1
|
Karpova A, Hiesinger PR, Kuijpers M, Albrecht A, Kirstein J, Andres-Alonso M, Biermeier A, Eickholt BJ, Mikhaylova M, Maglione M, Montenegro-Venegas C, Sigrist SJ, Gundelfinger ED, Haucke V, Kreutz MR. Neuronal autophagy in the control of synapse function. Neuron 2025; 113:974-990. [PMID: 40010347 DOI: 10.1016/j.neuron.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Neurons are long-lived postmitotic cells that capitalize on autophagy to remove toxic or defective proteins and organelles to maintain neurotransmission and the integrity of their functional proteome. Mutations in autophagy genes cause congenital diseases, sharing prominent brain dysfunctions including epilepsy, intellectual disability, and neurodegeneration. Ablation of core autophagy genes in neurons or glia disrupts normal behavior, leading to motor deficits, memory impairment, altered sociability, and epilepsy, which are associated with defects in synapse maturation, plasticity, and neurotransmitter release. In spite of the importance of autophagy for brain physiology, the substrates of neuronal autophagy and the mechanisms by which defects in autophagy affect synaptic function in health and disease remain controversial. Here, we summarize the current state of knowledge on neuronal autophagy, address the existing controversies and inconsistencies in the field, and provide a roadmap for future research on the role of autophagy in the control of synaptic function.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - P Robin Hiesinger
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Anne Albrecht
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Janine Kirstein
- Leibniz Institute on Aging-Fritz-Lipmann-Institute, 07754 Jena, Germany; Friedrich-Schiller-Universität, Institute for Biochemistry & Biophysics, 07745 Jena, Germany
| | - Maria Andres-Alonso
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Britta J Eickholt
- Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marina Mikhaylova
- Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Marta Maglione
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Volker Haucke
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Molecular Biology and Biochemistry, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke-University, 39120 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Wang X, Xin Z, Li X, Wu K, Wang W, Guo L, Wang L, Mo X, Liu X, Guo Z, Wang J, Lu C. Mediterranean diet and dementia: MRI marker evidence from meta-analysis. Eur J Med Res 2025; 30:32. [PMID: 39815306 PMCID: PMC11737277 DOI: 10.1186/s40001-025-02276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Dementia is a growing public health concern with limited effective treatments. Diet may be a modifiable factor that significantly impacts brain health. Mediterranean diet (MeDi) has been suggested to be associated with brain Magnetic Resonance Imaging (MRI) markers related to dementia, but the existing evidence is inconsistent. OBJECTIVES This systematic review and meta-analysis aimed to quantify the association between MeDi and dementia-related MRI markers. METHODS A systematic search was conducted on PubMed, Embase, and Web of Science up to September 2024. Two reviewers worked in parallel to select studies and extract data. We considered epidemiologic studies that reported beta coefficients (β) with 95% confidence intervals (CIs) for MRI markers related to MeDi. Separate meta-analyses were performed for cross-sectional and longitudinal studies. RESULTS A total of 20 relevant studies involving 44,893 individuals were included in the analysis. Thirteen cross-sectional studies included a total of 42,955 participants. A meta-analysis of cross-sectional studies revealed significant associations between MeDi and white matter hyperintensity (WMH) (β = - 0.03, 95% CI = - 0.05- - 0.01, P = 0.02). However, there were no significant associations found between MeDi and total brain volume (TBV) (β = - 0.03, 95% CI = - 0.20-0.13, P = 0.71), gray matter volume (GMV) (β = 0.26, 95% CI = - 0.19-0.71, P = 0.26), white matter volume (WMV) (β = - 0.09, 95% CI = - 0.40-0.22, P = 0.58), or hippocampal volume (HCV) (β = - 1.02, 95% CI = - 7.74-9.79, P = 0.82). In the longitudinal analysis, seven prospective studies with an average follow-up period ranging from 1.5 to 9 years and involving 1,938 participants. The combined effect size of MeDi showed no significant association with TBV or GMV. CONCLUSION Adherence to MeDi may be associated with reduced WMH in older adults. This suggests that MeDi may affect brain health and highlights the need for further research into its role as a modifiable lifestyle factor that might potentially modify the risk of dementia.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Zhiyao Xin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, 510080, Guangdong, China
| | - Xiuwen Li
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, 510080, Guangdong, China
| | - Keying Wu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, 510080, Guangdong, China
| | - Wanxin Wang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, 510080, Guangdong, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, 510080, Guangdong, China
| | - Li Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Xin Mo
- Department of Radiology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, 36 Industrial Road 7, Shenzhen, 518067, Guangdong, China
| | - Xinjian Liu
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Zhihui Guo
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, Guangdong, China
| | - Jing Wang
- Department of Radiology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, 36 Industrial Road 7, Shenzhen, 518067, Guangdong, China.
