1
|
Ljungberg E, Padormo F, Poorman M, Clemensson P, Bourke N, Evans JC, Gholam J, Vavasour I, Kollind SH, Lafayette SL, Bennallick C, Donald KA, Bradford LE, Lena B, Vokhiwa M, Shama T, Siew J, Sekoli L, van Rensburg J, Pepper MS, Khan A, Madhwani A, Banda FA, Mwila ML, Cassidy AR, Moabi K, Sephi D, Boakye RA, Ae‐Ngibise KA, Asante KP, Hollander WJ, Karaulanov T, Williams SCR, Deoni S. Characterization of Portable Ultra-Low Field MRI Scanners for Multi-Center Structural Neuroimaging. Hum Brain Mapp 2025; 46:e70217. [PMID: 40405769 PMCID: PMC12099222 DOI: 10.1002/hbm.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 05/24/2025] Open
Abstract
The lower infrastructure requirements of portable ultra-low field MRI (ULF-MRI) systems have enabled their use in diverse settings such as intensive care units and remote medical facilities. The UNITY Project is an international neuroimaging network harnessing this technology, deploying portable ULF-MRI systems globally to expand access to MRI for studies into brain development. Given the wide range of environments where ULF-MRI systems may operate, there are external factors that might influence image quality. This work aims to introduce the quality control (QC) framework used by the UNITY Project to investigate how robust the systems are and how QC metrics compare between sites and over time. We present a QC framework using a commercially available phantom, scanned with 64 mT portable MRI systems at 17 sites across 12 countries on four continents. Using automated, open-source analysis tools, we quantify signal-to-noise, image contrast, and geometric distortions. Our results demonstrated that the image quality is robust to the varying operational environment, for example, electromagnetic noise interference and temperature. The Larmor frequency was significantly correlated to room temperature, as was image noise and contrast. Image distortions were less than 2.5 mm, with high robustness over time. Similar to studies at higher field, we found that changes in pulse sequence parameters from software updates had an impact on QC metrics. This study demonstrates that portable ULF-MRI systems can be deployed in a variety of environments for multi-center neuroimaging studies and produce robust results.
Collapse
Affiliation(s)
- Emil Ljungberg
- Department of Medical Radiation PhysicsLund UniversityLundSweden
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Petter Clemensson
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Niall Bourke
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - John C. Evans
- CUBRIC, Cardiff School of PsychologyCardiff UniversityCardiffUK
| | - James Gholam
- CUBRIC, Cardiff School of PsychologyCardiff UniversityCardiffUK
| | - Irene Vavasour
- Department of RadiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shannon H. Kollind
- Department of Medicine (Neurology)University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Carly Bennallick
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Kirsten A. Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child HealthRed Cross War Memorial Children's HospitalCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Layla E. Bradford
- Division of Developmental Paediatrics, Department of Paediatrics and Child HealthRed Cross War Memorial Children's HospitalCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Beatrice Lena
- C.J. Gorter MRI Center, Radiology DepartmentLeids Universitair Medisch CentrumLeidenthe Netherlands
| | | | - Talat Shama
- Infectious Diseases DivisionInternational Centre for Diarrheal Disease ResearchDhakaBangladesh
| | - Jasmine Siew
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Lydia Sekoli
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Jeanne van Rensburg
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Amna Khan
- Department of Paediatrics & Child HealthThe Aga Khan UniversityKarachiPakistan
| | - Akber Madhwani
- Department of Paediatrics & Child HealthThe Aga Khan UniversityKarachiPakistan
| | - Frank A. Banda
- University of North Carolina Global ProjectsLusakaZambia
| | - Mwila L. Mwila
- University of North Carolina Global ProjectsLusakaZambia
| | - Adam R. Cassidy
- Botswana Harvard Health PartnershipGaboroneBotswana
- Department of Psychiatry & PsychologyMayo ClinicRochesterMinnesotaUSA
