1
|
Giesbers I, Billen L, van der Cruijsen J, Corneil BD, Weerdesteyn V. Cortical dynamics underlying initiation of rapid steps with contrasting postural demands. Neuroscience 2025; 575:104-121. [PMID: 40252720 DOI: 10.1016/j.neuroscience.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Our ability to flexibly initiate rapid visually-guided stepping movements can be measured in the form of express visuomotor responses (EVRs), which are short-latency (∼100 ms), goal-directed bursts of lower-limb muscle activity. Interestingly, we previously demonstrated that recruitment of anticipatory postural adjustments (APAs) interacted with the subcortically-generated EVRs in the lower limb, suggesting context-dependent top-down modulation. We investigated the associated cortical dynamics prior to and during rapid step initiation towards a salient visual target in twenty-one young, healthy individuals while stepping under varying postural demands. We recorded high-density EEG, surface electromyography from gluteus medius and ground-reaction forces. Independent component analysis and time-frequency statistics revealed significant, yet relatively modest differences between conditions in preparatory cortical dynamics, most evidently in primary motor areas. Following target presentation, we observed stronger theta and alpha power enhancement in the supplementary motor area, and stronger alpha and beta power decrease in primary motor, parietal and occipital clusters during APA recruitment that preceded steps under high postural demands. Side-specific changes in motor cortex lagged the timing of EVR expression, supporting the EVR's purportedly subcortical origin. Together, our findings point towards greater cortical involvement in step initiation under high postural demands as compared to more reflexive, stimulus-driven steps. These findings may be particularly relevant for populations where postural control is impaired by age or disease, as more cortical resources may need to be allocated during stepping.
Collapse
Affiliation(s)
- Ilse Giesbers
- Department of Rehabilitation - Donders Institute for Brain, Cognition & Behavior, Radboud University Medical Center, Nijmegen, NL, Nethelands.
| | - Lucas Billen
- Department of Rehabilitation - Donders Institute for Brain, Cognition & Behavior, Radboud University Medical Center, Nijmegen, NL, Nethelands
| | - Joris van der Cruijsen
- Department of Rehabilitation - Donders Institute for Brain, Cognition & Behavior, Radboud University Medical Center, Nijmegen, NL, Nethelands
| | - Brian D Corneil
- Department of Physiology & Pharmacology, Western University, London, CA, USA; Department of Psychology, Western University, London, CA, USA; Robarts Research Institute, London, CA, USA
| | - Vivian Weerdesteyn
- Department of Rehabilitation - Donders Institute for Brain, Cognition & Behavior, Radboud University Medical Center, Nijmegen, NL, Nethelands; Sint Maartenskliniek Research, Nijmegen, NL, Nethelands
| |
Collapse
|
2
|
Koyun AH, Wendiggensen P, Roessner V, Beste C, Stock AK. Neurophysiological insights into catecholamine-dependent tDCS modulation of cognitive control. Commun Biol 2025; 8:375. [PMID: 40050533 PMCID: PMC11885824 DOI: 10.1038/s42003-025-07805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Goal-directed behavior requires resolving both consciously and subconsciously induced response conflicts. Neuronal gain control, which enhances processing efficacy, is crucial for conflict resolution and can be increased through pharmacological or brain stimulation interventions, though it faces inherent physical limits. This study examined the effects of anodal transcranial direct current stimulation (atDCS) and methylphenidate (MPH) on conflict processing. Healthy adults (n = 105) performed a flanker task, with electroencephalography (EEG) used to assess alpha and theta band activity (ABA, TBA). Results showed that combining atDCS with MPH enhanced cognitive control and reduced response conflicts more effectively than atDCS alone, particularly when both conflict types co-occurred. Both atDCS and atDCS + MPH exhibited similar task-induced ABA and TBA modulations in the (pre)supplementary motor area, indicating heightened gain control. Overlapping neuroanatomical effects in mid-superior frontal areas suggest that atDCS and MPH share a common neuronal mechanism of gain control, especially in high-conflict/-demand situations.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany.
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Jamous R, Mocke V, Kunde W, Pastötter B, Beste C. Neurophysiological profiles underlying action withholding and action discarding. Cereb Cortex 2025; 35:bhaf026. [PMID: 39924647 DOI: 10.1093/cercor/bhaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
Although inhibitory control is essential to goal-directed behavior, not all inhibition is the same: Previous research distinguished discarding an action plan from simply withholding it, suggesting separate neurophysiological mechanisms. This study tracks the neurophysiological signatures of both using time-frequency transformation and beamforming in n = 34 healthy individuals. We show that discarding an action plan reduces working memory load, with stronger initial theta band activity compared to withholding it. This oscillatory difference was localized in the (para-)hippocampus and anterior temporal lobe, likely reflecting the need to dissolve action plan features first to enable the following decrease of working memory load. Contrary, when exposed to the embedded stimulus, withholding was associated with higher theta, alpha, and beta band activity relative to discarding. This study advances our understanding of inhibition by revealing distinct neurophysiological mechanisms and functional neuroanatomical structures involved in withholding versus discarding an action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
| | - Viola Mocke
- Department of Psychology, University of Würzburg, Röntgenring 11, 90970 Würzburg, Germany
| | - Wilfried Kunde
- Department of Psychology, University of Würzburg, Röntgenring 11, 90970 Würzburg, Germany
| | - Bernhard Pastötter
- Department of General Psychology and Methodology, University of Trier, Universitätsring 15, 54296 Trier, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
| |
Collapse
|
4
|
Ahn JS, Hong HJ, Lee JH, Park JY. Theta power reduction and theta-gamma coupling desynchronization are associated with working memory interference and anxiety symptoms in panic disorder: a retrospective study. BMC Psychiatry 2024; 24:875. [PMID: 39623333 PMCID: PMC11613674 DOI: 10.1186/s12888-024-06272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Theta-gamma coupling (TGC) describes the modulation of gamma oscillations by the theta phasic activity, which is crucial for processes such as the ordering of information during working memory (WM) performance. The mental arithmetic (MA), which involves performing calculations with numbers, is a crucial tool for evaluating and understanding the sensory processing and management abilities of WM. Evaluating TGC may provide greater insight into the neural mechanisms mediating WM deficits in panic disorder (PD). METHODS Medical and electroencephalography (EEG) records of psychiatric outpatient clinic between 1 March 2020 and 30 September 2023 were retrospectively reviewed. A total of 34 PD patients and 34 age- and sex-matched healthy controls (HCs) underwent EEG to assess the overall functional interaction of the brain using multi-channel EEG analysis, focusing on specific brain regions including the frontal, temporal, parietal, and occipital lobes. EEG recordings were conducted during two sessions: a 5-min eyes-closed resting-state (RS) and a subsequent 5-min eyes-closed MA. The TGC and the spectral power of the theta and gamma frequency bands, which are well known to be associated with WM, were analysed. RESULTS Compared to those in HCs, TGC and theta power were significantly attenuated in PD patients. When analysing both HCs and PD patients together, RS TGC and relative theta power were negatively correlated with state anxiety and perceived stress scores, respectively. In contrast, TGC and relative theta power during the MA condition were positively correlated with the MA performance. Specifically, in PD patients, RS theta power across all electrodes was significantly negatively correlated with the Hamilton Anxiety Scale (HAMA) score. Linear regression analysis revealed that theta power in the T5 channel remained negatively correlated with pathological anxiety as measured by the HAMA score, even after controlling for other confounding factors. CONCLUSIONS This study highlights significant alterations in TGC and theta power in PD patients. PD patients exhibit reduced TGC and theta power compared to HCs, indicating deficits in the neural mechanisms underlying anxiety and/or WM in PD. These insights contribute to a better understanding of the neural basis of WM deficits in PD and suggest potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ji Seon Ahn
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-Daero, Giheung-Gu, Yongin, 16995, South Korea
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Hye-Jin Hong
- Department of AI & Informatics, Sangmyung University, Seoul, South Korea
| | - Jee Hang Lee
- Department of AI & Informatics, Sangmyung University, Seoul, South Korea.
- Department of Human-Centered AI, Sangmyung University, 20 Hongjimun 2-Gil, Jongno-Gu, Seoul, 03016, South Korea.
| | - Jin Young Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-Daero, Giheung-Gu, Yongin, 16995, South Korea.