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
3
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
4
|
Qian M, Zhang N, Zhang R, Liu M, Wu Y, Lu Y, Li F, Zheng L. Non-Linear Association of Dietary Polyamines with the Risk of Incident Dementia: Results from Population-Based Cohort of the UK Biobank. Nutrients 2024; 16:2774. [PMID: 39203912 PMCID: PMC11357304 DOI: 10.3390/nu16162774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Natural polyamines, including spermidine (SPD), spermine (SPM) and putrescine (PUT), are evolutionarily conserved endogenous molecules crucially involved in central cellular processes. Their physiological importance may extend to the maintenance of cognitive function during aging. However, limited population-based epidemiological studies have explored the link between dietary polyamines and dementia risk. This study was a prospective analysis of 77,092 UK Biobank participants aged ≥ 60 years without dementia at baseline. We used Cox proportional hazard regression models to explore the associations between dietary polyamines and the risk of dementia, and restricted cubic splines to test the non-linear relationships. During a median follow-up of 12 years, 1087 incidents of all-cause dementia cases occurred, including 450 Alzheimer's disease (AD) cases and 206 vascular dementia (VD) cases. The fully adjusted hazard ratios (HRs) for the upper fourth quintile of dietary SPD, in comparison with the lowest quintile of intake, were 0.68 (95% confidence interval [95% CI]: 0.66-0.83) for the risk of all-cause dementia, 0.62 (95% CI: 0.45-0.85) for AD and 0.56 (95% CI: 0.36-0.88) for VD, respectively. A 26% reduction in dementia risk [HR: 0.74, (95% CI: 0.61-0.89)] and a 47% reduction in AD [HR: 0.53, (95%CI: 0.39-0.72)] were observed comparing the third with the lowest quintiles of dietary SPM. Dietary PUT was only associated with a reduced risk of all-cause dementia in the fourth quintile [HR (95% CI): 0.82 (0.68-0.99)]. Reduced risk was not found to be significant across all quintiles. There were 'U'-shaped relationships found between dietary polyamines and all-cause dementia, AD and VD. Stratification by genetic predisposition showed no significant effect modification. Optimal intake of polyamines was linked to a decreased risk of dementia, with no modification by genetic risk. This potentially suggests cognitive benefits of dietary natural polyamines in humans.
Collapse
Affiliation(s)
- Mingxia Qian
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Na Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Rui Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, No. 279 Zhouzhu Road, Pudong New District, Shanghai 201318, China;
| | - Min Liu
- Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, China;
| | - Yani Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| | - Ying Lu
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China;
| | - Furong Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Huangpu District, Shanghai 200025, China; (M.Q.); (N.Z.); (Y.W.)
| |
Collapse
|
5
|
Zayas-Santiago A, Malpica-Nieves CJ, Ríos DS, Díaz-García A, Vázquez PN, Santiago JM, Rivera-Aponte DE, Veh RW, Méndez-González M, Eaton M, Skatchkov SN. Spermidine Synthase Localization in Retinal Layers: Early Age Changes. Int J Mol Sci 2024; 25:6458. [PMID: 38928162 PMCID: PMC11204015 DOI: 10.3390/ijms25126458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.