- Department of Pediatric & Adolescent MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Dolly Sephi
- Botswana Harvard Health PartnershipGaboroneBotswana
| | | | | | | | | | | | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Sean Deoni
- MNCH D&T, Bill & Melinda Gates FoundationSeattleWAUSA
| |
Collapse
|
2
|
Zhou Z, Fischl B, Aganj I. Harmonization of Structural Brain Connectivity through Distribution Matching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611489. [PMID: 39314357 PMCID: PMC11418962 DOI: 10.1101/2024.09.05.611489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The increasing prevalence of multi-site diffusion-weighted magnetic resonance imaging (dMRI) studies potentially offers enhanced statistical power to investigate brain structure. However, these studies face challenges due to variations in scanner hardware and acquisition protocols. While several methods for dMRI data harmonization exist, few specifically address structural brain connectivity. We introduce a new distribution-matching approach to harmonizing structural brain connectivity across different sites and scanners. We evaluate our method using structural brain connectivity data from three distinct datasets (OASIS-3, ADNI-2, and PREVENT-AD), comparing its performance to the widely used ComBat method and the more recent CovBat approach. We examine the impact of harmonization on the correlation of brain connectivity with the Mini-Mental State Examination score and age. Our results demonstrate that our distribution-matching technique effectively harmonizes structural brain connectivity while maintaining non-negativity of the connectivity values, and produces correlation strengths and significance levels competitive with alternative approaches. Qualitative assessments illustrate the desired distributional alignment across datasets, while quantitative evaluations confirm competitive performance. This work contributes to the growing field of dMRI harmonization, potentially improving the reliability and comparability of structural connectivity studies that combine data from different sources in neuroscientific and clinical research.
Collapse
|
3
|
Jia W, Li H, Ali R, Shanbhogue KP, Masch WR, Aslam A, Harris DT, Reeder SB, Dillman JR, He L. Investigation of ComBat Harmonization on Radiomic and Deep Features from Multi-Center Abdominal MRI Data. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1016-1027. [PMID: 39284979 PMCID: PMC11950493 DOI: 10.1007/s10278-024-01253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/09/2024] [Accepted: 08/30/2024] [Indexed: 12/06/2024]
Abstract
ComBat harmonization has been developed to remove non-biological variations for data in multi-center research applying artificial intelligence (AI). We investigated the effectiveness of ComBat harmonization on radiomic and deep features extracted from large, multi-center abdominal MRI data. A retrospective study was conducted on T2-weighted (T2W) abdominal MRI data retrieved from individual patients with suspected or known chronic liver disease at three study sites. MRI data were acquired using systems from three manufacturers and two field strengths. Radiomic features and deep features were extracted using the PyRadiomics pipeline and a Swin Transformer. ComBat was used to harmonize radiomic and deep features across different manufacturers and field strengths. Student's t-test, ANOVA test, and Cohen's F score were applied to assess the difference in individual features before and after ComBat harmonization. Between two field strengths, 76.7%, 52.9%, and 26.7% of radiomic features, and 89.0%, 56.5%, and 0.1% of deep features from three manufacturers were significantly different. Among the three manufacturers, 90.1% and 75.0% of radiomic features and 89.3% and 84.1% of deep features from two field strengths were significantly different. After ComBat harmonization, there were no significant differences in radiomic and deep features among manufacturers or field strengths based on t-tests or ANOVA tests. Reduced Cohen's F scores were consistently observed after ComBat harmonization. ComBat harmonization effectively harmonizes radiomic and deep features by removing the non-biological variations due to system manufacturers and/or field strengths in large multi-center clinical abdominal MRI datasets.