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea.
| |
Collapse
|
5
|
Jamous R, Ghorbani F, Mükschel M, Münchau A, Frings C, Beste C. Neurophysiological principles underlying predictive coding during dynamic perception-action integration. Neuroimage 2024; 301:120891. [PMID: 39419422 DOI: 10.1016/j.neuroimage.2024.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
A major concept in cognitive neuroscience is that brains are "prediction machines". Yet, conceptual frameworks on how perception and action become integrated still lack the concept of predictability and it is unclear how neural processes may implement predictive coding during dynamic perception-action integration. We show that distinct neurophysiological mechanisms of nonlinearly directed connectivities in the theta and alpha band between cortical structures underlie these processes. During the integration of perception and motor codes, especially theta band activity in the insular cortex and temporo-hippocampal structures is modulated by the predictability of upcoming information. Here, the insular cortex seems to guide processes. Conversely, the retrieval of such integrated perception-action codes during actions heavily relies on alpha band activity. Here, directed top-down influence of alpha band activity from inferior frontal structures on insular and temporo-hippocampal structures is key. This suggests that these top-down effects reflect attentional shielding of retrieval processes operating in the same neuroanatomical structures previously involved in the integration of perceptual and motor codes. Through neurophysiology, the present study connects predictive coding mechanisms with frameworks specifying the dynamic integration of perception and action.
Collapse
Affiliation(s)
- Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Moritz Mükschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | | | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| |
Collapse
|
6
|
Graf K, Jamous R, Mückschel M, Bluschke A, Beste C. Delayed modulation of alpha band activity increases response inhibition deficits in adolescents with AD(H)D. Neuroimage Clin 2024; 44:103677. [PMID: 39362044 PMCID: PMC11474224 DOI: 10.1016/j.nicl.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Deficiencies in inhibitory control are one of the hallmarks of attention-deficit-(hyperactivity) disorder (AD(H)D). Response inhibition demands can become increased through additional conflicts, namely when already integrated representations of perception-action associations have to be updated. Yet, the neural mechanisms of how such conflicts worsen response inhibition in AD(H)D are unknown, but, if identified, could help to better understand the complex nature of AD(H)D-associated impulsivity. We investigated both behavioral performance and EEG activity in the theta and alpha band of adolescents (10-18 years of age) with AD(H)D (n = 28) compared to neurotypical (NT) controls (n = 33) in a conflict-modulated Go/Nogo paradigm. We used multivariate pattern analysis (MVPA) and EEG-beamforming to examine how changes in representational content are coded by oscillatory activity and to delineate the cortical structures involved in it. The presented behavioral and neurophysiological data show that adolescents with AD(H)D are more strongly affected by increased response inhibition demands through additional conflicts than NT controls. Precisely, AD(H)D participants showed higher false alarm rates than NT controls in both, non-overlapping and overlapping Nogo trials, but performed even worse in the latter. This is likely due to an inefficient updating of representations related to delayed modulations of alpha band activity in the ventral stream and orbitofrontal regions. Theta band activity is also modulated by conflict but was not differentially affected in the two groups. By this, the present study provides novel insights into underlying neurophysiological mechanisms of the complex nature of response inhibition deficits in adolescents with AD(H)D, stressing the importance to examine the interplay of theta and alpha band activity more closely to better understand inhibitory control deficits in AD(H)D.
Collapse
Affiliation(s)
- Katharina Graf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
| |
Collapse
|
7
|
Crocetta A, Liloia D, Costa T, Duca S, Cauda F, Manuello J. From gut to brain: unveiling probiotic effects through a neuroimaging perspective-A systematic review of randomized controlled trials. Front Nutr 2024; 11:1446854. [PMID: 39360283 PMCID: PMC11444994 DOI: 10.3389/fnut.2024.1446854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The gut-brain axis, a bidirectional communication network between the gastrointestinal system and the brain, significantly influences mental health and behavior. Probiotics, live microorganisms conferring health benefits, have garnered attention for their potential to modulate this axis. However, their effects on brain function through gut microbiota modulation remain controversial. This systematic review examines the effects of probiotics on brain activity and functioning, focusing on randomized controlled trials using both resting-state and task-based functional magnetic resonance imaging (fMRI) methodologies. Studies investigating probiotic effects on brain activity in healthy individuals and clinical populations (i.e., major depressive disorder and irritable bowel syndrome) were identified. In healthy individuals, task-based fMRI studies indicated that probiotics modulate brain activity related to emotional regulation and cognitive processing, particularly in high-order areas such as the amygdala, precuneus, and orbitofrontal cortex. Resting-state fMRI studies revealed changes in connectivity patterns, such as increased activation in the Salience Network and reduced activity in the Default Mode Network. In clinical populations, task-based fMRI studies showed that probiotics could normalize brain function in patients with major depressive disorder and irritable bowel syndrome. Resting-state fMRI studies further suggested improved connectivity in mood-regulating networks, specifically in the subcallosal cortex, amygdala and hippocampus. Despite promising findings, methodological variability and limited sample sizes emphasize the need for rigorous, longitudinal research to clarify the beneficial effects of probiotics on the gut-brain axis and mental health.
Collapse
Affiliation(s)
- Annachiara Crocetta
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Sergio Duca
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Franco Cauda
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | - Jordi Manuello
- Department of Psychology, Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, University of Turin, Turin, Italy
- Department of Psychology, GCS fMRI, Koelliker Hospital, University of Turin, Turin, Italy
- Move’N’Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Yitao L, Lv Z, Xin W, Yongchen F, Ying W. Dynamic brain functional states associated with inhibition control under different altitudes. Cogn Neurodyn 2024; 18:1931-1941. [PMID: 39104701 PMCID: PMC11297874 DOI: 10.1007/s11571-023-10054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/28/2023] [Accepted: 11/04/2023] [Indexed: 08/07/2024] Open
Abstract
Chronic exposure to the hypobaric hypoxia environment of plateau could influence human cognitive behaviours which are supported by dynamic brain connectivity states. Until now, how functional connectivity (FC) of the brain network changes with altitudes is still unclear. In this article, we used EEG data of the Go/NoGo paradigm from Weinan (347 m) and Nyingchi (2950 m). A combination of dynamic FC (dFC) and the K-means cluster was employed to extract dynamic FC states which were later distinguished by graph metrics. Besides, temporal properties of networks such as fractional windows (FW), transition numbers (TN) and mean dwell time (MDT) were calculated. Finally, we successfully extracted two different states from dFC matrices where State 1 was verified to have higher functional integration and segregation. The dFC states dynamically switched during the Go/NoGo tasks and the FW of State 1 showed a rise in the high-altitude participants. Also, in the regional analysis, we found higher state deviation in the fronto-parietal cortices and enhanced FC strength in the occipital lobe. These results demonstrated that long-term exposure to the high-altitude environment could lead brain networks to reorganize as networks with higher inter- and intra-networks information transfer efficiency, which could be attributed to a compensatory mechanism to the compromised brain function due to the plateau environment. This study provides a new perspective in considering how the plateau impacted cognitive impairment.
Collapse
Affiliation(s)
- Lin Yitao
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Zhou Lv
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wei Xin
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Fan Yongchen
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
| | - Wu Ying
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an, 710049 China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
9
|
Pi Y, Yan J, Pscherer C, Gao S, Mückschel M, Colzato L, Hommel B, Beste C. Interindividual aperiodic resting-state EEG activity predicts cognitive-control styles. Psychophysiology 2024; 61:e14576. [PMID: 38556626 DOI: 10.1111/psyp.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The ability to find the right balance between more persistent and more flexible cognitive-control styles is known as "metacontrol." Recent findings suggest a relevance of aperiodic EEG activity and task conditions that are likely to elicit a specific metacontrol style. Here we investigated whether individual differences in aperiodic EEG activity obtained off-task (during resting state) predict individual cognitive-control styles under task conditions that pose different demands on metacontrol. We analyzed EEG resting-state data, task-EEG, and behavioral outcomes from a sample of N = 65 healthy participants performing a Go/Nogo task. We examined aperiodic activity as indicator of "neural noise" in the EEG power spectrum, and participants were assigned to a high-noise or low-noise group according to a median split of the exponents obtained for resting state. We found that off-task aperiodic exponents predicted different cognitive-control styles in Go and Nogo conditions: Overall, aperiodic exponents were higher (i.e., noise was lower) in the low-noise group, who however showed no difference between Go and Nogo trials, whereas the high-noise group exhibited significant noise reduction in the more persistence-heavy Nogo condition. This suggests that trait-like biases determine the default cognitive-control style, which however can be overwritten or compensated for under challenging task demands. We suggest that aperiodic activity in EEG signals represents valid indicators of highly dynamic arbitration between metacontrol styles, representing the brain's capability to reorganize itself and adapt its neural activity patterns to changing environmental conditions.