Collapse
Affiliation(s)
- Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | | | - David S. Ríos
- College of Science and Health Professions, Universidad Central de Bayamón, Bayamón, PR 00960, USA;
| | - Amanda Díaz-García
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Paola N. Vázquez
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - José M. Santiago
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - David E. Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Rüdiger W. Veh
- Charité–Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie, Centrum 2, Charitéplatz 1, D-10117 Berlin, Germany;
| | | | - Misty Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| |
Collapse
|
6
|
Tao X, Liu J, Diaz-Perez Z, Foley JR, Nwafor A, Stewart TM, Casero RA, Zhai RG. Reduction of spermine synthase enhances autophagy to suppress Tau accumulation. Cell Death Dis 2024; 15:333. [PMID: 38740758 PMCID: PMC11091227 DOI: 10.1038/s41419-024-06720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.
Collapse
Affiliation(s)
- Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley Nwafor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Guarente L, Sinclair DA, Kroemer G. Human trials exploring anti-aging medicines. Cell Metab 2024; 36:354-376. [PMID: 38181790 DOI: 10.1016/j.cmet.2023.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Here, we summarize the current knowledge on eight promising drugs and natural compounds that have been tested in the clinic: metformin, NAD+ precursors, glucagon-like peptide-1 receptor agonists, TORC1 inhibitors, spermidine, senolytics, probiotics, and anti-inflammatories. Multiple clinical trials have commenced to evaluate the efficacy of such agents against age-associated diseases including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. There are reasonable expectations that drugs able to decelerate or reverse aging processes will also exert broad disease-preventing or -attenuating effects. Hence, the outcome of past, ongoing, and future disease-specific trials may pave the way to the development of new anti-aging medicines. Drugs approved for specific disease indications may subsequently be repurposed for the treatment of organism-wide aging consequences.
Collapse
Affiliation(s)
- Leonard Guarente
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA 02139; Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA.
| | - David A Sinclair
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Blavatnik Institute, Genetics Department, Harvard Medical School, Boston, MA 02115, USA
| | - Guido Kroemer
- Academy for Healthspan and Lifespan Research (AHLR), New York, NY, USA; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
8
|
Wortha SM, Schulz J, Hanna J, Schwarz C, Stubbe B, Frenzel S, Bülow R, Friedrich N, Nauck M, Völzke H, Ewert R, Vogelgesang A, Grabe HJ, Ladenbauer J, Flöel A. Association of spermidine blood levels with microstructure of sleep-implications from a population-based study. GeroScience 2024; 46:1319-1330. [PMID: 37548882 PMCID: PMC10828152 DOI: 10.1007/s11357-023-00886-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
Deteriorations in slow wave sleep (SWS) have been linked to brain aging and Alzheimer's disease (AD), possibly due to its key role in clearance of amyloid-beta and tau (Aß/tau), two pathogenic hallmarks of AD. Spermidine administration has been shown to improve sleep quality in animal models. So far, the association between spermidine levels in humans and parameters of SWS physiology are unknown but may be valuable for therapeutic strategies. Data from 216 participants (age range 50-81 years) of the population-based Study of Health in Pomerania TREND were included in our analysis. We investigated associations between spermidine plasma levels, key parameters of sleep macroarchitecture and microarchitecture that were previously associated with AD pathology, and brain health measured via a marker of structural brain atrophy (AD score). Higher spermidine levels were significantly associated with lower coupling between slow oscillations and spindle activity. No association was evident for SWS, slow oscillatory, and spindle activity throughout non-rapid eye movement sleep. Furthermore, elevated spermidine blood levels were significantly associated with a higher AD score, while sleep markers revealed no association with AD score. The association between higher spermidine levels and brain health was not mediated by coupling between slow oscillations and spindle activity. We report that higher spermidine blood levels are associated not only with deteriorated brain health but also with less advantageous markers of sleep quality in older adults. Future studies need to evaluate whether sleep, spermidine, and Aß/tau deposition are interrelated and whether sleep may play a mediating role.
