1
|
Yu X, Li Y, Xu C, Ji Y, Wang C, Ma C, Wu X, Wang Z, Liu F, Li P, Li Y, Liu Y. Decoding Anxiety and/or Depressive Status in Functional Constipation: Insights From Surface-Based Functional-Structural Coupling Analysis. Neurogastroenterol Motil 2025:e70050. [PMID: 40228099 DOI: 10.1111/nmo.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND While patients with functional constipation (FC) are more susceptible to psychiatric issues such as anxiety and depression, the mechanism underlying gut-brain interactions remains elusive. METHODS This study included 39 FC patients with anxiety/depressive status (FCAD), 32 FC patients without anxiety/depressive status (FCNAD), and 42 healthy controls. Participants underwent clinical examinations and MRI scans, and changes in functional-structural coupling were assessed using surface-based regional homogeneity and cortical thickness. Receiver operating characteristic (ROC) curve analyses were performed to assess the predictive value of these changes. KEY RESULTS Abnormal coupling changes were exclusively observed in the FCAD group at both global and regional levels, primarily including significantly decreased coupling indices in the left hemisphere and regions within the bilateral visual cortex, left dorsolateral prefrontal cortex, and left posterior cingulate cortex. The FCAD and FCNAD groups were compared and analyzed using ROC curves, which revealed that coupling ratios in the bilateral visual cortex yielded higher predictive accuracy. Specifically, in the 12th sub-region of the left hemisphere, the coupling ratio achieved a sensitivity of 71.9% and a specificity of 74.4%. Meanwhile, the 8th sub-region of the right hemisphere showed a sensitivity of 78.1% and a specificity of 71.8%. CONCLUSIONS AND INFERENCES These results collectively highlighted asymmetric hemispheric decoupling and impairments in brain regions associated with visual and default mode networks in FCAD patients. These findings offer novel insights into the neurophysiological mechanisms underlying FCAD and may inform the development of more personalized treatment approaches.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Yi Ji
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Chao Wang
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Chaoqun Ma
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Xiaoyu Wu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Zhushan Wang
- College of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensor Network Technology, Nankai University, Tianjin, China
| | - Peng Li
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Yiming Li
- Department of Radiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin, China
| | - Yawu Liu
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Morey RA, Zheng Y, Bayly H, Sun D, Garrett ME, Gasperi M, Maihofer AX, Baird CL, Grasby KL, Huggins AA, Haswell CC, Thompson PM, Medland S, Gustavson DE, Panizzon MS, Kremen WS, Nievergelt CM, Ashley-Koch AE, Logue MW. Genomic structural equation modeling reveals latent phenotypes in the human cortex with distinct genetic architecture. Transl Psychiatry 2024; 14:451. [PMID: 39448598 PMCID: PMC11502831 DOI: 10.1038/s41398-024-03152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks (GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs, although sensitivity analyses indicated that other structures were plausible. The multivariate GWASs of the GIBNs identified 74 genome-wide significant (GWS) loci (p < 5 × 10-8), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder (BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater genetic risk of these disorders. A negative genetic correlation was observed between attention deficit hyperactivity disorder (ADHD) and major depressive disorder (MDD). CT GIBNs displayed a negative genetic correlation with alcohol dependence. Even though we observed model instability in our application of genomic SEM to high-dimensional data, jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across neuroimaging phenotypes offers new insights into the genetics of cortical structure and relationships to psychopathology.
Collapse
Affiliation(s)
- Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Henry Bayly
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Melanie E Garrett
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Marianna Gasperi
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam X Maihofer
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute Keck School of Medicine University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah Medland
- Queensland Institute for Medical Research, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew S Panizzon
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - William S Kremen
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - Caroline M Nievergelt
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allison E Ashley-Koch
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, 02118-2526, USA.
| |
Collapse
|
3
|
Gorelik AJ, Paul SE, Miller AP, Baranger DAA, Lin S, Zhang W, Elsayed NM, Modi H, Addala P, Bijsterbosch J, Barch DM, Karcher NR, Hatoum AS, Agrawal A, Bogdan R, Johnson EC. Associations between polygenic scores for cognitive and non-cognitive factors of educational attainment and measures of behavior, psychopathology, and neuroimaging in the adolescent brain cognitive development study. Psychol Med 2024; 54:1-15. [PMID: 39440454 PMCID: PMC11536102 DOI: 10.1017/s0033291724002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Educational attainment (EduA) is correlated with life outcomes, and EduA itself is influenced by both cognitive and non-cognitive factors. A recent study performed a 'genome-wide association study (GWAS) by subtraction,' subtracting genetic effects for cognitive performance from an educational attainment GWAS to create orthogonal 'cognitive' and 'non-cognitive' factors. These cognitive and non-cognitive factors showed associations with behavioral health outcomes in adults; however, whether these correlations are present during childhood is unclear. METHODS Using data from up to 5517 youth (ages 9-11) of European ancestry from the ongoing Adolescent Brain Cognitive DevelopmentSM Study, we examined associations between polygenic scores (PGS) for cognitive and non-cognitive factors and cognition, risk tolerance, decision-making & personality, substance initiation, psychopathology, and brain structure (e.g. volume, fractional anisotropy [FA]). Within-sibling analyses estimated whether observed genetic associations may be consistent with direct genetic effects. RESULTS Both PGSs were associated with greater cognition and lower impulsivity, drive, and severity of psychotic-like experiences. The cognitive PGS was also associated with greater risk tolerance, increased odds of choosing delayed reward, and decreased likelihood of ADHD and bipolar disorder; the non-cognitive PGS was associated with lack of perseverance and reward responsiveness. Cognitive PGS were more strongly associated with larger regional cortical volumes; non-cognitive PGS were more strongly associated with higher FA. All associations were characterized by small effects. CONCLUSIONS While the small sizes of these associations suggest that they are not effective for prediction within individuals, cognitive and non-cognitive PGS show unique associations with phenotypes in childhood at the population level.
