic infarction were 97%. CONCLUSION Indirect bypass could provide a satisfactory long-term outcome and prevent recurrent stroke in young children with MMD.
Collapse
Affiliation(s)
- Eun Jin Ha
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul , Republic of Korea
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul , Republic of Korea
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul , Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul , Republic of Korea
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul , Republic of Korea
| | - Ji Yeoun Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul , Republic of Korea
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul , Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul , Republic of Korea
| | - Eun Jung Koh
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul , Republic of Korea
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul , Republic of Korea
| | - Kyung Hyun Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul , Republic of Korea
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul , Republic of Korea
| | - Kyu-Chang Wang
- Center for Rare Cancers, National Cancer Center, Goyang , Gyeonggi-do , Republic of Korea
| | - Byung-Kyu Cho
- Department of Neurosurgery, Armed Forces Capital Hospital, Seongnam , Gyeonggi-do , Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul , Republic of Korea
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul , Republic of Korea
| |
Collapse
|
19
|
Kochar A, Hildebrandt K, Silverstein R, Appavu B. Approaches to neuroprotection in pediatric neurocritical care. World J Crit Care Med 2023; 12:116-129. [PMID: 37397588 PMCID: PMC10308339 DOI: 10.5492/wjccm.v12.i3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Acute neurologic injuries represent a common cause of morbidity and mortality in children presenting to the pediatric intensive care unit. After primary neurologic insults, there may be cerebral brain tissue that remains at risk of secondary insults, which can lead to worsening neurologic injury and unfavorable outcomes. A fundamental goal of pediatric neurocritical care is to mitigate the impact of secondary neurologic injury and improve neurologic outcomes for critically ill children. This review describes the physiologic framework by which strategies in pediatric neurocritical care are designed to reduce the impact of secondary brain injury and improve functional outcomes. Here, we present current and emerging strategies for optimizing neuroprotective strategies in critically ill children.
Collapse
Affiliation(s)
- Angad Kochar
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Kara Hildebrandt
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Rebecca Silverstein
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
| | - Brian Appavu
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ 85213, United States
- Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85016, United States
| |
Collapse
|
20
|
Hulbert ML, Fields ME, Guilliams KP, Bijlani P, Shenoy S, Fellah S, Towerman AS, Binkley MM, McKinstry RC, Shimony JS, Chen Y, Eldeniz C, Ragan DK, Vo K, An H, Lee JM, Ford AL. Normalization of cerebral hemodynamics after hematopoietic stem cell transplant in children with sickle cell disease. Blood 2023; 141:335-344. [PMID: 36040484 PMCID: PMC9936296 DOI: 10.1182/blood.2022016618] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 02/08/2023] Open
Abstract
Children with sickle cell disease (SCD) demonstrate cerebral hemodynamic stress and are at high risk of strokes. We hypothesized that curative hematopoietic stem cell transplant (HSCT) normalizes cerebral hemodynamics in children with SCD compared with pre-transplant baseline. Whole-brain cerebral blood flow (CBF) and oxygen extraction fraction (OEF) were measured by magnetic resonance imaging 1 to 3 months before and 12 to 24 months after HSCT in 10 children with SCD. Three children had prior overt strokes, 5 children had prior silent strokes, and 1 child had abnormal transcranial Doppler ultrasound velocities. CBF and OEF of HSCT recipients were compared with non-SCD control participants and with SCD participants receiving chronic red blood cell transfusion therapy (CRTT) before and after a scheduled transfusion. Seven participants received matched sibling donor HSCT, and 3 participants received 8 out of 8 matched unrelated donor HSCT. All received reduced-intensity preparation and maintained engraftment, free of hemolytic anemia and SCD symptoms. Pre-transplant, CBF (93.5 mL/100 g/min) and OEF (36.8%) were elevated compared with non-SCD control participants, declining significantly 1 to 2 years after HSCT (CBF, 72.7 mL/100 g per minute; P = .004; OEF, 27.0%; P = .002), with post-HSCT CBF and OEF similar to non-SCD control participants. Furthermore, HSCT recipients demonstrated greater reduction in CBF (-19.4 mL/100 g/min) and OEF (-8.1%) after HSCT than children with SCD receiving CRTT after a scheduled transfusion (CBF, -0.9 mL/100 g/min; P = .024; OEF, -3.3%; P = .001). Curative HSCT normalizes whole-brain hemodynamics in children with SCD. This restoration of cerebral oxygen reserve may explain stroke protection after HSCT in this high-risk patient population.