Collapse
Affiliation(s)
- Silke M Wortha
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, UK.
| | - Juliane Schulz
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jevri Hanna
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Schwarz
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Beate Stubbe
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Julia Ladenbauer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Yu L, Pan J, Guo M, Duan H, Zhang H, Narbad A, Zhai Q, Tian F, Chen W. Gut microbiota and anti-aging: Focusing on spermidine. Crit Rev Food Sci Nutr 2023; 64:10419-10437. [PMID: 37326367 DOI: 10.1080/10408398.2023.2224867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Wortha SM, Frenzel S, Bahls M, Habes M, Wittfeld K, Van der Auwera S, Bülow R, Zylla S, Friedrich N, Nauck M, Völzke H, Grabe HJ, Schwarz C, Flöel A. Association of spermidine plasma levels with brain aging in a population-based study. Alzheimers Dement 2023; 19:1832-1840. [PMID: 36321615 PMCID: PMC11246659 DOI: 10.1002/alz.12815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Supplementation with spermidine may support healthy aging, but elevated spermidine tissue levels were shown to be an indicator of Alzheimer's disease (AD). METHODS Data from 659 participants (age range: 21-81 years) of the population-based Study of Health in Pomerania TREND were included. We investigated the association between spermidine plasma levels and markers of brain aging (hippocampal volume, AD score, global cortical thickness [CT], and white matter hyperintensities [WMH]). RESULTS Higher spermidine levels were significantly associated with lower hippocampal volume (ß = -0.076; 95% confidence interval [CI]: -0.13 to -0.02; q = 0.026), higher AD score (ß = 0.118; 95% CI: 0.05 to 0.19; q = 0.006), lower global CT (ß = -0.104; 95% CI: -0.17 to -0.04; q = 0.014), but not WMH volume. Sensitivity analysis revealed no substantial changes after excluding participants with cancer, depression, or hemolysis. DISCUSSION Elevated spermidine plasma levels are associated with advanced brain aging and might serve as potential early biomarker for AD and vascular brain pathology.
Collapse
Affiliation(s)
- Silke M. Wortha
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Martin Bahls
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Stephanie Zylla
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Claudia Schwarz
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Ríos DS, Malpica-Nieves CJ, Díaz-García A, Eaton MJ, Skatchkov SN. Changes in the Localization of Polyamine Spermidine in the Rat Retina with Age. Biomedicines 2023; 11:1008. [PMID: 37189626 PMCID: PMC10135861 DOI: 10.3390/biomedicines11041008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Polyamines (PAs) in the nervous system has a key role in regeneration and aging. Therefore, we investigated age-related changes in the expression of PA spermidine (SPD) in the rat retina. Fluorescent immunocytochemistry was used to evaluate the accumulation of SPD in retinae from rats of postnatal days 3, 21, and 120. Glial cells were identified using glutamine synthetase (GS), whereas DAPI, a marker of cell nuclei, was used to differentiate between retinal layers. SPD localization in the retina was strikingly different between neonates and adults. In the neonatal retina (postnatal day 3-P3), SPD is strongly expressed in practically all cell types, including radial glia and neurons. SPD staining showed strong co-localization with the glial marker GS in Müller Cells (MCs) in the outer neuroblast layer. In the weaning period (postnatal day 21-P21), the SPD label was strongly expressed in all MCs, but not in neurons. In early adulthood (postnatal day 120-P120), SPD was localized in MCs only and was co-localized with the glial marker GS. A decline in the expression of PAs in neurons was observed with age while glial cells accumulated SPD after the differentiation stage (P21) and during aging in MC cellular endfoot compartments.