Collapse
Affiliation(s)
- Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah E. Paul
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex P. Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David A. A. Baranger
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Shuyu Lin
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nourhan M. Elsayed
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Hailey Modi
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Pooja Addala
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Janine Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole R. Karcher
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S. Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Wilkinson J, Curry OS, Mitchell BL, Bates T. Modular morals: Mapping the organization of the moral brain. Brain Cogn 2024; 180:106201. [PMID: 39173228 DOI: 10.1016/j.bandc.2024.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
Is morality the product of multiple domain-specific psychological mechanisms, or one domain-general mechanism? Previous research suggests that morality consists of a range of solutions to the problems of cooperation recurrent in human social life. This theory of 'morality as cooperation' suggests that there are (at least) seven specific moral domains: family values, group loyalty, reciprocity, heroism, deference, fairness and property rights. However, it is unclear how these types of morality are implemented at the neuroanatomical level. The possibilities are that morality is (1) the product of multiple distinct domain-specific adaptations for cooperation, (2) the product of a single domain-general adaptation which learns a range of moral rules, or (3) the product of some combination of domain-specific and domain-general adaptations. To distinguish between these possibilities, we first conducted an anatomical likelihood estimation meta-analysis of previous studies investigating the relationship between these seven moral domains and neuroanatomy. This meta-analysis provided evidence for a combination of specific and general adaptations. Next, we investigated the relationship between the seven types of morality - as measured by the Morality as Cooperation Questionnaire (Relevance) - and grey matter volume in a large neuroimaging (n = 607) sample. No associations between moral values and grey matter volume survived whole-brain exploratory testing. We conclude that whatever combination of mechanisms are responsible for morality, either they are not neuroanatomically localised, or else their localisation is not manifested in grey matter volume. Future research should employ phylogenetically informed a priori predictions, as well as alternative measures of morality and of brain function.
Collapse
Affiliation(s)
- James Wilkinson
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; School of Business and Economics, Maastricht University, Maastricht, the Netherlands.
| | - Oliver Scott Curry
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Brittany L Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Timothy Bates
- Centre for Cognitive Ageing and Cognitive Epidemiology Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Sato S, Imaeda T, Mugikura S, Mori N, Takanashi M, Hayakawa K, Saito T, Taira M, Narita A, Kogure M, Chiba I, Hatanaka R, Nakaya K, Kanno I, Ishiwata R, Nakamura T, Motoike IN, Nakaya N, Koshiba S, Kinoshita K, Kuriyama S, Ogishima S, Nagami F, Fuse N, Hozawa A. Association of olfactory and cognitive function test scores with hippocampal and amygdalar grey matter volume: a cross-sectional study. Sci Rep 2024; 14:19138. [PMID: 39160183 PMCID: PMC11333722 DOI: 10.1038/s41598-024-69726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Few population-based studies including younger adults have examined the potential of olfactory function tests to capture the degree of atrophy in memory-associated brain regions, which cannot be adequately explained by cognitive function tests screening for cognitive impairment. This population-based study investigated associations between high-resolution olfactory test data with few odours and grey matter volumes (GMVs) of the left and right hippocampi, amygdala, parahippocampi, and olfactory cortex, while accounting for differences in cognitive decline, in 1444 participants (aged 31-91 years). Regression analyses included intracranial volume (ICV)-normalised GMVs of eight memory-related regions as objective variables and age, sex, education duration, smoking history, olfaction test score, and the Montreal Cognitive Assessment-Japanese version (MoCA-J) score as explanatory variables. Significant relationships were found between olfactory test scores and ICV-normalised GMVs of the left and right hippocampi and left amygdala (p = 0.020, 0.024, and 0.028, respectively), adjusting for the MoCA-J score. The olfactory test score was significantly related to the right amygdalar GMV (p = 0.020) in older adults (age ≥ 65 years). These associations remained significant after applying Benjamini-Hochberg multiple testing correction (false discovery rate < 0.1). Therefore, olfactory and cognitive function tests may efficiently capture the degree of atrophy in the hippocampi and amygdala, especially in older adults.
Collapse
Affiliation(s)
- Shuichi Sato
- Toyota Central Research and Development Laboratories, Inc., Nagakute, 480-1192, Japan.