Collapse
Affiliation(s)
- Monica L. Hulbert
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Melanie E. Fields
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Kristin P. Guilliams
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Priyesha Bijlani
- Department of Internal Medicine, University of California San Diego, San Diego, CA
| | - Shalini Shenoy
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Slim Fellah
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Alison S. Towerman
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Yasheng Chen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Dustin K. Ragan
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Katie Vo
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Andria L. Ford
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
21
|
Computational Modelling of Cerebral Blood Flow Rate at Different Stages of Moyamoya Disease in Adults and Children. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010077. [PMID: 36671650 PMCID: PMC9854682 DOI: 10.3390/bioengineering10010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Moyamoya disease is a cerebrovascular disorder which causes a decrease in the cerebral blood flow rate. In this study, a lumped parameter model describing the pressures and flow rates in the heart chambers, circulatory system, and cerebral circulation with the main arteries in the circle of Willis, pial circulation, cerebral capillaries, and veins was used to simulate Moyamoya disease with and without coarctation of the aorta in adults and children. Cerebral blood flow rates were 724 mL/min and 1072 mL/min in the healthy adult and child cardiovascular system models. The cerebral blood flow rates in the adult and child cardiovascular system models simulating Moyamoya disease were 676 mL/min and 1007 mL/min in stage 1, 627 mL/min and 892 mL/min in stage 2, 571 mL/min and 831 in stage 3, and 444 and 537 mL/min in stage 4. The cerebral blood flow rates were 926 mL/min and 1421 mL/min in the adult and child cardiovascular system models simulating coarctation of the aorta. Furthermore, the cerebral blood flow rates in the adult and child cardiovascular system model simulating Moyamoya disease with coarctation of the aorta were 867 mL/min and 1341 mL/min in stage 1, 806 mL/min and 1197 mL/min in stage 2, 735 mL/min and 1121 in stage 3, and 576 and 741 mL/min in stage 4. The numerical model utilised in this study can simulate the advancing stages of Moyamoya disease and evaluate the associated risks with Moyamoya disease.
Collapse
|
22
|
Shah P, Doyle E, Wood JC, Borzage MT. Imputation models and error analysis for phase contrast MR cerebral blood flow measurements. Front Physiol 2023; 14:1096297. [PMID: 36891147 PMCID: PMC9988286 DOI: 10.3389/fphys.2023.1096297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
Cerebral blood flow (CBF) supports brain metabolism. Diseases impair CBF, and pharmacological agents modulate CBF. Many techniques measure CBF, but phase contrast (PC) MR imaging through the four arteries supplying the brain is rapid and robust. However, technician error, patient motion, or tortuous vessels degrade quality of the measurements of the internal carotid (ICA) or vertebral (VA) arteries. We hypothesized that total CBF could be imputed from measurements in subsets of these 4 feeding vessels without excessive penalties in accuracy. We analyzed PC MR imaging from 129 patients, artificially excluded 1 or more vessels to simulate degraded imaging quality, and developed models of imputation for the missing data. Our models performed well when at least one ICA was measured, and resulted in R 2 values of 0.998-0.990, normalized root mean squared error values of 0.044-0.105, and intra-class correlation coefficient of 0.982-0.935. Thus, these models were comparable or superior to the test-retest variability in CBF measured by PC MR imaging. Our imputation models allow retrospective correction for corrupted blood vessel measurements when measuring CBF and guide prospective CBF acquisitions.
Collapse
Affiliation(s)
- Payal Shah
- Division of Cardiology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Eamon Doyle
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - John C Wood
- Division of Cardiology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Matthew T Borzage
- Division of Neonatology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, Fetal and Neonatal Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Leisman G, Melillo R. Front and center: Maturational dysregulation of frontal lobe functional neuroanatomic connections in attention deficit hyperactivity disorder. Front Neuroanat 2022; 16:936025. [PMID: 36081853 PMCID: PMC9446472 DOI: 10.3389/fnana.2022.936025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
Frontal lobe function may not universally explain all forms of attention deficit hyperactivity disorder (ADHD) but the frontal lobe hypothesis described supports an internally consistent model for integrating the numerous behaviors associated with ADHD. The paper examines the developmental trajectories of frontal and prefrontal lobe development, framing ADHD as maturational dysregulation concluding that the cognitive, motor, and behavioral abilities of the presumptive majority of ADHD children may not primarily be disordered or dysfunctional but reflect maturational dysregulation that is inconsistent with the psychomotor and cognitive expectations for the child’s chronological and mental age. ADHD children demonstrate decreased activation of the right and middle prefrontal cortex. Prefrontal and frontal lobe regions have an exuberant network of shared pathways with the diencephalic region, also having a regulatory function in arousal as well as with the ascending reticular formation which has a capacity for response suppression to task-irrelevant stimuli. Prefrontal lesions oftentimes are associated with the regulatory breakdown of goal-directed activity and impulsivity. In conclusion, a presumptive majority of childhood ADHD may result from maturational dysregulation of the frontal lobes with effects on the direct, indirect and/or, hyperdirect pathways.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