Collapse
Affiliation(s)
- Yu Pi
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jimin Yan
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Shudan Gao
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Lorenza Colzato
- Department of Psychology, Shandong Normal University, Jinan, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Bernhard Hommel
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Department of Psychology, Shandong Normal University, Jinan, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
10
|
Ghorbani F, Zhou X, Talebi N, Roessner V, Hommel B, Prochnow A, Beste C. Neural connectivity patterns explain why adolescents perceive the world as moving slow. Commun Biol 2024; 7:759. [PMID: 38909084 PMCID: PMC11193795 DOI: 10.1038/s42003-024-06439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
That younger individuals perceive the world as moving slower than adults is a familiar phenomenon. Yet, it remains an open question why that is. Using event segmentation theory, electroencephalogram (EEG) beamforming and nonlinear causal relationship estimation using artificial neural network methods, we studied neural activity while adolescent and adult participants segmented a movie. We show when participants were instructed to segment a movie into meaningful units, adolescents partitioned incoming information into fewer encapsulated segments or episodes of longer duration than adults. Importantly, directed communication between medial frontal and lower-level perceptual areas and between occipito-temporal regions in specific neural oscillation spectrums explained behavioral differences between groups. Overall, the study reveals that a different organization of directed communication between brain regions and inefficient transmission of information between brain regions are key to understand why younger people perceive the world as moving slow.
Collapse
Affiliation(s)
- Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
- School of Psychology, Shandong Normal University, Jinan, China
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany.
- School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
11
|
Koyun AH, Talebi N, Werner A, Wendiggensen P, Kuntke P, Roessner V, Beste C, Stock AK. Interactions of catecholamines and GABA+ in cognitive control: Insights from EEG and 1H-MRS. Neuroimage 2024; 293:120619. [PMID: 38679186 DOI: 10.1016/j.neuroimage.2024.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Annett Werner
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany.
| |
Collapse
|
12
|
Koyun AH, Wendiggensen P, Roessner V, Beste C, Stock AK. Effects of Catecholaminergic and Transcranial Direct Current Stimulation on Response Inhibition. Int J Neuropsychopharmacol 2024; 27:pyae023. [PMID: 38742426 PMCID: PMC11184454 DOI: 10.1093/ijnp/pyae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The principle of gain control determines the efficiency of neuronal processing and can be enhanced with pharmacological or brain stimulation methods. It is a key factor for cognitive control, but the degree of how much gain control may be enhanced underlies a physical limit. METHODS To investigate whether methylphenidate (MPH) and transcranial direct current stimulation (tDCS) share common underlying mechanisms and cognitive effects, we administered MPH and anodal tDCS (atDCS) over the right inferior frontal gyrus both separately and combined, while healthy adult participants (n = 104) performed a response selection and inhibition task. The recorded EEG data were analyzed with a focus on theta band activity, and source estimation analyses were conducted. RESULTS The behavioral data show that MPH and atDCS revealed interactive effects on the ability to inhibit responses. Both MPH and atDCS modulated task-related theta oscillations in the supplementary motor area when applied separately, making a common underlying mechanism likely. When both stimulation methods were combined, there was no doubling of effects in the supplementary motor area but a shift to inferior frontal areas in the cortical network responsible for theta-driven processing. CONCLUSIONS The results indicate that both MPH and atDCS likely share a common underlying neuronal mechanism, and interestingly, they demonstrate interactive effects when combined, which are most likely due to the physical limitations of gain control increases. The current study provides critical groundwork for future combined applications of MPH and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Anna Helin Koyun
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Paul Wendiggensen
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
13
|
Jia S, Liu D, Song W, Beste C, Colzato L, Hommel B. Tracing conflict-induced cognitive-control adjustments over time using aperiodic EEG activity. Cereb Cortex 2024; 34:bhae185. [PMID: 38771238 DOI: 10.1093/cercor/bhae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Cognitive-control theories assume that the experience of response conflict can trigger control adjustments. However, while some approaches focus on adjustments that impact the selection of the present response (in trial N), other approaches focus on adjustments in the next upcoming trial (N + 1). We aimed to trace control adjustments over time by quantifying cortical noise by means of the fitting oscillations and one over f algorithm, a measure of aperiodic activity. As predicted, conflict trials increased the aperiodic exponent in a large sample of 171 healthy adults, thus indicating noise reduction. While this adjustment was visible in trial N already, it did not affect response selection before the next trial. This suggests that control adjustments do not affect ongoing response-selection processes but prepare the system for tighter control in the next trial. We interpret the findings in terms of a conflict-induced switch from metacontrol flexibility to metacontrol persistence, accompanied or even implemented by a reduction of cortical noise.
Collapse
Affiliation(s)
- Shiwei Jia
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Dandan Liu
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Wenqi Song
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Christian Beste
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitaet Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Lorenza Colzato
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 Shandong Province, China
| |
Collapse
|
14
|
Elmers J, Yu S, Talebi N, Prochnow A, Beste C. Neurophysiological effective network connectivity supports a threshold-dependent management of dynamic working memory gating. iScience 2024; 27:109521. [PMID: 38591012 PMCID: PMC11000016 DOI: 10.1016/j.isci.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
To facilitate goal-directed actions, effective management of working memory (WM) is crucial, involving a hypothesized WM "gating mechanism." We investigate the underlying neural basis through behavioral modeling and connectivity assessments between neuroanatomical regions linked to theta, alpha, and beta frequency bands. We found opposing, threshold-dependent mechanisms governing WM gate opening and closing. Directed beta band connectivity in the parieto-frontal and parahippocampal-occipital networks was crucial for threshold-dependent WM gating dynamics. Fronto-parahippocampal connectivity in the theta band was also notable for both gating processes, although weaker than that in the beta band. Distinct roles for theta, beta, and alpha bands emerge in maintaining information in WM and shielding against interference, whereby alpha band activity likely acts as a "gatekeeper" supporting processes reflected by beta and theta band activity. The study shows that the decision criterion for WM gate opening/closing relies on concerted interplay within neuroanatomical networks defined by beta and theta band activities.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
15
|
Rawish T, Wendiggensen P, Friedrich J, Frings C, Münchau A, Beste C. Neurophysiological processes reflecting the effects of the immediate past during the dynamic management of actions. Neuroimage 2024; 288:120526. [PMID: 38280691 DOI: 10.1016/j.neuroimage.2024.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
In recent years, there has been many efforts to establish a comprehensive theoretical framework explaining the working mechanisms involved in perception-action integration. This framework stresses the importance of the immediate past on mechanisms supporting perception-action integration. The present study investigates the neurophysiological principles of dynamic perception-action bindings, particularly considering the influence of the immediate history on action control mechanisms. For this purpose, we conducted an established stimulus-response binding paradigm during EEG recording. The SR-task measures stimulus-response binding in terms of accuracy and reaction time differences depending on the degree of feature overlap between conditions. Alpha, beta and theta band activity in distinct time domains as well as associated brain regions were investigated applying time-frequency analyses, a beamforming approach as well as correlation analyses. We demonstrate, for the first time, interdependencies of neuronal processes relying on the immediate past. The reconfiguration of an action seems to overwrite immediately preceding processes. The analyses revealed modulations of theta (TBA), alpha (ABA) and beta band activity (BBA) in connection with fronto-temporal structures supporting the theoretical assumptions of the considered conceptual framework. The close interplay of attentional modulation by gating irrelevant information (ABA) and binding and retrieval processes (TBA) is reflected by the correlation of ABA in all pre-probe-intervals with post-probe TBA. Likewise, the role of BBA in maintaining the event file until retrieval is corroborated by BBA preceding the TBA-associated retrieval of perception-action codes. Following action execution, TBA shifted towards visual association cortices probably reflecting preparation for upcoming information, while ABA and BBA continue to reflect processes of attentional control and information selection for goal-directed behavior. The present work provides the first empirical support for concepts about the neurophysiological mechanisms of dynamic management of perception and action.
Collapse
Affiliation(s)
- Tina Rawish
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | | | - Julia Friedrich
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Frings
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Department of Psychology, Shandong Normal University, Jinan, PR China.