| | - Takao Imaeda
- Toyota Central Research and Development Laboratories, Inc., Nagakute, 480-1192, Japan
| | - Shunji Mugikura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Hospital, Sendai, 980-8574, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Naoko Mori
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Masaki Takanashi
- Toyota Central Research and Development Laboratories, Inc., Nagakute, 480-1192, Japan
| | - Kazumi Hayakawa
- Toyota Central Research and Development Laboratories, Inc., Nagakute, 480-1192, Japan
| | - Tomo Saito
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Makiko Taira
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Hospital, Sendai, 980-8574, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Mana Kogure
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ippei Chiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Rieko Hatanaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kumi Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ikumi Kanno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryosuke Ishiwata
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Tomohiro Nakamura
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Naoki Nakaya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Information Sciences, Sendai, 980-8579, Japan
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, 980-8572, Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
| | - Fuji Nagami
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, 980-8573, Japan
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
6
|
Sun Y, Ma D, Jiang Z, Han Q, Liu Y, Chen G. The causal relationship between physical activity, sedentary behavior and brain cortical structure: a Mendelian randomization study. Cereb Cortex 2024; 34:bhae119. [PMID: 38566508 DOI: 10.1093/cercor/bhae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Physical activity and sedentary behavior, both distinct lifestyle behaviors associated with brain health, have an unclear potential relationship with brain cortical structure. This study aimed to determine the causal link between physical activity, sedentary behavior, and brain cortical structure (cortical surface area and thickness) through Mendelian randomization analysis. The inverse-variance weighted method was primarily utilized, accompanied by sensitivity analyses, to confirm the results' robustness and accuracy. Analysis revealed nominally significant findings, indicating a potential positive influence of physical activity on cortical thickness in the bankssts (β = 0.002 mm, P = 0.043) and the fusiform (β = 0.002 mm, P = 0.018), and a potential negative association of sedentary behavior with cortical surface area in the caudal middle frontal (β = -34.181 mm2, P = 0.038) and the pars opercularis (β = -33.069 mm2, P = 0.002), alongside a nominally positive correlation with the cortical surface area of the inferior parietal (β = 58.332 mm2, P = 0.035). Additionally, a nominally significant negative correlation was observed between sedentary behavior and cortical thickness in the paracentral (β = -0.014 mm, P = 0.042). These findings offer insights into how lifestyle behaviors may influence brain cortical structures, advancing our understanding of their interaction with brain health.
Collapse
Affiliation(s)
- Yulin Sun
- Department of Sports Science, Hanyang University ERICA, 55, Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, Republic of Korea
| | - Di Ma
- Department of Sports Science, Hanyang University ERICA, 55, Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, Republic of Korea
| | - Zhenping Jiang
- Department of Sports Science, Hanyang University ERICA, 55, Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, Republic of Korea
| | - Qifeng Han
- Department of Physical Education, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Yining Liu
- Department of Sports Science, Hanyang University ERICA, 55, Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, Republic of Korea
| | - Guoyang Chen
- Department of Sports Science, Hanyang University ERICA, 55, Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, Republic of Korea
| |
Collapse
|
7
|
Wang HH, Moon SY, Kim H, Kim G, Ahn WY, Joo YY, Cha J. Early life stress modulates the genetic influence on brain structure and cognitive function in children. Heliyon 2024; 10:e23345. [PMID: 38187352 PMCID: PMC10770463 DOI: 10.1016/j.heliyon.2023.e23345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
The enduring influence of early life stress (ELS) on brain and cognitive development has been widely acknowledged, yet the precise mechanisms underlying this association remain elusive. We hypothesize that ELS might disrupt the genome-wide influence on brain morphology and connectivity development, consequently exerting a detrimental impact on children's cognitive ability. We analyzed the multimodal data of DNA genotypes, brain imaging (structural and diffusion MRI), and neurocognitive battery (NIH Toolbox) of 4276 children (ages 9-10 years, European ancestry) from the Adolescent Brain Cognitive Development (ABCD) study. The genome-wide influence on cognitive function was estimated using the polygenic score (GPS). By using brain morphometry and tractography, we identified the brain correlates of the cognition GPSs. Statistical analyses revealed relationships for the gene-brain-cognition pathway. The brain structural variance significantly mediated the genetic influence on cognition (indirect effect = 0.016, PFDR < 0.001). Of note, this gene-brain relationship was significantly modulated by abuse, resulting in diminished cognitive capacity (Index of Moderated Mediation = -0.007; 95 % CI = -0.012 ∼ -0.002). Our results support a novel gene-brain-cognition model likely elucidating the long-lasting negative impact of ELS on children's cognitive development.
Collapse
Affiliation(s)
- Hee-Hwan Wang
- Department of Brain Cognitive and Science, Seoul National University, Seoul, 08825, South Korea
| | - Seo-Yoon Moon
- College of Liberal Studies, Seoul National University, Seoul, 08825, South Korea
| | - Hyeonjin Kim
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
| | - Gakyung Kim
- Department of Brain Cognitive and Science, Seoul National University, Seoul, 08825, South Korea
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
| | - Yoonjung Yoonie Joo
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, South Korea
- Research Center for Future Medicine, Samsung Medical Center, Seoul, 06335, South Korea
| | - Jiook Cha
- Department of Brain Cognitive and Science, Seoul National University, Seoul, 08825, South Korea
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
- AI Institute, Seoul National University, Seoul, 08825, South Korea
| |
Collapse
|
8
|
Hoy N, Lynch SJ, Waszczuk MA, Reppermund S, Mewton L. Transdiagnostic biomarkers of mental illness across the lifespan: A systematic review examining the genetic and neural correlates of latent transdiagnostic dimensions of psychopathology in the general population. Neurosci Biobehav Rev 2023; 155:105431. [PMID: 37898444 DOI: 10.1016/j.neubiorev.2023.105431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
This systematic review synthesizes evidence from research investigating the biological correlates of latent transdiagnostic dimensions of psychopathology (e.g., the p-factor, internalizing, externalizing) across the lifespan. Eligibility criteria captured genomic and neuroimaging studies investigating general and/or specific dimensions in general population samples across all age groups. MEDLINE, Embase, and PsycINFO were searched for relevant studies published up to March 2023 and 46 studies were selected for inclusion. The results revealed several biological correlates consistently associated with transdiagnostic dimensions of psychopathology, including polygenic scores for ADHD and neuroticism, global surface area and global gray matter volume. Shared and unique associations between symptom dimensions are highlighted, as are potential age-specific differences in biological associations. Findings are interpreted with reference to key methodological differences across studies. The included studies provide compelling evidence that the general dimension of psychopathology reflects common underlying genetic and neurobiological vulnerabilities that are shared across diverse manifestations of mental illness. Substantive interpretations of general psychopathology in the context of genetic and neurobiological evidence are discussed.