Collapse
Affiliation(s)
- David S. Ríos
- College of Science and Health Professions, Universidad Central de Bayamón, Bayamón, PR 00960, USA
| | | | - Amanda Díaz-García
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| |
Collapse
|
12
|
Tao X, Liu J, Diaz-Perez Z, Foley JR, Stewart TM, Casero RA, Zhai RG. Reduction of Spermine Synthase Suppresses Tau Accumulation Through Autophagy Modulation in Tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533015. [PMID: 36993333 PMCID: PMC10055309 DOI: 10.1101/2023.03.17.533015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Tauopathy, including Alzheimer Disease (AD), is characterized by Tau protein accumulation and autophagy dysregulation. Emerging evidence connects polyamine metabolism with the autophagy pathway, however the role of polyamines in Tauopathy remains unclear. In the present study we investigated the role of spermine synthase (SMS) in autophagy regulation and tau protein processing in Drosophila and human cellular models of Tauopathy. Our previous study showed that Drosophila spermine synthase (dSms) deficiency impairs lysosomal function and blocks autophagy flux. Interestingly, partial loss-of-function of SMS in heterozygous dSms flies extends lifespan and improves the climbing performance of flies with human Tau (hTau) overexpression. Mechanistic analysis showed that heterozygous loss-of-function mutation of dSms reduces hTau protein accumulation through enhancing autophagic flux. Measurement of polyamine levels detected a mild elevation of spermidine in flies with heterozygous loss of dSms. SMS knock-down in human neuronal or glial cells also upregulates autophagic flux and reduces Tau protein accumulation. Proteomics analysis of postmortem brain tissue from AD patients showed a significant albeit modest elevation of SMS protein level in AD-relevant brain regions compared to that of control brains consistently across several datasets. Taken together, our study uncovers a correlation between SMS protein level and AD pathogenesis and reveals that SMS reduction upregulates autophagy, promotes Tau clearance, and reduces Tau protein accumulation. These findings provide a new potential therapeutic target of Tauopathy.
Collapse
Affiliation(s)
- Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Gregory S, Pullen H, Ritchie CW, Shannon OM, Stevenson EJ, Muniz-Terrera G. Mediterranean diet and structural neuroimaging biomarkers of Alzheimer's and cerebrovascular disease: A systematic review. Exp Gerontol 2023; 172:112065. [PMID: 36529364 DOI: 10.1016/j.exger.2022.112065] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Previous studies have demonstrated an association between adherence to the Mediterranean diet (MedDiet) and better cognitive performance, lower incidence of dementia and lower Alzheimer's disease biomarker burden. The aim of this systematic review was to evaluate the evidence base for MedDiet associations with hippocampal volume and white matter hyperintensity volume (WMHV). We searched systematically for studies reporting on MedDiet and hippocampal volume or WMHV in MedLine, EMBASE, CINAHL and PsycInfo. Searches were initially carried out on 21st July 2021 with final searches run on 23rd November 2022. Risk of bias was assessed using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Of an initial 112 papers identified, seven papers were eligible for inclusion in the review reporting on 21,933 participants. Four studies reported on hippocampal volume, with inconclusive or no associations seen with MedDiet adherence. Two studies found a significant association between higher MedDiet adherence and lower WMHV, while two other studies found no significant associations. Overall these results highlight a gap in our knowledge about the associations between the MedDiet and AD and cerebrovascular related structural neuroimaging findings.
Collapse
Affiliation(s)
- Sarah Gregory
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Hannah Pullen
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Brain Health Scotland, UK.
| | - Oliver M Shannon
- Faculty of Medical Sciences, Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, UK.
| | - Emma J Stevenson
- Faculty of Medical Sciences, Human Nutrition Research Centre, Newcastle University, Newcastle Upon Tyne, UK.
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Social Medicine, Ohio University, OH, USA.
| |
Collapse
|
14
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
15
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
16
|
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
17
|
Molecular Identification and Biochemical Characterization of Novel Marine Yeast Strains with Potential Application in Industrial Biotechnology. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-based agriculture is an emerging and attractive alternative to produce various food ingredients. In this study, five strains of marine yeast were isolated, molecularly identified and biochemically characterized. Molecular identification was realized by sequencing the DNA ITS1 and D1/D2 region, and sequences were registered in GenBank as Yarrowia lipolytica YlTun15, Rhodotorula mucilaginosa RmTun15, Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015 and Trichosporon asahii TaTun15. Yeasts showed protein content varying from 26% (YlTun15) to 40% (CtTun15 and DhTun2015), and essential amino acids ranging from 38.1 to 64.4% of the total AAs (CtTun15-YlTun15, respectively). Lipid content varied from 11.15 to 37.57% with substantial amount of PUFA (>12% in RmTun15). All species had low levels of Na (<0.15 mg/100 g) but are a good source of Ca and K. Yeast cytotoxic effect was investigated against human embryonic kidney cells (HEK 293); results showed improved cell viability with all added strains, indicating safety of the strains used. Based on thorough literature investigation and yeast composition, the five identified strains could be classified not only as oleaginous yeasts but also as single cell protein (SCP) (DhTun2015 and CtTun15) and single cell oil (SCO) (RmTun15, YlTun15 and TaTun15) producers; and therefore, they represent a source of alternative ingredients for food, feed and other sectors.