| |
Collapse
|
16
|
Yordanova J, Falkenstein M, Kolev V. Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clin Neurophysiol 2024; 158:137-148. [PMID: 38219403 DOI: 10.1016/j.clinph.2023.12.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Both cognitive and primary motor networks alter with advancing age in humans. The networks activated in response to external environmental stimuli supported by theta oscillations remain less well explored. The present study aimed to characterize the effects of aging on the functional connectivity of response-related theta networks during sensorimotor tasks. METHODS Electroencephalographic signals were recorded in young and middle-to-older age adults during three tasks performed in two modalities, auditory and visual: a simple reaction task, a Go-NoGo task, and a choice-reaction task. Response-related theta oscillations were computed. The phase-locking value (PLV) was used to analyze the spatial synchronization of primary motor and motor control theta networks. RESULTS Performance was overall preserved in older adults. Independently of the task, aging was associated with reorganized connectivity of the contra-lateral primary motor cortex. In younger adults, it was synchronized with motor control regions (intra-hemispheric premotor/frontal and medial frontal). In older adults, it was only synchronized with intra-hemispheric sensorimotor regions. CONCLUSIONS Motor theta networks of older adults manifest a functional decoupling between the response-generating motor cortex and motor control regions, which was not modulated by task variables. The overall preserved performance in older adults suggests that the increased connectivity within the sensorimotor network is associated with an excessive reliance on sensorimotor feedback during movement execution compensating for a deficient cognitive regulation of motor regions during sensorimotor reactions. SIGNIFICANCE New evidence is provided for the reorganization of motor networks during sensorimotor reactions already at the transition from middle to old age.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
17
|
Prochnow A, Zhou X, Ghorbani F, Wendiggensen P, Roessner V, Hommel B, Beste C. The temporal dynamics of how the brain structures natural scenes. Cortex 2024; 171:26-39. [PMID: 37977111 DOI: 10.1016/j.cortex.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Individuals organize the evolving stream of events in their environment by partitioning it into discrete units. Event segmentation theory (EST) provides a cognitive explanation for the process of this partitioning. Critically, the underlying time-resolved neural mechanisms are not understood, and thus a central conceptual aspect of how humans implement this central ability is missing. To gain better insight into the fundamental temporal dynamics of event segmentation, EEG oscillatory activity was measured while participants watched a narrative video and partitioned the movie into meaningful segments. Using EEG beamforming methods, we show that theta, alpha, and beta band activity in frontal, parietal, and occipital areas, as well as their interactions, reflect critical elements of the event segmentation process established by EST. In sum, we see a mechanistic temporal chain of processes that provides the neurophysiological basis for how the brain partitions and structures continuously evolving scenes and points to an integrated system that organizes the various subprocesses of event segmentation. This study thus integrates neurophysiology and cognitive theory to better understand how the human brain operates in rather variable and unpredictable situations. Therefore, it represents an important step toward studying neurophysiological dynamics in ecologically valid and naturalistic settings and, in doing so, addresses a critical gap in knowledge regarding the temporal dynamics of how the brain structures natural scenes.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany.
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Bieth T, Ovando‐Tellez M, Lopez‐Persem A, Garcin B, Hugueville L, Lehongre K, Levy R, George N, Volle E. Time course of EEG power during creative problem-solving with insight or remote thinking. Hum Brain Mapp 2024; 45:e26547. [PMID: 38060194 PMCID: PMC10789201 DOI: 10.1002/hbm.26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Problem-solving often requires creativity and is critical in everyday life. However, the neurocognitive mechanisms underlying creative problem-solving remain poorly understood. Two mechanisms have been highlighted: the formation of new connections among problem elements and insight solving, characterized by sudden realization of a solution. In this study, we investigated EEG activity during a modified version of the remote associates test, a classical insight problem task that requires finding a word connecting three unrelated words. This allowed us to explore the brain correlates associated with the semantic remoteness of connections (by varying the remoteness of the solution word across trials) and with insight solving (identified as a Eurêka moment reported by the participants). Semantic remoteness was associated with power increase in the alpha band (8-12 Hz) in a left parieto-temporal cluster, the beta band (13-30 Hz) in a right fronto-temporal cluster in the early phase of the task, and the theta band (3-7 Hz) in a bilateral frontal cluster just prior to participants' responses. Insight solving was associated with power increase preceding participants' responses in the alpha and gamma (31-60 Hz) bands in a left temporal cluster and the theta band in a frontal cluster. Source reconstructions revealed the brain regions associated with these clusters. Overall, our findings shed new light on some of the mechanisms involved in creative problem-solving.
Collapse
Affiliation(s)
- Théophile Bieth
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Marcela Ovando‐Tellez
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Alizée Lopez‐Persem
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Béatrice Garcin
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Department of NeurologyAvicenne Hospital, AP‐HPBobignyFrance
| | - Laurent Hugueville
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Richard Levy
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, AP‐HP, Hôpital de la Pitié Salpêtrière, DMU NeuroscienceParisFrance
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
- Institut du Cerveau—ICM, Inserm U1127, CNRS UMR7225, Sorbonne Université, Centre MEG‐EEG, CENIRParisFrance
| | - Emmanuelle Volle
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié SalpêtrièreParisFrance
| |
Collapse
|
19
|
Pscherer C, Wendiggensen P, Mückschel M, Bluschke A, Beste C. Alpha and theta band activity share information relevant to proactive and reactive control during conflict-modulated response inhibition. Hum Brain Mapp 2023; 44:5936-5952. [PMID: 37728249 PMCID: PMC10619371 DOI: 10.1002/hbm.26486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Response inhibition is an important instance of cognitive control and can be complicated by perceptual conflict. The neurophysiological mechanisms underlying these processes are still not understood. Especially the relationship between neural processes directly preceding cognitive control (proactive control) and processes underlying cognitive control (reactive control) has not been examined although there should be close links. In the current study, we investigate these aspects in a sample of N = 50 healthy adults. Time-frequency and beamforming approaches were applied to analyze the interrelation of brain states before (pre-trial) and during (within-trial) cognitive control. The behavioral data replicate a perceptual conflict-dependent modulation of response inhibition. During the pre-trial period, insular, inferior frontal, superior temporal, and precentral alpha activity was positively correlated with theta activity in the same regions and the superior frontal gyrus. Additionally, participants with a stronger pre-trial alpha activity in the primary motor cortex showed a stronger (within-trial) conflict effect in the theta band in the primary motor cortex. This theta conflict effect was further related to a stronger theta conflict effect in the midcingulate cortex until the end of the trial. The temporal cascade of these processes suggests that successful proactive preparation (anticipatory information gating) entails a stronger reactive processing of the conflicting stimulus information likely resulting in a realization of the need to adapt the current action plan. The results indicate that theta and alpha band activity share and transfer aspects of information when it comes to the interrelationship between proactive and reactive control during conflict-modulated motor inhibition.
Collapse
Affiliation(s)
- Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent PsychiatryFaculty of Medicine of the TU DresdenDresdenGermany
- University Neuropsychology CenterFaculty of Medicine, TU DresdenDresdenGermany
| |
Collapse
|
20
|
Zhang P, Sun C, Liu Z, Zhou Q. Phase-amplitude coupling of Go/Nogo task-related neuronal oscillation decreases for humans with insufficient sleep. Sleep 2023; 46:zsad243. [PMID: 37707941 DOI: 10.1093/sleep/zsad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Phase-amplitude coupling (PAC) across frequency might be associated with the long-range synchronization of brain networks, facilitating the spatiotemporal integration of multiple cell assemblies for information transmission during inhibitory control. However, sleep problems may affect these cortical information transmissions based on cross-frequency PAC, especially when humans work in environments of social isolation. This study aimed to evaluate changes in the theta-beta/gamma PAC of task-related electroencephalography (EEG) for humans with insufficient sleep. Here, we monitored the EEG signals of 60 healthy volunteers and 18 soldiers in the normal environment, performing a Go/Nogo task. Soldiers also participated in the same test in isolated cabins. These measures demonstrated theta-beta PACs between the frontal and central-parietal, and robust theta-gamma PACs between the frontal and occipital cortex. Unfortunately, these PACs significantly decreased when humans experienced insufficient sleep, which was positively correlated with the behavioral performance of inhibitory control. The evaluation of theta-beta/gamma PAC of Go/Nogo task-related EEG is necessary to help understand the different influences of sleep problems in humans.
Collapse
Affiliation(s)
- Peng Zhang
- School of Psychology, Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Chuancai Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- The First Affiliated Hospital of Shandong First Medical University, Nephrology, Jinan, China
| | - Zhongqi Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- The First Affiliated Hospital of Shandong First Medical University, Nephrology, Jinan, China
| | - Qianxiang Zhou
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- The First Affiliated Hospital of Shandong First Medical University, Nephrology, Jinan, China
| |
Collapse
|
21
|
Wilken S, Böttcher A, Adelhöfer N, Raab M, Hoffmann S, Beste C. The neurophysiology of continuous action monitoring. iScience 2023; 26:106939. [PMID: 37332673 PMCID: PMC10275727 DOI: 10.1016/j.isci.2023.106939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Monitoring actions is essential for goal-directed behavior. However, as opposed to short-lasting, and regularly reinstating monitoring functions, the neural processes underlying continuous action monitoring are poorly understood. We investigate this using a pursuit-tracking paradigm. We show that beta band activity likely maintains the sensorimotor program, while theta and alpha bands probably support attentional sampling and information gating, respectively. Alpha and beta band activity are most relevant during the initial tracking period, when sensorimotor calibrations are most intense. Theta band shifts from parietal to frontal cortices throughout tracking, likely reflecting a shift in the functional relevance from attentional sampling to action monitoring. This study shows that resource allocation mechanisms in prefrontal areas and stimulus-response mapping processes in the parietal cortex are crucial for adapting sensorimotor processes. It fills a knowledge gap in understanding the neural processes underlying action monitoring and suggests new directions for examining sensorimotor integration in more naturalistic experiments.