Collapse
Affiliation(s)
- Nicholas Hoy
- The Matilda Centre for Research in Mental Health and Substance Use, University of Sydney, Sydney, Australia; Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia.
| | - Samantha J Lynch
- The Matilda Centre for Research in Mental Health and Substance Use, University of Sydney, Sydney, Australia; Department of Psychiatry, Université de Montréal, Montreal, Canada; Research Centre, CHU Sainte-Justine, Montreal, Canada
| | - Monika A Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, United States
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia; Department of Developmental Disability Neuropsychiatry, University of New South Wales, Sydney, Australia
| | - Louise Mewton
- The Matilda Centre for Research in Mental Health and Substance Use, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Korologou-Linden R, Schuurmans IK, Cecil CAM, White T, Banaschewski T, Bokde ALW, Desrivières S, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Holz N, Fröhner JH, Smolka M, Walter H, Winterer J, Whelan R, Schumann G, Howe LD, Ben-Shlomo Y, Davies NM, Anderson EL. The bidirectional effects between cognitive ability and brain morphology: A life course Mendelian randomization analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.17.23297145. [PMID: 38014064 PMCID: PMC10680890 DOI: 10.1101/2023.11.17.23297145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Introduction Little is understood about the dynamic interplay between brain morphology and cognitive ability across the life course. Additionally, most existing research has focused on global morphology measures such as estimated total intracranial volume, mean thickness, and total surface area. Methods Mendelian randomization was used to estimate the bidirectional effects between cognitive ability, global and regional measures of cortical thickness and surface area, estimated total intracranial volume, total white matter, and the volume of subcortical structures (N=37,864). Analyses were stratified for developmental periods (childhood, early adulthood, mid-to-late adulthood; age range: 8-81 years). Results The earliest effects were observed in childhood and early adulthood in the frontoparietal lobes. A bidirectional relationship was identified between higher cognitive ability, larger estimated total intracranial volume (childhood, mid-to-late adulthood) and total surface area (all life stages). A thicker posterior cingulate cortex and a larger surface area in the caudal middle frontal cortex and temporal pole were associated with greater cognitive ability. Contrary, a thicker temporal pole was associated with lower cognitive ability. Discussion Stable effects of cognitive ability on brain morphology across the life course suggests that childhood is potentially an important window for intervention.
Collapse
|
10
|
Gorelik AJ, Paul SE, Miller AP, Baranger DAA, Lin S, Zhang W, Elsayed NM, Modi H, Addala P, Bijsterbosch J, Barch DM, Karcher NR, Hatoum AS, Agrawal A, Bogdan R, Johnson EC. Associations Between Polygenic Scores for Cognitive and Non-cognitive Factors of Educational Attainment and Measures of Behavior, Psychopathology, and Neuroimaging in the Adolescent Brain Cognitive Development Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.27.23297675. [PMID: 37961716 PMCID: PMC10635216 DOI: 10.1101/2023.10.27.23297675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Both cognitive and non-cognitive (e.g., traits like curiosity) factors are critical for social and emotional functioning and independently predict educational attainment. These factors are heritable and genetically correlated with a range of health-relevant traits and behaviors in adulthood (e.g., risk-taking, psychopathology). However, whether these associations are present during adolescence, and to what extent these relationships diverge, could have implications for adolescent health and well-being. Methods Using data from 5,517 youth of European ancestry from the ongoing Adolescent Brain Cognitive DevelopmentSM Study, we examined associations between polygenic scores (PGS) for cognitive and non-cognitive factors and outcomes related to cognition, socioeconomic status, risk tolerance and decision-making, substance initiation, psychopathology, and brain structure. Results Cognitive and non-cognitive PGSs were both positively associated with cognitive performance and family income, and negatively associated with ADHD and severity of psychotic-like experiences. The cognitive PGS was also associated with greater risk-taking, delayed discounting, and anorexia, as well as lower likelihood of nicotine initiation. The cognitive PGS was further associated with cognition scores and anorexia in within-sibling analyses, suggesting these results do not solely reflect the effects of assortative mating or passive gene-environment correlations. The cognitive PGS showed significantly stronger associations with cortical volumes than the non-cognitive PGS and was associated with right hemisphere caudal anterior cingulate and pars-orbitalis in within-sibling analyses, while the non-cognitive PGS showed stronger associations with white matter fractional anisotropy and a significant within-sibling association for right superior corticostriate-frontal cortex. Conclusions Our findings suggest that PGSs for cognitive and non-cognitive factors show similar associations with cognition and socioeconomic status as well as other psychosocial outcomes, but distinct associations with regional neural phenotypes in this adolescent sample.