Collapse
|
18
|
Xu J, Sun Z, Zhang R, Li R, Yu Z, Zhang Q, Ma Y, Xing F, Zheng L. Non-linear association between serum spermidine and mild cognitive impairment: Results from a cross-sectional and longitudinal study. Front Aging Neurosci 2022; 14:924984. [PMID: 35983378 PMCID: PMC9380894 DOI: 10.3389/fnagi.2022.924984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although animal studies show that spermidine (SPD) affects cognitive function, the relevant evidence among humans is limited. We aim to examine the association between serum SPD levels and cognitive performance. Materials and Methods We conducted a cross-sectional and longitudinal study including a baseline and one follow-up survey. The baseline survey was conducted from June 2019 to August 2019, while the follow-up survey was conducted from June 2021 to August 2021. We analyzed 3,774 adult participants aged >35 years, who had no history of dementia. Results The mean (SD) age of the participants was 57.4 (9.8) years. Relative to the first tertile, the multivariate-adjusted ORs (95% CIs) of mild cognitive impairment (MCI) for the second and third tertile groups were 0.78 (0.65, 0.93) and 0.80 (0.67, 0.96), respectively. Restricted cubic spline models show that there is a non-linear association between SPD and MCI. In line with cross-sectional findings, the longitudinal study showed that a high SPD concentration may indicate a lower risk of MCI [ORs (95% CIs) for the third tertile of 0.62 (0.39, 0.99)]. Conclusion Our findings suggest that SPD is favorable for cognitive function. Monitoring the SPD levels may help reduce the incidence of MCI, hence decreasing the burden of MCI.
Collapse
Affiliation(s)
- Jiahui Xu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ruixue Li
- School of Public Health, China Medical University, Shenyang, China
| | - Zhecong Yu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Freitag K, Sterczyk N, Wendlinger S, Obermayer B, Schulz J, Farztdinov V, Mülleder M, Ralser M, Houtman J, Fleck L, Braeuning C, Sansevrino R, Hoffmann C, Milovanovic D, Sigrist SJ, Conrad T, Beule D, Heppner FL, Jendrach M. Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer's disease mouse model. J Neuroinflammation 2022; 19:172. [PMID: 35780157 PMCID: PMC9250727 DOI: 10.1186/s12974-022-02534-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 12/27/2022] Open
Abstract
Background Deposition of amyloid beta (Aβ) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer’s disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aβ pathology and glial cell-mediated neuroinflammation. Results Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aβ and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aβ and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. Conclusions Our data highlight that the autophagy activator spermidine holds the potential to enhance Aβ degradation and to counteract glia-mediated neuroinflammation in AD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02534-7.