Collapse
Affiliation(s)
- Saskia Wilken
- General Psychology: Judgment, Decision Making, and Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Adriana Böttcher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Markus Raab
- Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, UK
| | - Sven Hoffmann
- General Psychology: Judgment, Decision Making, and Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
22
|
Böttcher A, Wilken S, Adelhöfer N, Raab M, Hoffmann S, Beste C. A dissociable functional relevance of theta- and beta-band activities during complex sensorimotor integration. Cereb Cortex 2023:7180375. [PMID: 37246154 DOI: 10.1093/cercor/bhad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor integration processes play a central role in daily life and require that different sources of sensory information become integrated: i.e. the information related to the object being under control of the agent (i.e. indicator) and the information about the goal of acting. Yet, how this is accomplished on a neurophysiological level is contentious. We focus on the role of theta- and beta-band activities and examine which neuroanatomical structures are involved. Healthy participants (n = 41) performed 3 consecutive pursuit-tracking EEG experiments in which the source of visual information available for tracking was varied (i.e. that of the indicator and the goal of acting). The initial specification of indicator dynamics is determined through beta-band activity in parietal cortices. When information about the goal was not accessible, but operating the indicator was required nevertheless, this incurred increased theta-band activity in the superior frontal cortex, signaling a higher need for control. Later, theta- and beta-band activities encode distinct information within the ventral processing stream: Theta-band activity is affected by the indicator information, while beta-band activity is affected by the information about the action goal. Complex sensorimotor integration is realized through a cascade of theta- and beta-band activities in a ventral-stream-parieto-frontal network.
Collapse
Affiliation(s)
- Adriana Böttcher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| | - Saskia Wilken
- General Psychology: Judgment, Decision Making, & Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Nico Adelhöfer
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Markus Raab
- Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Sven Hoffmann
- General Psychology: Judgment, Decision Making, & Action, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany
| |
Collapse
|
23
|
Wendiggensen P, Beste C. How Intermittent Brain States Modulate Neurophysiological Processes in Cognitive Flexibility. J Cogn Neurosci 2023; 35:749-764. [PMID: 36724399 DOI: 10.1162/jocn_a_01970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cognitive flexibility is an essential facet of everyday life, for example, when switching between different tasks. Neurophysiological accounts on cognitive flexibility have often focused on the task switch itself, disregarding preceding processes and the possible impact of "brain states" before engaging in cognitive flexibility. In a combined working memory/task-switching paradigm, we examined how neuronal processes during cognitive flexibility are interrelated to preceding neuronal processes across time and brain regions in a sample of n = 42 healthy adults. The interrelation of alpha- and theta-band-related processes over brain states ahead and during response selection was investigated on a functional neuroanatomical level using EEG-beamforming. The results showed that response selection processes (reflected by theta-band activity) seem to be strongly connected to "idling" and preparatory brain activity states (in both the theta- and alpha-band). Notably, the superior parietal cortex seems to play a crucial role by assembling alpha-band-related inhibitory processes from the rule- and goal-based actions during "idling" brain states, namely, short-term maintenance of rules (temporal cortex), task-set reconfiguration (superior frontal/precentral regions), and perceptual control (occipital cortex). This information is further relayed to response selection processes associated with theta-band activity. Notably, when the task has to be switched, theta-band activity in the superior frontal gyrus indicates a need for cognitive control in the "idling" brain state, which also seems to be relayed by BA7. The results indicate the importance of brain activity states ahead of response selection processes for cognitive flexibility.
Collapse
|
24
|
Zhang P, Yan J, Liu Z, Zhou Q. Impeded frontal-occipital communications during Go/Nogo tasks in humans owing to mental workload. Behav Brain Res 2023; 438:114182. [PMID: 36309243 DOI: 10.1016/j.bbr.2022.114182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022]
Abstract
Human brains rely on oscillatory coupling mechanisms for regulating access to prefrontal cognitive resources, dynamically communicating between the frontal and remote cortex. We worry that communications across cortical regions will be impeded when humans in extreme space environments travel with mental load work, affecting the successful completion of missions. Here, we monitored crews of workers performing a Go/Nogo task in space travel, accompanied by acquisitions of electroencephalography (EEG) signals. These data demonstrated that when the target stimulus suddenly changed to the non-target stimulus, an instantaneous communication mechanism between the frontal and occipital cortex was established by theta-gamma phase-amplitude coupling (PAC). However, this frontal-occipital communication was impeded because of the mental workload of space travel. 86 healthy volunteers who participated in the ground imitation further indicated that mental workload caused decoupled theta-gamma PAC during the Go/Nogo task, impeding frontal-occipital communications and behavioral performance. We also found that the degree of theta-gamma PAC coupling in space was significantly lower than on the ground, indicating that mental workload and other hazards worsen the impeded frontal-occipital communications of humans. These results could guide countermeasures for the inadaptability of humans working in spaceflight.
Collapse
Affiliation(s)
- Peng Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Zhongqi Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Qianxiang Zhou
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
25
|
Towards a systematization of brain oscillatory activity in actions. Commun Biol 2023; 6:137. [PMID: 36732548 PMCID: PMC9894929 DOI: 10.1038/s42003-023-04531-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Information processing in the brain is governed by oscillatory activity. Activity oscillations in specific frequency bands (theta, alpha, beta and gamma) have been associated with various cognitive functions. A drawback of this is that the plethora of findings led to considerable uncertainty as to the functional relevance of activity in different frequency bands and their interrelation. Here, we use a novel cognitive-science theoretical framework to better understand and conceptually harmonize neurophysiological research on human action control. We outline how this validated starting point can systematize and probably reframe the functional relevance of oscillatory activity relevant for action control and beyond.
Collapse
|
26
|
Theta Activity Dynamics during Embedded Response Plan Processing in Tourette Syndrome. Biomedicines 2023; 11:biomedicines11020393. [PMID: 36830930 PMCID: PMC9953245 DOI: 10.3390/biomedicines11020393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder. Because motor signs are the defining feature of GTS, addressing the neurophysiology of motor processes is central to understanding GTS. The integration of voluntary motor processes is subject to so-called "binding problems", i.e., how different aspects of an action are integrated. This was conceptualized in the theory of event coding, in which 'action files' accomplish the integration of motor features. We examined the functional neuroanatomical architecture of EEG theta band activity related to action file processing in GTS patients and healthy controls. Whereas, in keeping with previous data, behavioral performance during action file processing did not differ between GTS and controls, underlying patterns of neural activity were profoundly different. Superior parietal regions (BA7) were predominantly engaged in healthy controls, but superior frontal regions (BA9, BA10) in GTS indicated that the processing of different motor feature codes was central for action file processing in healthy controls, whereas episodic processing was more relevant in GTS. The data suggests a cascade of cognitive branching in fronto-polar areas followed by episodic processing in superior frontal regions in GTS. Patients with GTS accomplish the integration of motor plans via qualitatively different neurophysiological processes.
Collapse
|
27
|
Stock AK, Wendiggensen P, Ghin F, Beste C. Alcohol-induced deficits in reactive control of response selection and inhibition are counteracted by a seemingly paradox increase in proactive control. Sci Rep 2023; 13:1097. [PMID: 36658291 PMCID: PMC9852446 DOI: 10.1038/s41598-023-28012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
High-dose alcohol intoxication reduces cognitive control, including inhibition. Although inhibition deficits may contribute to the behavioral deficits commonly observed in alcohol use disorder (AUD), many questions about potentially modulating factors have remained unanswered. We examined the effects of experimentally induced high-dose alcohol intoxication (~ 1.1 ‰) on the interplay between controlled vs. automatic response selection and inhibition in healthy young men. A holistic EEG-based theta activity analysis that considered both reactive control during task performance and preceding proactive control processes was run. It revealed a previously unknown seesaw relationship, with decreased reactive control, but paradoxically increased proactive control. Most importantly, alcohol-induced increases in proactive occipital theta band power were associated with reductions in negative alcohol effects on reactive control processes associated with decreased activity in the SMA and medial frontal cortex. Our findings demonstrate that research should not solely focus on immediate effects during task performance. Aside from differential neurobiochemical and neuroanatomical effects of alcohol, it is also conceivable that proactive control may have been recruited in a (secondary) response to compensate for alcohol-induced impairments in reactive control. Against this background, it could be promising to investigate changes in such compensatory mechanisms in pronounced alcohol-associated inhibition deficits, like in AUD patients.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany. .,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany. .,Faculty of Psychology, TU Dresden, Dresden, Germany.
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
28
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
29
|
Yeh WH, Ju YJ, Liu YT, Wang TY. Systematic Review and Meta-Analysis on the Effects of Neurofeedback Training of Theta Activity on Working Memory and Episodic Memory in Healthy Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11037. [PMID: 36078752 PMCID: PMC9517899 DOI: 10.3390/ijerph191711037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The main purpose of this study was to investigate the effects of neurofeedback training (NFT) of theta activity on working memory (WM) and episodic memory (EM) in healthy participants via a systematic review and meta-analysis. A total of 337 articles obtained from electronic databases were assessed; however, only 11 articles met the criteria for meta-analysis after manually screening and eliminating unnecessary studies. A meta-analysis calculating the Hedges' g effect size metric with 95% confidence intervals using random effects models was employed. Heterogeneity was estimated using I2 statistics. Theta NFT is effective in improving memory outcomes, including WM with a Hedges' g of 0.56 [0.10; 1.02] (I2 = 62.9% and p = 0.02), and EM with a Hedges' g of 0.62 [0.13; 1.10] (I2 = 42.04% and p = 0.01). Overall, the results suggest that theta NFT seems to be useful as nonpharmacological/adjunct training to improve WM and EM in healthy participants.