Collapse
Affiliation(s)
- Aaron J Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah E Paul
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex P Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David A A Baranger
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Shuyu Lin
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Nourhan M Elsayed
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Hailey Modi
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Pooja Addala
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Janine Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Morey R, Zheng Y, Sun D, Garrett M, Gasperi M, Maihofer A, Baird CL, Grasby K, Huggins A, Haswell C, Thompson P, Medland S, Gustavson D, Panizzon M, Kremen W, Nievergelt C, Ashley-Koch A, Logue L. Genomic Structural Equation Modeling Reveals Latent Phenotypes in the Human Cortex with Distinct Genetic Architecture. RESEARCH SQUARE 2023:rs.3.rs-3253035. [PMID: 37886496 PMCID: PMC10602057 DOI: 10.21203/rs.3.rs-3253035/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for the 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks (GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs. The multivariate GWASs of these GIBNs identified 74 genome-wide significant (GWS) loci (p<5×10-8), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder (BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater genetic risk of these disorders. A negative genetic correlation was observed with attention deficit hyperactivity disorder (ADHD), major depressive disorder (MDD), and insomnia, indicating genetic predisposition to a larger SA in the specific GIBN is associated with lower genetic risk of these disorders. CT GIBNs displayed a negative genetic correlation with alcohol dependence. Jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across phenotypes offers a new vantage point for mapping the cortex into genetically informed networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Carrión-Castillo A, Paz-Alonso PM, Carreiras M. Brain structure, phenotypic and genetic correlates of reading performance. Nat Hum Behav 2023; 7:1120-1134. [PMID: 37037991 DOI: 10.1038/s41562-023-01583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Reading is an evolutionarily recent development that recruits and tunes brain circuitry connecting primary- and language-processing regions. We investigated whether metrics of the brain's physical structure correlate with reading performance and whether genetic variants affect this relationship. To this aim, we used the Adolescent Brain Cognitive Development dataset (n = 9,013) of 9-10-year-olds and focused on 150 measures of cortical surface area (CSA) and thickness. Our results reveal that reading performance is associated with nine measures of brain structure including relevant regions of the reading network. Furthermore, we show that this relationship is partially mediated by genetic factors for two of these measures: the CSA of the entire left hemisphere and, specifically, of the left superior temporal gyrus CSA. These effects emphasize the complex and subtle interplay between genes, brain and reading, which is a partly heritable polygenic skill that relies on a distributed network.
Collapse
Affiliation(s)
| | - Pedro M Paz-Alonso
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
13
|
Genç E, Metzen D, Fraenz C, Schlüter C, Voelkle MC, Arning L, Streit F, Nguyen HP, Güntürkün O, Ocklenburg S, Kumsta R. Structural architecture and brain network efficiency link polygenic scores to intelligence. Hum Brain Mapp 2023; 44:3359-3376. [PMID: 37013679 PMCID: PMC10171514 DOI: 10.1002/hbm.26286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Abstract
Intelligence is highly heritable. Genome-wide association studies (GWAS) have shown that thousands of alleles contribute to variation in intelligence with small effect sizes. Polygenic scores (PGS), which combine these effects into one genetic summary measure, are increasingly used to investigate polygenic effects in independent samples. Whereas PGS explain a considerable amount of variance in intelligence, it is largely unknown how brain structure and function mediate this relationship. Here, we show that individuals with higher PGS for educational attainment and intelligence had higher scores on cognitive tests, larger surface area, and more efficient fiber connectivity derived by graph theory. Fiber network efficiency as well as the surface of brain areas partly located in parieto-frontal regions were found to mediate the relationship between PGS and cognitive performance. These findings are a crucial step forward in decoding the neurogenetic underpinnings of intelligence, as they identify specific regional networks that link polygenic predisposition to intelligence.
Collapse
Affiliation(s)
- Erhan Genç
- Department of Psychology and NeuroscienceLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Dorothea Metzen
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Christoph Fraenz
- Department of Psychology and NeuroscienceLeibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Caroline Schlüter
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Manuel C. Voelkle
- Psychological Research Methods Department of PsychologyHumboldt UniversityBerlinGermany
| | - Larissa Arning
- Department of Human Genetics, Faculty of MedicineRuhr University BochumBochumGermany
| | - Fabian Streit
- Department Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of MedicineRuhr University BochumBochumGermany
| | - Onur Güntürkün
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Sebastian Ocklenburg
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of PsychologyRuhr University BochumBochumGermany
- Department of PsychologyMedical School HamburgHamburgGermany
- ICAN Institute for Cognitive and Affective NeuroscienceMedical School HamburgHamburgGermany
| | - Robert Kumsta
- Genetic Psychology, Faculty of PsychologyRuhr University BochumBochumGermany
- Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene‐Environment InterplayUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
14
|
Liu S, Smit DJA, Abdellaoui A, van Wingen GA, Verweij KJH. Brain Structure and Function Show Distinct Relations With Genetic Predispositions to Mental Health and Cognition. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:300-310. [PMID: 35961582 DOI: 10.1016/j.bpsc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/09/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Mental health and cognitive achievement are partly heritable, highly polygenic, and associated with brain variations in structure and function. However, the underlying neural mechanisms remain unclear. METHODS We investigated the association between genetic predispositions to various mental health and cognitive traits and a large set of structural and functional brain measures from the UK Biobank (N = 36,799). We also applied linkage disequilibrium score regression to estimate the genetic correlations between various traits and brain measures based on genome-wide data. To decompose the complex association patterns, we performed a multivariate partial least squares model of the genetic and imaging modalities. RESULTS The univariate analyses showed that certain traits were related to brain structure (significant genetic correlations with total cortical surface area from rg = -0.101 for smoking initiation to rg = 0.230 for cognitive ability), while other traits were related to brain function (significant genetic correlations with functional connectivity from rg = -0.161 for educational attainment to rg = 0.318 for schizophrenia). The multivariate analysis showed that genetic predispositions to attention-deficit/hyperactivity disorder, smoking initiation, and cognitive traits had stronger associations with brain structure than with brain function, whereas genetic predispositions to most other psychiatric disorders had stronger associations with brain function than with brain structure. CONCLUSIONS These results reveal that genetic predispositions to mental health and cognitive traits have distinct brain profiles.