Collapse
Affiliation(s)
- Kiara Freitag
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Nele Sterczyk
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah Wendlinger
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Julia Schulz
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vadim Farztdinov
- Core Facility, High-Throughput Mass Spectrometry, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility, High-Throughput Mass Spectrometry, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.,Department of Biochemistry, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Judith Houtman
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lara Fleck
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Caroline Braeuning
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Roberto Sansevrino
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Stephan J Sigrist
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany.,Institute for Biology and Genetics, Freie Universität Berlin, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Marina Jendrach
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
20
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
21
|
Zou D, Zhao Z, Li L, Min Y, Zhang D, Ji A, Jiang C, Wei X, Wu X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 2022; 21:2820-2842. [PMID: 35478379 DOI: 10.1111/1541-4337.12963] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyue Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daiyuan Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
22
|
Brenner SR. Reader Response: Mediterranean Diet, Alzheimer Disease Biomarkers, and Brain Atrophy in Old Age. Neurology 2022; 98:88-89. [PMID: 35263268 DOI: 10.1212/wnl.0000000000013072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Kovács Z, Skatchkov SN, Veh RW, Szabó Z, Németh K, Szabó PT, Kardos J, Héja L. Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis. Front Cell Neurosci 2022; 15:787319. [PMID: 35069115 PMCID: PMC8770812 DOI: 10.3389/fncel.2021.787319] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central Del Caribe, Bayamon, PR, United States
- Department of Biochemistry, Universidad Central Del Caribe, Bayamon, PR, United States
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Krisztina Németh
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Pál T. Szabó
- MS Metabolomics Research Group, Centre for Structural Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
24
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
25
|
Abstract
Autophagy, as the key nutrient recycling pathway, enables eukaryotic cells to adapt to surging cellular stress during aging and, thereby, delays age-associated deterioration. Autophagic flux declines with age and, in turn, decreases in autophagy contribute to the aging process itself and promote senescence. Here, we outline how autophagy regulates immune aging and discuss autophagy-inducing interventions that target senescent immune cells, which are major drivers of systemic aging. We examine how cutting-edge technologies, such as single-cell omics methods hold the promise to capture the complexity of molecular and cellular phenotypes associated with aging, driving the development of suitable putative biomarkers and clinical bioassays. Finally, we debate the urgency to initiate large-scale human clinical trials. We give special preference to small molecule probes and to dietary interventions that can extend healthy lifespan and are affordable for most of the world's population.
Collapse
Affiliation(s)
- Heidi Zinecker
- Turkish-German University, Department of Molecular Biotechnology, 34820, Beykoz/Istanbul, Turkey
| | - Anna Katharina Simon
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
26
|
Morton SU, Leyshon BJ, Tamilia E, Vyas R, Sisitsky M, Ladha I, Lasekan JB, Kuchan MJ, Grant PE, Ou Y. A Role for Data Science in Precision Nutrition and Early Brain Development. Front Psychiatry 2022; 13:892259. [PMID: 35815018 PMCID: PMC9259898 DOI: 10.3389/fpsyt.2022.892259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Eleonora Tamilia
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Michaela Sisitsky
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Imran Ladha
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States
| | | | | | - P Ellen Grant
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| | - Yangming Ou
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Bernstein HG, Keilhoff G, Laube G, Dobrowolny H, Steiner J. Polyamines and polyamine-metabolizing enzymes in schizophrenia: Current knowledge and concepts of therapy. World J Psychiatry 2021; 11:1177-1190. [PMID: 35070769 PMCID: PMC8717027 DOI: 10.5498/wjp.v11.i12.1177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Polyamines play preeminent roles in a variety of cellular functions in the central nervous system and other organs. A large body of evidence suggests that the polyamine pathway is prominently involved in the etiology and pathology of schizophrenia. Alterations in the expression and activity of polyamine metabolizing enzymes, as well as changes in the levels of the individual polyamines, their precursors and derivatives, have been measured in schizophrenia and animal models of the disease. Additionally, neuroleptic treatment has been shown to influence polyamine concentrations in brain and blood of individuals with schizophrenia. Thus, the polyamine system may appear to be a promising target for neuropharmacological treatment of schizophrenia. However, for a number of practical reasons there is currently only limited hope for a polyamine-based schizophrenia therapy.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gregor Laube
- Department of Anatomy, Charite, Berlin D-10117, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| |
Collapse
|
28
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Cognitive Dysfunction in a Mouse Model of Cerebral Ischemia Influences Salivary Metabolomics. J Clin Med 2021; 10:jcm10081698. [PMID: 33920851 PMCID: PMC8071145 DOI: 10.3390/jcm10081698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Vascular dementia, caused by cerebrovascular disease, is associated with cognitive impairment and reduced hippocampal metabolite levels. Specifically, cognitive impairment can be induced by decreased hippocampal brain-derived neurotrophic factor (BDNF) expression. The development of low or non-invasive biomarkers to characterize these diseases is an urgent task. Disturbance of metabolic pathways has been frequently observed in cognitive impairment, and salivary molecules also showed the potentials to reflect cognitive impairment. Therefore, we evaluated salivary metabolic profiles associated with altered hippocampal BDNF expression levels in a cerebral ischemia mouse model using metabolomic analyses. The effect of tacrine (a cholinesterase inhibitor) administration was also examined. The arteries of ICR mice were occluded with aneurysm clips to generate the cerebral ischemia model. Learning and memory performance was assessed using the elevated plus maze (EPM) test. Hippocampal and blood BDNF levels were quantified using an enzyme-linked immunosorbent assay. Glutamate decarboxylase 1 (GAD1) mRNA expression, is associated with cognitive impairment, was quantified by a real-time polymerase chain reaction. The EPM test revealed impaired spatial working memory in the cerebral ischemia mouse model; tacrine administration ameliorated this memory impairment. Cerebral ischemia suppressed GAD1 expression by decreasing hippocampal BDNF expression. In total, seven salivary metabolites, such as trimethylamine N-oxide and putrescine, were changed by cognitive impairment and tacrine administration. Our data suggest that salivary metabolite patterns were associated with cognitive function.