Collapse
Affiliation(s)
- Wen-Hsiu Yeh
- Institute of Basic Medical Science, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
| | - Ya-Ju Ju
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ting Liu
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 711, Taiwan
| | - Ting-Yi Wang
- Department of Doctorate of Nursing Practice Program, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Wendiggensen P, Adelhöfer N, Jamous R, Mückschel M, Takacs A, Frings C, Münchau A, Beste C. Processing of embedded response plans is modulated by an interplay of fronto-parietal theta and beta activity. J Neurophysiol 2022; 128:543-555. [PMID: 35894437 DOI: 10.1152/jn.00537.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Even simple actions like opening a door require integration/binding and flexible re-activation of different motor elements. Yet, the neural mechanisms underlying the processing of such 'embedded response plans' are largely elusive, despite theoretical frameworks, such as the Theory of Event Coding, describing the involved cognitive processes. In a sample of N = 40 healthy participants we combine time-frequency decomposition and various beamforming methods to examine neurophysiological dynamics of such action plans - with special emphasis on the interplay of theta and beta frequency activity during the processing of these plans. We show that the integration and rule-guided reactivation of embedded response plans is modulated by a complex interplay of theta and beta activity. Pre-trial BBA is related to different functional neuroanatomical structures which are activated in a consecutive fashion. Enhanced preparatory activity is positively associated with higher binding-related BBA in the precuneus/parietal areas, indicating that activity in the precuneus/parietal cortex facilitates the execution of an embedded action sequence. Increased preparation subsequently leads to reduced working memory retrieval demands. A cascading pattern of interactions between pre-trial and within-trial activity indicates the importance of preparatory brain activity. The study shows that there are multiple roles of beta and theta oscillations associated with different functional neuroanatomical structures during the integration and reactivation of motor elements during actions.
Collapse
Affiliation(s)
- Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
31
|
Pre-trial fronto-occipital electrophysiological connectivity affects perception-action integration in response inhibition. Cortex 2022; 152:122-135. [DOI: 10.1016/j.cortex.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 01/02/2023]
|
32
|
Kuo CH, Casimo K, Wu J, Collins K, Rice P, Chen BW, Yang SH, Lo YC, Novotny EJ, Weaver KE, Chen YY, Ojemann JG. Electrocorticography to Investigate Age-Related Brain Lateralization on Pediatric Motor Inhibition. Front Neurol 2022; 13:747053. [PMID: 35330804 PMCID: PMC8940229 DOI: 10.3389/fneur.2022.747053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Response inhibition refers to the ability to suppress inappropriate actions that interfere with goal-driven behavior. The inferior frontal gyrus (IFG) is known to be associated with inhibition of a motor response by assuming executive control over motor cortex outputs. This study aimed to evaluate the pediatric development of response inhibition through subdural electrocorticography (ECoG) recording. Subdural ECoG recorded neural activities simultaneously during a Go/No-Go task, which was optimized for children. Different frequency power [theta: 4–8 Hz; beta: 12–40 Hz; high-gamma (HG): 70–200 Hz] was estimated within the IFG and motor cortex. Age-related analysis was computed by each bandpass power ratio between Go and No-Go conditions, and phase-amplitude coupling (PAC) over IFG by using the modulating index metric in two conditions. For all the eight pediatric patients, HG power was more activated in No-Go trials than in Go trials, in either right- or left-side IFG when available. In the IFG region, the power over theta and HG in No-Go conditions was higher than those in Go conditions, with significance over the right side (p < 0.05). The age-related lateralization from both sides to the right side was observed from the ratio of HG power and PAC value between the No-Go and Go trials. In the pediatric population, the role of motor inhibition was observed in both IFG, with age-related lateralization to the right side, which was proved in the previous functional magnetic resonance imaging studies. In this study, the evidence correlation of age and response inhibition was observed directly by the evidence of cortical recordings.
Collapse
Affiliation(s)
- Chao-Hung Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Kaitlyn Casimo
- Graduate Program in Neuroscience, Center for Neurotechnology, University of Washington, Seattle, WA, United States
| | - Jing Wu
- Department of Bioengineering, Center for Neurotechnology, University of Washington, Seattle, WA, United States
| | - Kelly Collins
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Patrick Rice
- Department of Psychology, Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Edward J Novotny
- Departments of Neurology and Pediatrics, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kurt E Weaver
- Department of Radiology, Integrated Brain Imaging Center, University of Washington, Seattle, WA, United States.,Center for Neurotechnology, University of Washington, Seattle, WA, United States
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States.,Center for Neurotechnology, University of Washington, Seattle, WA, United States.,Departments of Surgery, Seattle Children's Hospital, Seattle, WA, United States
| |
Collapse
|
33
|
Pscherer C, Mückschel M, Bluschke A, Beste C. Resting-state theta activity is linked to information content-specific coding levels during response inhibition. Sci Rep 2022; 12:4530. [PMID: 35296740 PMCID: PMC8927579 DOI: 10.1038/s41598-022-08510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
The neurophysiological processes underlying the inhibition of impulsive responses have been studied extensively. While also the role of theta oscillations during response inhibition is well examined, the relevance of resting-state theta activity for inhibitory control processes is largely unknown. We test the hypothesis that there are specific relationships between resting-state theta activity and sensory/motor coding levels during response inhibition using EEG methods. We show that resting theta activity is specifically linked to the stimulus-related fraction of neurophysiological activity in specific time windows during motor inhibition. In contrast, concomitantly coded processes related to decision-making or response selection as well as the behavioral inhibition performance were not associated with resting theta activity. Even at the peak of task-related theta power, where task-related theta activity and resting theta activity differed the most, there was still predominantly a significant correlation between both types of theta activity. This suggests that aspects similar to resting dynamics are evident in the proportion of inhibition-related neurophysiological activity that reflects an “alarm” signal, whose function is to process and indicate the need for cognitive control. Thus, specific aspects of task-related theta power may build upon resting theta activity when cognitive control is necessary.
Collapse
Affiliation(s)
- Charlotte Pscherer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| |
Collapse
|
34
|
Wendiggensen P, Ghin F, Koyun AH, Stock AK, Beste C. Pretrial Theta Band Activity Affects Context-dependent Modulation of Response Inhibition. J Cogn Neurosci 2022; 34:605-617. [PMID: 35061021 DOI: 10.1162/jocn_a_01816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The ability to inhibit a prepotent response is a crucial prerequisite of goal-directed behavior. So far, research on response inhibition has mainly examined these processes when there is little to no cognitive control during the decision to respond. We manipulated the "context" in which response inhibition has to be exerted (i.e., a controlled or an automated context) by combining a Simon task with a go/no-go task and focused on theta band activity. To investigate the role of "context" in response inhibition, we also examined how far theta band activity in the pretrial period modulates context-dependent variations of theta band activity during response inhibition. This was done in an EEG study applying beamforming methods. Here, we examined n = 43 individuals. We show that an automated context, as opposed to a controlled context, compromises response inhibition performance and increases the need for cognitive control. This was also related to context-dependent modulations of theta band activity in superior frontal and middle frontal regions. Of note, results showed that theta band activity in the pretrial period, associated with the right inferior frontal cortex, was substantially correlated with context-dependent modulations of theta band activity during response inhibition. The direction of the obtained correlation provides insights into the functional relevance of a pretrial theta band activity. The data suggest that pretrial theta band activity reflects some form of attentional sampling to inform possible upcoming processes signaling the need for cognitive control.
Collapse
Affiliation(s)
- Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| |
Collapse
|
35
|
Stock AK, Yu S, Ghin F, Beste C. How low working memory demands and reduced anticipatory attentional gating contribute to impaired inhibition during acute alcohol intoxication. Sci Rep 2022; 12:2892. [PMID: 35190563 PMCID: PMC8861183 DOI: 10.1038/s41598-022-06517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
High-dose alcohol intoxication is commonly associated with impaired inhibition, but the boundary conditions, as well as associated neurocognitive/neuroanatomical changes have remained rather unclear. This study was motivated by the counterintuitive finding that high-dose alcohol intoxication compromises response inhibition performance when working memory demands were low, but not when they were high. To investigate whether this is more likely to be caused by deficits in cognitive control processes or in attentional processes, we examined event-related (de)synchronization processes in theta and alpha-band activity and performed beamforming analyses on the EEG data of previously published behavioral findings. This yielded two possible explanations: There may be a selective decrease of working memory engagement in case of relatively low demand, which boosts response automatization, ultimately putting more strain on the remaining inhibitory resources. Alternatively, there may be a decrease in proactive preparatory and anticipatory attentional gating processes in case of relatively low demand, hindering attentional sampling of upcoming stimuli. Crucially, both of these interrelated mechanisms reflect differential alcohol effects after the actual motor inhibition process and therefore tend to be processes that serve to anticipate future response inhibition affordances. This provides new insights into how high-dose alcohol intoxication can impair inhibitory control.