Collapse
Affiliation(s)
- Shu Liu
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Dirk J A Smit
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Abdel Abdellaoui
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin J H Verweij
- Amsterdam Neuroscience, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Pascual JSG, Khu KJO, Starreveld YP. Cortical mapping in multilinguals undergoing awake brain surgery for brain tumors: Illustrative cases and systematic review. Neuropsychologia 2023; 179:108450. [PMID: 36529263 DOI: 10.1016/j.neuropsychologia.2022.108450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Awake brain mapping in multilingual patients with brain tumors presents unique challenges to the neurosurgeon. Knowledge of potential eloquent sites is vital to preserve language function. METHODS We present two cases of pars opercularis glioma and perform a systematic review in accordance with PRISMA guidelines. RESULTS Our review yielded 7 studies, with a total of 25 multilingual brain tumor patients who underwent awake brain mapping. The age ranged from 25 to 62 years. Majority were female (56.5%). Most (52%) were trilingual, while 20% were quadrilingual and 28% were pentalingual. All tumors were left-sided, mostly in the frontal lobe. These were predominantly gliomas. Extent of resection was gross total in 61%. The brain mapping findings were heterogeneous. Some authors reported a greater number of cortical sites for the first language compared to others. Others found that the first and second languages shared cortical sites whereas the third and subsequent languages were located in distant sites. The peri-Sylvian area was also found to be involved in language that was learned at an earlier age. Subsequent languages thus involved more distant sites. A larger number of cortical areas were also activated for languages that were learned later in life. In terms of language disturbance and recovery, there were mixed results. CONCLUSION Cortical mapping in multilingual brain tumor patients showed heterogeneity in terms of the location and number of language areas in the face of pathology. These findings may influence neurosurgical and oncological management of tumors in the speech area but emphasize the need to tailor surgical approaches and intraoperative testing to the patient.
Collapse
Affiliation(s)
- Juan Silvestre G Pascual
- Division of Neurosurgery, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Division of Neurosurgery, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
| | - Kathleen Joy O Khu
- Division of Neurosurgery, Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
| | - Yves P Starreveld
- Division of Neurosurgery, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Merz EC, Strack J, Hurtado H, Vainik U, Thomas M, Evans A, Khundrakpam B. Educational attainment polygenic scores, socioeconomic factors, and cortical structure in children and adolescents. Hum Brain Mapp 2022; 43:4886-4900. [PMID: 35894163 PMCID: PMC9582364 DOI: 10.1002/hbm.26034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
Genome‐wide polygenic scores for educational attainment (PGS‐EA) and socioeconomic factors, which are correlated with each other, have been consistently associated with academic achievement and general cognitive ability in children and adolescents. Yet, the independent associations of PGS‐EA and socioeconomic factors with specific underlying factors at the neural and neurocognitive levels are not well understood. The main goals of this study were to examine the unique contributions of PGS‐EA and parental education to cortical structure and neurocognitive skills in children and adolescents, and the associations among PGS‐EA, cortical structure, and neurocognitive skills. Participants were typically developing 3‐ to 21‐year‐olds (53% male; N = 391). High‐resolution, T1‐weighted magnetic resonance imaging data were acquired, and cortical thickness (CT) and surface area (SA) were measured. PGS‐EA were computed based on the EA3 genome‐wide association study of educational attainment. Participants completed executive function, vocabulary, and episodic memory tasks. Higher PGS‐EA and parental education were independently and significantly associated with greater total SA and vocabulary. Higher PGS‐EA was significantly associated with greater SA in the left medial orbitofrontal gyrus and inferior frontal gyrus, which was associated with higher executive function. Higher parental education was significantly associated with greater SA in the left parahippocampal gyrus after accounting for PGS‐EA and total brain volume. These findings suggest that education‐linked genetics may influence SA in frontal regions, leading to variability in executive function. Associations of parental education with cortical structure in children and adolescents remained significant after controlling for PGS‐EA, a source of genetic confounding.
Collapse
Affiliation(s)
- Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Hailee Hurtado
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Uku Vainik
- University of Tartu, Tartu, Estonia.,Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Michael Thomas
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Alan Evans
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | |
Collapse
|
17
|
|
18
|
Wickrama KAS, Wickrama T, Bae D, Merten M. Early socioeconomic adversity and young adult diabetic risk: an investigation of genetically informed biopsychosocial processes over the life course. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2022; 67:203-223. [PMID: 36573270 DOI: 10.1080/19485565.2022.2161463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The present study investigated a comprehensive model that integrates contributions of early socioeconomic adversity (ESA) and multiple polygenic scores (PGSs) through different mechanisms leading to diabetic risk in early adulthood. The study used prospective, longitudinal data from the National Longitudinal Study of Adolescent and Adult Health (Add Health) with a sample of 5,728 youth of European ancestry. The results showed that both ESA and PGSs were involved in different mechanisms. ESA contributed additively to educational failures, BMI, depressive symptoms, and diabetes risk over the life course (an additive process). Also, ESA launched a cascading process that connected these outcomes in a successively contingent manner. In addition to ESA, youths' multiple PGSs directly contributed to educational, psychological, and BMI outcomes. Multiple PGSs for education, BMI, and type 2 diabetes influenced not only youth outcomes that they were supposed to predict directly but also additional youth outcomes showing biological pleiotropy. The findings highlight the value of incorporating molecular genetic information into longitudinal developmental life course research and provide insight into malleable characteristics and appropriate timing for interventions addressing youth developmental and health outcomes.
Collapse
Affiliation(s)
| | - Thulitha Wickrama
- Department of Child, Youth and Family Studies, University of Nebraska
| | - Dayoung Bae
- Child and Adolescent Department, Korea University, Seoul, South Korea
| | - Michael Merten
- Department of Child, Youth and Family Studies, University of Nebraska
| |
Collapse
|
19
|
Kweon H, Aydogan G, Dagher A, Bzdok D, Ruff CC, Nave G, Farah MJ, Koellinger PD. Human brain anatomy reflects separable genetic and environmental components of socioeconomic status. SCIENCE ADVANCES 2022; 8:eabm2923. [PMID: 35584223 PMCID: PMC9116589 DOI: 10.1126/sciadv.abm2923] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Socioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy. We first establish robust SES-gray matter relations across a number of brain regions, cortical and subcortical. These regional correlates are parsed into predominantly genetic factors and those potentially due to the environment. We show that genetic effects are stronger in some areas (prefrontal cortex, insula) than others. In areas showing less genetic effect (cerebellum, lateral temporal), environmental factors are likely to be influential. Our results imply a complex interplay of genetic and environmental factors that influence the SES-brain relation and may eventually provide insights relevant to policy.