Collapse
|
30
|
Schroeder S, Hofer SJ, Zimmermann A, Pechlaner R, Dammbrueck C, Pendl T, Marcello GM, Pogatschnigg V, Bergmann M, Müller M, Gschiel V, Ristic S, Tadic J, Iwata K, Richter G, Farzi A, Üçal M, Schäfer U, Poglitsch M, Royer P, Mekis R, Agreiter M, Tölle RC, Sótonyi P, Willeit J, Mairhofer B, Niederkofler H, Pallhuber I, Rungger G, Tilg H, Defrancesco M, Marksteiner J, Sinner F, Magnes C, Pieber TR, Holzer P, Kroemer G, Carmona-Gutierrez D, Scorrano L, Dengjel J, Madl T, Sedej S, Sigrist SJ, Rácz B, Kiechl S, Eisenberg T, Madeo F. Dietary spermidine improves cognitive function. Cell Rep 2021; 35:108985. [PMID: 33852843 DOI: 10.1016/j.celrep.2021.108985] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.
Collapse
Affiliation(s)
- Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - G Mark Marcello
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Viktoria Pogatschnigg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Melanie Müller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Verena Gschiel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Selena Ristic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Keiko Iwata
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Research Center for Child Mental Development, University of Fukui, 910-1193 Fukui, Japan; Department of Biology, University of Padova, 35121 Padova, Italy
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry Medical University of Graz, 8010 Graz, Austria
| | - Aitak Farzi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Division of Pharmacology, Medical University of Graz (MUG), 8010 Graz, Austria
| | - Muammer Üçal
- Department of Neurosurgery, RU Experimental Neurotraumatology, Medical University Graz, 8036 Graz, Austria
| | - Ute Schäfer
- Department of Neurosurgery, RU Experimental Neurotraumatology, Medical University Graz, 8036 Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Philipp Royer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Ronald Mekis
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Marlene Agreiter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Regine C Tölle
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Péter Sótonyi
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Defrancesco
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, 6060 Hall in Tirol, Austria
| | - Frank Sinner
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Thomas R Pieber
- BioTechMed-Graz, 8010 Graz, Austria; HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Peter Holzer
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Division of Pharmacology, Medical University of Graz (MUG), 8010 Graz, Austria
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Paris Diderot, Université Sorbonne Paris Cité, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94 805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Suzhou Institute for Systems Biology, Chinese Academy of Sciences, 215123 Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | | | - Luca Scorrano
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biology, University of Padova, 35121 Padova, Italy
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tobias Madl
- BioTechMed-Graz, 8010 Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry Medical University of Graz, 8010 Graz, Austria
| | - Simon Sedej
- BioTechMed-Graz, 8010 Graz, Austria; Department of Cardiology, Medical University of Graz, 8036 Graz, Austria; Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Stephan J Sigrist
- Institute of Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria.
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.
| |
Collapse
|