Collapse
|
36
|
Boukarras S, Özkan DG, Era V, Moreau Q, Tieri G, Candidi M. Midfrontal Theta tACS Facilitates Motor Coordination in Dyadic Human-Avatar Interactions. J Cogn Neurosci 2022; 34:897-915. [PMID: 35171250 DOI: 10.1162/jocn_a_01834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Synchronous interpersonal motor interactions require moment-to-moment prediction and proactive monitoring of the partner's actions. Neurophysiologically, this is highlighted by an enhancement of midfrontal theta (4-7 Hz) oscillations. In this study, we explored the causal role of midfrontal theta for interpersonal motor interactions using transcranial alternating current stimulation (tACS). We implemented a realistic human-avatar interaction task in immersive virtual reality where participants controlled a virtual arm and hand to press a button synchronously with a virtual partner. Participants completed the task while receiving EEG-informed theta (Experiment 1) or beta (control frequency, Experiment 2) tACS over the frontal midline, as well as sham stimulation as a control. Results showed that midfrontal theta tACS significantly improved behavioral performance (i.e., reduced interpersonal asynchrony) and participants' motor strategies (i.e., increased movement times and reduced RTs), whereas beta tACS had no effect on these measures. These results suggest that theta tACS over frontal areas facilitates action monitoring and motor abilities supporting interpersonal interactions.
Collapse
Affiliation(s)
- Sarah Boukarras
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Duru Gun Özkan
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Vanessa Era
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Quentin Moreau
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gaetano Tieri
- IRCCS Santa Lucia Foundation, Rome, Italy.,Unitelma Sapienza, Rome, Italy
| | - Matteo Candidi
- Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
37
|
Yu S, Mückschel M, Rempel S, Ziemssen T, Beste C. Time-on-task effects on working memory gating processes—A role of theta synchronization and the norepinephrine system. Cereb Cortex Commun 2022; 3:tgac001. [PMID: 35098128 PMCID: PMC8794645 DOI: 10.1093/texcom/tgac001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Performance impairment as an effect of prolonged engagement in a specific task is commonly observed. Although this is a well-known effect in everyday life, little is known about how this affects central cognitive functions such as working memory (WM) processes. In the current study, we ask how time-on-task affects WM gating processes and thus processes regulating WM maintenance and updating. To this end, we combined electroencephalography methods and recordings of the pupil diameter as an indirect of the norepinephrine (NE) system activity. Our results showed that only WM gate opening but not closing processes showed time-on-task effects. On the neurophysiological level, this was associated with modulation of dorsolateral prefrontal theta band synchronization processes, which vanished with time-on-task during WM gate opening. Interestingly, also the modulatory pattern of the NE system, as inferred using pupil diameter data, changed. At the beginning, a strong correlation of pupil diameter data and theta band synchronization processes during WM gate opening is observed. This modulatory effect vanished at the end of the experiment. The results show that time-on-task has very specific effects on WM gate opening and closing processes and suggests an important role of NE system in the time-on-task effect on WM gate opening process.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
| | - Sarah Rempel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre, TU Dresden 01309
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
- Address correspondence to Christian Beste, Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, D01309 Dresden, Germany.
| |
Collapse
|
38
|
A role of the norepinephrine system or effort in the interplay of different facets of inhibitory control. Neuropsychologia 2022; 166:108143. [PMID: 34998865 DOI: 10.1016/j.neuropsychologia.2022.108143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 01/23/2023]
Abstract
Inhibitory control has multiple facets, and one possible distinction can be made between 'inhibition of interferences' and the 'inhibition of actions'. Both facets of inhibitory control show an interdependency. Even though some neurophysiological processes underlying this interdependency have been examined, the role of neuro-modulatory processes in their interplay are not understood. In the current study, we examine the role of the norepinephrine (NE) system in these processes. We did so by combining a Go/Nogo and Simon task. We recorded the EEG and pupil diameter data as an indirect index of NE system activity during the task. EEG theta band activity data and pupil diameter data were then integrated after conducting a temporal signal decomposition of the EEG data. We show that particularly theta band activity coding stimulus-response translation processes associated with middle frontal cortices, but not stimulus-driven processes are modulated by the interplay between the 'inhibition of interferences' and the 'inhibition of actions'. Modulations in stimulus-response translation processes were systematically correlated with pupil-diameter responses. The pattern of correlations suggests that phasic NE system activity particularly modulates stimulus-response mapping processes during conflict monitoring in incongruent Nogo trials, which may explain behavioral performance effects. Phasic NE system activity reflects essential modulators of the interplay between the 'inhibition of interferences' and the 'inhibition of actions'.
Collapse
|
39
|
Rempel S, Colzato L, Zhang W, Wolff N, Mückschel M, Beste C. Distinguishing Multiple Coding Levels in Theta Band Activity During Working Memory Gating Processes. Neuroscience 2021; 478:11-23. [PMID: 34626750 DOI: 10.1016/j.neuroscience.2021.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/15/2022]
Abstract
Cognitive control and working memory (WM) processes are essential for goal-directed behaviour. Cognitive control and WM are probably based on overlapping neurophysiological mechanisms. For example, theta-band activity (TBA) plays an important role in both functions. For cognitive control processes, it is known that different aspects of information about stimulus content, motor processes and stimulus-response relationships are encoded simultaneously in the TBA. All this information is probably processed during WM gating processes and must be controlled during them. However, direct data for this are lacking. This question is investigated in this study by combining methods of EEG temporal signal decomposition, time-frequency decomposition and beamforming. We show that portions of stimulus-related information, motor response-related information and information related to the interaction between the stimulus and motor responses in the TBA are influenced in parallel and to a similar extent by WM gate opening and gate closing processes. Nevertheless, it is stimulus-related information in the theta signal in particular that modulates behavioural performance in WM-gating. The data suggest that the identified processes are implemented in specific neuroanatomical structures. In particular, the medial frontal cortex, temporal cortical regions and insular cortex are involved in these dynamics. The study shows that principles of information coding relevant to cognitive control processes are also crucial for understanding WM gating.
Collapse
Affiliation(s)
- Sarah Rempel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lorenza Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Wenxin Zhang
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Nicole Wolff
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
40
|
Beste C, Mückschel M, Rauch J, Bluschke A, Takacs A, Dilcher R, Toth-Faber E, Bäumer T, Roessner V, Li SC, Münchau A. Distinct Brain-Oscillatory Neuroanatomical Architecture of Perception-Action Integration in Adolescents With Tourette Syndrome. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:123-134. [PMID: 36324991 PMCID: PMC9616364 DOI: 10.1016/j.bpsgos.2021.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022] Open
Abstract
Background Gilles de la Tourette Syndrome (GTS) is a neurodevelopmental disorder with a peak of symptom severity around late childhood and early adolescence. Previous findings in adult GTS suggest that changes in perception-action integration, as conceptualized in the theory of event coding framework, are central for the understanding of GTS. However, the neural mechanisms underlying these processes in adolescence are elusive. Methods A total of 59 children/adolescents aged 9 to 18 years (n = 32 with GTS, n = 27 typically developing youths) were examined using a perception-action integration task (event file task) derived from the theory of event coding. Event-related electroencephalogram recordings (theta and beta band activity) were analyzed using electroencephalogram–beamforming methods. Results Behavioral data showed robust event file binding effects in both groups without group differences. Neurophysiological data showed that theta and beta band activity were involved in event file integration in both groups. However, the functional neuroanatomical organization was markedly different for theta band activity between the groups. The typically developing group mainly relied on superior frontal regions, whereas the GTS group engaged parietal and inferior frontal regions. A more consistent functional neuroanatomical activation pattern was observed for the beta band, engaging inferior parietal and temporal regions in both groups. Conclusions Perception-action integration processes lag behind in persisting GTS but not in the GTS population as a whole, underscoring differences in developmental trajectories and the importance of longitudinal investigations for the understanding of GTS. The findings corroborate known differences in the functional/structural brain organization in GTS and suggest an important role of theta band activity in these patients.