Collapse
Affiliation(s)
- Hyeokmoon Kweon
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Gökhan Aydogan
- Zürich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, 8006 Zürich, Switzerland
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, QC H3A 2B4, Canada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, QC H3A 2B4, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada
- School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, QC H2S 3H1, Canada
| | - Christian C. Ruff
- Zürich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, 8006 Zürich, Switzerland
| | - Gideon Nave
- Marketing Department, the Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martha J. Farah
- Center for Neuroscience & Society, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author. (M.J.F.); (P.D.K.)
| | - Philipp D. Koellinger
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
- La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI 53706, USA
- Corresponding author. (M.J.F.); (P.D.K.)
| |
Collapse
|
20
|
Pietschnig J, Gerdesmann D, Zeiler M, Voracek M. Of differing methods, disputed estimates and discordant interpretations: the meta-analytical multiverse of brain volume and IQ associations. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211621. [PMID: 35573038 PMCID: PMC9096623 DOI: 10.1098/rsos.211621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Brain size and IQ are positively correlated. However, multiple meta-analyses have led to considerable differences in summary effect estimations, thus failing to provide a plausible effect estimate. Here we aim at resolving this issue by providing the largest meta-analysis and systematic review so far of the brain volume and IQ association (86 studies; 454 effect sizes from k = 194 independent samples; N = 26 000+) in three cognitive ability domains (full-scale, verbal, performance IQ). By means of competing meta-analytical approaches as well as combinatorial and specification curve analyses, we show that most reasonable estimates for the brain size and IQ link yield r-values in the mid-0.20s, with the most extreme specifications yielding rs of 0.10 and 0.37. Summary effects appeared to be somewhat inflated due to selective reporting, and cross-temporally decreasing effect sizes indicated a confounding decline effect, with three quarters of the summary effect estimations according to any reasonable specification not exceeding r = 0.26, thus contrasting effect sizes were observed in some prior related, but individual, meta-analytical specifications. Brain size and IQ associations yielded r = 0.24, with the strongest effects observed for more g-loaded tests and in healthy samples that generalize across participant sex and age bands.
Collapse
Affiliation(s)
- Jakob Pietschnig
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
| | - Daniel Gerdesmann
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Austria
- Department of Physics Education, Faculty of Mathematics, Natural Sciences and Technology, University of Education Freiburg, Germany
| | - Michael Zeiler
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Martin Voracek
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Austria
| |
Collapse
|
21
|
Rabinowitz JA, Campos AI, Ong JS, García-Marín LM, Alcauter S, Mitchell BL, Grasby KL, Cuéllar-Partida G, Gillespie NA, Huhn AS, Martin NG, Thompson PM, Medland SE, Maher BS, Rentería ME. Shared Genetic Etiology between Cortical Brain Morphology and Tobacco, Alcohol, and Cannabis Use. Cereb Cortex 2022; 32:796-807. [PMID: 34379727 PMCID: PMC8841600 DOI: 10.1093/cercor/bhab243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified genetic variants associated with brain morphology and substance use behaviors (SUB). However, the genetic overlap between brain structure and SUB has not been well characterized. We leveraged GWAS summary data of 71 brain imaging measures and alcohol, tobacco, and cannabis use to investigate their genetic overlap using linkage disequilibrium score regression. We used genomic structural equation modeling to model a "common SUB genetic factor" and investigated its genetic overlap with brain structure. Furthermore, we estimated SUB polygenic risk scores (PRS) and examined whether they predicted brain imaging traits using the Adolescent Behavior and Cognitive Development (ABCD) study. We identified 8 significant negative genetic correlations, including between (1) alcoholic drinks per week and average cortical thickness, and (2) intracranial volume with age of smoking initiation. We observed 5 positive genetic correlations, including those between (1) insula surface area and lifetime cannabis use, and (2) the common SUB genetic factor and pericalcarine surface area. SUB PRS were associated with brain structure variation in ABCD. Our findings highlight a shared genetic etiology between cortical brain morphology and SUB and suggest that genetic variants associated with SUB may be causally related to brain structure differences.
Collapse
Affiliation(s)
- Jill A Rabinowitz
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Adrian I Campos
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jue-Sheng Ong
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Luis M García-Marín
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sarael Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Brittany L Mitchell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Katrina L Grasby
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Gabriel Cuéllar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Andrew S Huhn
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas G Martin
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Sarah E Medland
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Brion S Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biomedical Science, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
22
|
Ahmed SF, Chaku N, Waters NE, Ellis A, Davis-Kean PE. Developmental cascades and educational attainment. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 64:289-326. [PMID: 37080672 DOI: 10.1016/bs.acdb.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Developmental cascades describe how systems of development interact and influence one another to shape human development across the lifespan. Despite its popularity, developmental cascades are commonly used to understand the developmental course of psychopathology, typically in the context of risk and resilience. Whether this framework can be useful for studying children's educational outcomes remains underexplored. Therefore, in this chapter, we provide an overview of how developmental cascades can be used to study children's academic development, with a particular focus on the biological, cognitive, and contextual pathways to educational attainment. We also provide a summary of contemporary statistical methods and highlight existing data sets that can be used to test developmental cascade models of educational attainment from birth through adulthood. We conclude the chapter by discussing the challenges of this research and explore important future directions of using developmental cascades to understand educational attainment.