- Department of Neurology, University of Medical Sciences of Havana, Havana, Cuba
- *Correspondence: Gerry Leisman,
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
24
|
Comparison of Qualitative and Quantitative Analyses of MR-Arterial Spin Labeling Perfusion Data for the Assessment of Pediatric Patients with Focal Epilepsies. Diagnostics (Basel) 2022; 12:diagnostics12040811. [PMID: 35453858 PMCID: PMC9032819 DOI: 10.3390/diagnostics12040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/07/2022] Open
Abstract
The role of MR Arterial-Spin-Labeling Cerebral Blood Flow maps (ASL-CBF) in the assessment of pediatric focal epilepsy is still debated. We aim to compare the Seizure Onset Zone (SOZ) detection rate of three methods of evaluation of ASL-CBF: 1) qualitative visual (qCBF), 2) z-score voxel-based quantitative analysis of index of asymmetry (AI-CBF), and 3) z-score voxel-based cluster analysis of the quantitative difference of patient’s CBF from the normative data of an age-matched healthy population (cCBF). Interictal ASL-CBF were acquired in 65 pediatric patients with focal epilepsy: 26 with focal brain lesions and 39 with a normal MRI. All hypoperfusion areas visible in at least 3 contiguous images of qCBF analysis were identified. In the quantitative evaluations, clusters with a significant z-score AI-CBF ≤ −1.64 and areas with a z-score cCBF ≤ −1.64 were considered potentially related to the SOZ. These areas were compared with the SOZ defined by the anatomo-electro-clinical data. In patients with a positive MRI, SOZ was correctly identified in 27% of patients using qCBF, 73% using AI-CBF, and 77% using cCBF. In negative MRI patients, SOZ was identified in 18% of patients using qCBF, in 46% using AI-CBF, and in 64% using cCBF (p < 0.001). Quantitative analyses of ASL-CBF maps increase the detection rate of SOZ compared to the qualitative method, principally in negative MRI patients.
Collapse
|
25
|
Li L, Wei Y, Zhang J, Ma J, Yi Y, Gu Y, Li LMW, Lin Y, Dai Z. Gene expression associated with individual variability in intrinsic functional connectivity. Neuroimage 2021; 245:118743. [PMID: 34800667 DOI: 10.1016/j.neuroimage.2021.118743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022] Open
Abstract
It has been revealed that intersubject variability (ISV) in intrinsic functional connectivity (FC) is associated with a wide variety of cognitive and behavioral performances. However, the underlying organizational principle of ISV in FC and its related gene transcriptional profiles remain unclear. Using resting-state fMRI data from the Human Connectome Project (299 adult participants) and microarray gene expression data from the Allen Human Brain Atlas, we conducted a transcription-neuroimaging association study to investigate the spatial configurations of ISV in intrinsic FC and their associations with spatial gene transcriptional profiles. We found that the multimodal association cortices showed the greatest ISV in FC, while the unimodal cortices and subcortical areas showed the least ISV. Importantly, partial least squares regression analysis revealed that the transcriptional profiles of genes associated with human accelerated regions (HARs) could explain 31.29% of the variation in the spatial distribution of ISV in FC. The top-related genes in the transcriptional profiles were enriched for the development of the central nervous system, neurogenesis and the cellular components of synapse. Moreover, we observed that the effect of gene expression profile on the heterogeneous distribution of ISV in FC was significantly mediated by the cerebral blood flow configuration. These findings highlighted the spatial arrangement of ISV in FC and their coupling with variations in transcriptional profiles and cerebral blood flow supply.
Collapse
Affiliation(s)
- Liangfang Li
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongbin Wei
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jinbo Zhang
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Junji Ma
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yangyang Yi
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Gu
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Liman Man Wai Li
- Department of Psychology and Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong SAR, China
| | - Ying Lin
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Early targeted heart rate aerobic exercise for sport-related concussion. THE LANCET CHILD & ADOLESCENT HEALTH 2021; 5:769-771. [PMID: 34600628 DOI: 10.1016/s2352-4642(21)00304-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
|
27
|
Lemaître H, Augé P, Saitovitch A, Vinçon-Leite A, Tacchella JM, Fillon L, Calmon R, Dangouloff-Ros V, Lévy R, Grévent D, Brunelle F, Boddaert N, Zilbovicius M. Rest Functional Brain Maturation during the First Year of Life. Cereb Cortex 2021; 31:1776-1785. [PMID: 33230520 PMCID: PMC7869100 DOI: 10.1093/cercor/bhaa325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
The first year of life is a key period of brain development, characterized by dramatic structural and functional modifications. Here, we measured rest cerebral blood flow (CBF) modifications throughout babies’ first year of life using arterial spin labeling magnetic resonance imaging sequence in 52 infants, from 3 to 12 months of age. Overall, global rest CBF significantly increased during this age span. In addition, we found marked regional differences in local functional brain maturation. While primary sensorimotor cortices and insula showed early maturation, temporal and prefrontal region presented great rest CBF increase across the first year of life. Moreover, we highlighted a late and remarkably synchronous maturation of the prefrontal and posterior superior temporal cortices. These different patterns of regional cortical rest CBF modifications reflect a timetable of local functional brain maturation and are consistent with baby’s cognitive development within the first year of life.