Collapse
|
41
|
Messel MS, Raud L, Hoff PK, Stubberud J, Huster RJ. Frontal-midline theta reflects different mechanisms associated with proactive and reactive control of inhibition. Neuroimage 2021; 241:118400. [PMID: 34311382 DOI: 10.1016/j.neuroimage.2021.118400] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/22/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022] Open
Abstract
Reactive control of response inhibition is associated with a right-lateralised cortical network, as well as frontal-midline theta (FM-theta) activity measured at the scalp. However, response inhibition is also governed by proactive control processes, and how such proactive control is reflected in FM-theta activity and associated neural source activity remains unclear. To investigate this, simultaneous recordings of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data was performed while participants performed a cued stop-signal task. The cues (0%, 25% or 66%) indicated the likelihood of an upcoming stop-signal in the following trial. Results indicated that participants adjusted their behaviour proactively, with increasing go-trial reaction times following increasing stop-signal probability, as well as modulations of both go-trial and stop-trial accuracies. Target-locked theta activity was higher in stop-trials than go-trials and modulated by probability. At the single-trial level, cue-locked theta was associated with shorter reaction-times, while target-locked theta was associated with both faster reaction times and higher probability of an unsuccessful stop-trial. This dissociation was also evident at the neural source level, where a joint ICA revealed independent components related to going, stopping and proactive preparation. Overall, the results indicate that FM-theta activity can be dissociated into several mechanisms associated with proactive control, response initiation and response inhibition processes. We propose that FM-theta activity reflects both heightened preparation of the motor control network, as well as stopping-related processes associated with a right lateralized cortical network.
Collapse
Affiliation(s)
- Mari S Messel
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; CTNC - Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway; Sunnaas Rehabilitation Hospital, Nesodden, Norway.
| | - Liisa Raud
- CTNC - Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway; Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway
| | - Per Kristian Hoff
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
| | - Jan Stubberud
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Research, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; CTNC - Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Yu S, Mückschel M, Beste C. Event-related synchronization/desynchronization and functional neuroanatomical regions associated with fatigue effects on cognitive flexibility. J Neurophysiol 2021; 126:383-397. [PMID: 34191635 DOI: 10.1152/jn.00228.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive flexibility is an essential prerequisite for goal-directed behavior, and daily observations already show that it deteriorates when one is engaged in a task for a (too) long time. Yet, the neural mechanisms underlying such fatigability effect in cognitive flexibility are poorly understood. We examined how theta, alpha, and beta frequency event-related synchronization and desynchronization processes during cued memory-based task switching are modulated by time-on-task effects. We put special emphasis on the examination of functional neuroanatomical regions being associated with these modulations, using EEG beamforming. We show clear declines in task switching performance (increased switch costs) with time on task. For processes occurring before rule switching or repetition processes, we show that anticipatory attentional sampling and selection mechanisms associated with fronto-parietal structures are modulated by time-on-task effects but sensory areas (occipital cortex) also show fatigability-dependent modulations. After target stimulus presentation, the allocation of processing resources for response selection as reflected by theta-related activity in parietal cortices is compromised with time on task and similarly a concomitant increase in alpha and beta band-related attentional processing or gating mechanisms in frontal and occipital regions. Yet, considering the behavioral data showing an apparent decline in performance, this probably compensatory increase is still insufficient to allow reasonable performance. The same is likely the case for processes occurring before rule switching or repetition processes. Comparative analyses show that modulations of alpha band activity are as strongly modulated by fatigability as theta band activity. Implications of these findings for theoretical concepts on fatigability are discussed.NEW & NOTEWORTHY We examine the neurophysiological and functional neuroanatomical basis of fatigability in cognitive flexibility. We show that alpha and theta modulations in fronto-parietal and primary sensory areas are central for the understanding of fatigability effects in cognitive flexibility.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
43
|
Adelhöfer N, Bluschke A, Roessner V, Beste C. The dynamics of theta-related pro-active control and response inhibition processes in AD(H)D. NEUROIMAGE-CLINICAL 2021; 30:102609. [PMID: 33711621 PMCID: PMC7970141 DOI: 10.1016/j.nicl.2021.102609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 11/01/2022]
Abstract
Impulsivity and deficits in response inhibition are hallmarks of attention-deficit(-hyperactivity) disorder (AD(H)D), can cause severe problems in daily functioning, and are thus of high clinical relevance. Traditionally, research to elucidate associated neural correlates has intensively, but also quite selectively examined mechanisms during response inhibition in various tasks. Doing so, in-between trial periods or periods prior to the response inhibition process, where no information relevant to inhibitory control is presented, have been neglected. Yet, these periods may nevertheless reveal relevant information. In the present study, using a case-control cross-sectional design, we take a more holistic approach, examining the inter-relation of pre-trial and within-trial periods in a Go/Nogo task with a focus on EEG theta band activity. Applying EEG beamforming methods, we show that the dynamics between pre-trial (pro-active) and within-trial (inhibition-related) control processes significantly differ between AD(H)D subtypes. We show that response inhibition, and differences between AD(H)D subtypes, exhibit distinct patterns of (at least) three factors: (i) strength of pre-trial (pro-active control) theta-band activity, (ii) the inter-relation of pro-active control and inhibition-relation theta band activity and (iii) the functional neuroanatomical region active during theta-related pro-active control processes. This multi-factorial pattern is captured by AD(H)D subtype clinical symptom clusters. The study provides a first hint that novel cognitive-neurophysiological facets of AD(H)D may be relevant to distinguish AD(H)D subtypes.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
44
|
Motor Interference, But Not Sensory Interference, Increases Midfrontal Theta Activity and Brain Synchronization during Reactive Control. J Neurosci 2021; 41:1788-1801. [PMID: 33441433 DOI: 10.1523/jneurosci.1682-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Cognitive control helps us to overcome task interference in challenging situations. Resolving conflicts because of interfering influences is believed to rely on midfrontal theta oscillations. However, different sources of interference necessitate different types of control. Attentional control is needed to suppress salient distractors. Motor control is needed to suppress goal-incompatible action impulses. While previous studies mostly studied the additive effects of attentional and motor conflicts, we independently manipulated the need for attentional control (via visual distractors) and motor control (via unexpected response deviations) in an EEG study with male and female humans. We sought to find out whether these different types of control rely on the same midfrontal oscillatory mechanisms. Motor conflicts, but not attentional conflicts, elicited increases in midfrontal theta power during conflict resolution. Independent of the type of conflict, theta power was predictive of motor slowing. Connectivity analysis via phase-based synchronization indicated a widespread increase interbrain connectivity for motor conflicts, but a midfrontal-to-posterior decrease in connectivity for attentional conflicts. For each condition, we found stronger midfrontal connectivity with the parietal region contralateral to, rather than ipsilateral to, the acting hand. Parietal lateralization in connectivity was strongest for motor conflicts. Previous studies suggested that midfrontal theta oscillations might represent a general control mechanism, which aids conflict resolution independent of the conflict domain. In contrast, our results show that oscillatory theta dynamics during reactive control mostly reflect motor-related adjustments.SIGNIFICANCE STATEMENT Humans need to exercise self-control over both their attention (to avoid distraction) and their motor activity (to suppress inappropriate action impulses). Midfrontal theta oscillations have been assumed to indicate a general control mechanism, which help to exert top-down control during both motor and sensory interference. We are using a novel approach for the independent manipulation of attentional and motor control to show that increases in midfrontal theta power and brainwide connectivity are linked to the top-down adjustments of motor responses, not sensory interference. These findings clarify the function of midfrontal theta dynamics as a key aspect of neural top-down control and help to dissociate domain-general from motor-specific aspects of self-control.
Collapse
|
45
|
Li Y, Wang J, Ye H, Luo J. Modulating the Activity of vmPFC Regulates Informational Social Conformity: A tDCS Study. Front Psychol 2020; 11:566977. [PMID: 33041931 PMCID: PMC7527649 DOI: 10.3389/fpsyg.2020.566977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Social conformity has been evaluated in many different contexts, ranging from an emotional contagion in psychology, to speculative episodes in economics, to mass protests concerning politics. Previous neuroscience studies suggest that the ventromedial prefrontal cortex (vmPFC) participates in social conformity, especially when it comes to the value integration process, but the specific mechanism of vmPFC is still unclear. In this study, we aimed to identify a direct link between the vmPFC and conformity tendencies by means of transcranial direct current stimulation (tDCS). Conformity tendencies are measured by the probability that participants change their decisions when they observe the majority responses. In our experiment, subjects could make two decisions in each trial, once without social information and once with social information, which allowed us to directly observe the conformity tendency of subjects in different conditions. We found that cathodal stimulation of the vmPFC significantly increased conformity tendency and decreased response time when the initial decision of participants differs from the majority opinion. Based on the experimental results, our study suggests that the vmPFC mainly inhibits and regulates the informational conformity behavior. These findings complement investigations of the neural mechanism of conformity and the role of the vmPFC in the neural circuit behind conformity behavior.
Collapse
Affiliation(s)
- Yuzhen Li
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
| | - Jinjin Wang
- School of Economics, Zhejiang University, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Hang Ye
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Jun Luo
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|