Collapse
|
23
|
Wickrama KAS, OˋNeal CW, Lee TK, Lee S. Early life course processes leading to educational and economic attainment in young adulthood: Contributions of early socioeconomic adversity and education polygenic score. PLoS One 2021; 16:e0256967. [PMID: 34634049 PMCID: PMC8504765 DOI: 10.1371/journal.pone.0256967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
The present study investigated an integrated life course model, drawn from the life course theoretical perspective, to elucidate youth’s additive, cascading, and cumulative life course processes stemming from early socioeconomic adversity and education polygenic score (education PGS) as well as potential interactions between them (GxE), which contribute to subsequent young adult socioeconomic outcomes. Additionally, the independent, varying associations among social and genetic predictors, life-stage specific educational outcomes (educational achievement in adolescence and educational attainment, in later stages), and young adult economic outcomes were examined. The study used prospective, longitudinal data from the National Longitudinal Study of Adolescent and Adult Health (Add Health) with a sample of 5,728 youth of European ancestry. Early family socioeconomic adversity and individual education PGS were associated with life stage-specific educational outcomes through additive and cascading processes linked to young adults’ economic outcomes (personal earnings) through a cumulative process. A GxE moderation existed between individuals’ education PGS and early socioeconomic adversity at multiple life stages, explaining variation in adolescent educational outcomes. Both early socioeconomic adversity and education PGS were persistently associated with youth’s educational and economic outcomes throughout the early life course. In sum, the findings based on the integrated life course model showed how additive, cascading, and cumulative processes were related and conditioned one another, generating specific life course patterns and outcomes. The findings highlight the value of incorporating molecular genetic information into longitudinal developmental life course research and provide insight into malleable characteristics and appropriate timing for interventions addressing youth developmental characteristics.
Collapse
Affiliation(s)
- Kandauda A. S. Wickrama
- Department of Human Development and Family Science, The University of Georgia, Athens, Georgia, United States of America
| | - Catherine Walker OˋNeal
- Department of Human Development and Family Science, The University of Georgia, Athens, Georgia, United States of America
| | - Tae Kyoung Lee
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Seonhwa Lee
- Department of Christian Studies, Seoul Women’s University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Palmer CE, Zhao W, Loughnan R, Zou J, Fan CC, Thompson WK, Dale AM, Jernigan TL. Distinct Regionalization Patterns of Cortical Morphology are Associated with Cognitive Performance Across Different Domains. Cereb Cortex 2021; 31:3856-3871. [PMID: 33825852 PMCID: PMC8258441 DOI: 10.1093/cercor/bhab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Cognitive performance in children is predictive of academic and social outcomes; therefore, understanding neurobiological mechanisms underlying individual differences in cognition during development may be important for improving quality of life. The belief that a single, psychological construct underlies many cognitive processes is pervasive throughout society. However, it is unclear if there is a consistent neural substrate underlying many cognitive processes. Here, we show that a distributed configuration of cortical surface area and apparent thickness, when controlling for global imaging measures, is differentially associated with cognitive performance on different types of tasks in a large sample (N = 10 145) of 9-11-year-old children from the Adolescent Brain and Cognitive DevelopmentSM (ABCD) study. The minimal overlap in these regionalization patterns of association has implications for competing theories about developing intellectual functions. Surprisingly, not controlling for sociodemographic factors increased the similarity between these regionalization patterns. This highlights the importance of understanding the shared variance between sociodemographic factors, cognition and brain structure, particularly with a population-based sample such as ABCD.
Collapse
Affiliation(s)
- C E Palmer
- Center for Human Development, University of California, San Diego, La Jolla, CA 92161, USA
| | - W Zhao
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Loughnan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - J Zou
- Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92161, USA
| | - C C Fan
- Center for Human Development, University of California, San Diego, La Jolla, CA 92161, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - W K Thompson
- Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92161, USA
| | - A M Dale
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
- Department of Neuroscience, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - T L Jernigan
- Center for Human Development, University of California, San Diego, La Jolla, CA 92161, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Fieder M, Mitchell BL, Gordon S, Huber S, Martin NG. Ethnic Identity and Genome Wide Runs of Homozygosity. Behav Genet 2021; 51:405-413. [PMID: 33723681 PMCID: PMC8225526 DOI: 10.1007/s10519-021-10053-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/23/2021] [Indexed: 10/25/2022]
Abstract
It is long known that inbreeding increases the detrimental effects of recessive sequence variants in "Runs of Homozygosity" (ROHs). However, although the phenotypic association of ROH has been investigated for a variety of traits, the statistical power of the results often remains limited as a sufficiently high number of cases are available for only a restricted number of traits. In the present study, we aim to analyze the association of runs of homozygosity with the trait "in-group ethnic favoritism". This analysis assumes that if ethnic identity is important for an individual, that individual may tend to marry more frequently within their own group and therefore ROH are expected to increase. We hypothesize that an attitude preferring one's own ethnic group may be associated with a stronger tendency of inbreeding and, as a result, with more and longer ROHs. Accordingly, we investigated the association between the attitude to someone's own ethnicity and ROH, using the Wisconsin Longitudinal data (WLS, total N ~ 9000) as discovery data set and the Brisbane Twin data as replication data set (N ~ 8000). We find that both the number as well as the total length of homozygous segments are significantly positively associated with "in-group ethnic favoritism", independent of the method used for ROH calculation.
Collapse
Affiliation(s)
- Martin Fieder
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria. .,Research Centre of Religion and Transformation in Contemporary Society, University of Vienna, Vienna, Austria.
| | - Brittany L Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Huber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | |
Collapse
|