Collapse
Affiliation(s)
- Hervé Lemaître
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (CNRS UMR 5293), Université de Bordeaux, Bordeaux 33000, France
| | - Pierre Augé
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ana Saitovitch
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Alice Vinçon-Leite
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Jean-Marc Tacchella
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Ludovic Fillon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphael Calmon
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Volodia Dangouloff-Ros
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Raphaël Lévy
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - David Grévent
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Francis Brunelle
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Nathalie Boddaert
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| | - Monica Zilbovicius
- INSERM UA10, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, Imagine Institute (UMR 1163), Paris Descartes University, Sorbonne Paris Cité University, Paris 75015, France
| |
Collapse
|
28
|
Rostami E, Nilsson P, Enblad P. Cerebral Blood Flow Measurement in Healthy Children and Children Suffering Severe Traumatic Brain Injury-What Do We Know? Front Neurol 2020; 11:274. [PMID: 32373050 PMCID: PMC7176820 DOI: 10.3389/fneur.2020.00274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 01/28/2023] Open
Abstract
Traumatic brain injury is the leading cause of death in children. Children with severe TBI are in need of neurointensive care where the goal is to prevent secondary brain injury by avoiding secondary insults. Monitoring of cerebral blood flow (CBF) and autoregulation in the injured brain is crucial. However, there are limited studies performed in children to investigate this. Current studies report on age dependent increase in CBF with narrow age range. Low initial CBF following TBI has been correlated to poor outcome and may be more prevalent than hyperemia as previously suggested. Impaired cerebral pressure autoregulation is also detected and correlated with poor outcome but it remains to be elucidated if there is a causal relationship. Current studies are few and mainly based on small number of patients between the age of 0–18 years. Considering the changes of CBF and cerebral pressure autoregulation with increasing age, larger studies with more narrow age ranges and multimodality monitoring are required in order to generate data that can optimize the therapy and clinical management of children suffering TBI.
Collapse
Affiliation(s)
- Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Pelle Nilsson
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Reynolds JE, Long X, Paniukov D, Bagshawe M, Lebel C. Calgary Preschool magnetic resonance imaging (MRI) dataset. Data Brief 2020; 29:105224. [PMID: 32071993 PMCID: PMC7016255 DOI: 10.1016/j.dib.2020.105224] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 01/05/2023] Open
Abstract
The Calgary Preschool MRI Dataset in the Developmental Neuroimaging Lab at the University of Calgary uses magnetic resonance imaging (MRI) techniques to study brain structure and function in early childhood [1-3]. The dataset aims to characterise brain development in early childhood (2-8 years), and to understand links to cognitive and behavioral development, as well as provide a baseline from which to identify atypical development in children with diseases, disorders, or brain injuries. MRI data are provided for 126 children (61 males, 65 females). Children ranged from 1.95 to 6.22 years (mean = 3.98 ± 1.06 years) at the time of their first scan and were initially scanned at six month intervals, and now continue to be followed annually (1-20 scans per child, 431 total datasets; datasets do not always have all scan modalities available). All MRI scans were acquired on the same General Electric 3T MR750w system and 32-channel head coil (GE, Waukesha, WI) at the Alberta Children's Hospital in Calgary, Canada. The MRI protocols provided in this dataset include: T1-weighted images acquired using a FSPGR BRAVO sequence; arterial spin labeling (ASL) images acquired with the vendor supplied pseudo continuous 3D ASL sequence; diffusion tensor imaging data acquired using single shot spin echo echo-planar imaging; and passive viewing resting state functional MRI data acquired with a gradient-echo echo-planar imaging sequence.
Collapse
Affiliation(s)
- Jess E Reynolds
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Xiangyu Long
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Dmitrii Paniukov
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Department of Pediatrics, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Mercedes Bagshawe
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4, AB, Canada.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Owerko Centre, Alberta Children Hospital Research Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|