Collapse
Affiliation(s)
- Wei Jia
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229, USA
- Department of Environmental and Public Health, Division of Biostatistics and Bioinformatics, University of Cincinnati, Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Redha Ali
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229, USA
| | | | - William R Masch
- Department of Radiology, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA
| | - Anum Aslam
- Department of Radiology, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA
| | - David T Harris
- Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, Emergency Medicine, University of Wisconsin, Madison, WI, USA
| | - Scott B Reeder
- Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, Emergency Medicine, University of Wisconsin, Madison, WI, USA
| | - Jonathan R Dillman
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Computer Science, Biomedical Engineering, Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Lindland ES, Røvang MS, Solheim AM, Andreassen S, Skarstein I, Dareez N, MacIntosh BJ, Eikeland R, Ljøstad U, Mygland Å, Bos SD, Ulvestad E, Reiso H, Lorentzen ÅR, Harbo HF, Bjørnerud A, Beyer MK. Are white matter hyperintensities associated with neuroborreliosis? The answer is twofold. Neuroradiology 2025; 67:37-48. [PMID: 39422730 PMCID: PMC11802615 DOI: 10.1007/s00234-024-03482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Many consider white matter hyperintensities (WMHs) to be important imaging findings in neuroborreliosis. However, evidence regarding association with WMHs is of low quality. The objective was to investigate WMHs in neuroborreliosis visually and quantitatively. MATERIALS AND METHODS Patients underwent brain MRI within one month of diagnosis and six months after treatment. Healthy controls were recruited. WMHs were counted by visual rating and the volume was calculated from automatic segmentation. Biochemical markers and scores for clinical symptoms and findings were used to explore association with longitudinal volume change of WMHs. RESULTS The study included 74 patients (37 males) with early neuroborreliosis and 65 controls (30 males). Mean age (standard deviation) was 57.4 (13.5) and 57.7 (12.9) years, respectively. Baseline WMH lesion count was zero in 14 patients/16 controls, < 10 in 36/31, 10-20 in 9/7 and > 20 in 13/11, with no difference between groups (p = 0.90). However, from baseline to follow-up the patients had a small reduction in WMH volume and the controls a small increase, median difference 0.136 (95% confidence interval 0.051-0.251) ml. In patients, volume change was not associated with biochemical or clinical markers, but with degree of WMHs (p values 0.002-0.01). CONCLUSION WMH lesions were not more numerous in patients with neuroborreliosis compared to healthy controls. However, there was a small reduction of WMH volume from baseline to follow-up among patients, which was associated with higher baseline WMH severity, but not with disease burden or outcome. Overall, non-specific WMHs should not be considered suggestive of neuroborreliosis.
Collapse
Affiliation(s)
- Elisabeth S Lindland
- Department of Radiology, Sorlandet Hospital, Sykehusveien 1, 4838, Arendal, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Martin S Røvang
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Anne Marit Solheim
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Silje Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Pediatrics, Sorlandet Hospital, Arendal, Norway
| | - Ingerid Skarstein
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Nazeer Dareez
- Department of Radiology, Sorlandet Hospital, Sykehusveien 1, 4838, Arendal, Norway
| | - Bradley J MacIntosh
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Randi Eikeland
- The Norwegian National Advisory Unit on Tick-Borne Diseases, Sorlandet Hospital, Kristiansand, Norway
- Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Unn Ljøstad
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Åse Mygland
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Steffan D Bos
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- Cancer Registry of Norway, The Norwegian Institute of Public Health, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Elling Ulvestad
- Institute of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Harald Reiso
- The Norwegian National Advisory Unit on Tick-Borne Diseases, Sorlandet Hospital, Kristiansand, Norway
| | - Åslaug R Lorentzen
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway
- The Norwegian National Advisory Unit on Tick-Borne Diseases, Sorlandet Hospital, Kristiansand, Norway
| | - Hanne F Harbo
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Mona K Beyer
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Roca V, Kuchcinski G, Pruvo JP, Manouvriez D, Lopes R. IGUANe: A 3D generalizable CycleGAN for multicenter harmonization of brain MR images. Med Image Anal 2025; 99:103388. [PMID: 39546981 DOI: 10.1016/j.media.2024.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
In MRI studies, the aggregation of imaging data from multiple acquisition sites enhances sample size but may introduce site-related variabilities that hinder consistency in subsequent analyses. Deep learning methods for image translation have emerged as a solution for harmonizing MR images across sites. In this study, we introduce IGUANe (Image Generation with Unified Adversarial Networks), an original 3D model that leverages the strengths of domain translation and straightforward application of style transfer methods for multicenter brain MR image harmonization. IGUANe extends CycleGAN by integrating an arbitrary number of domains for training through a many-to-one architecture. The framework based on domain pairs enables the implementation of sampling strategies that prevent confusion between site-related and biological variabilities. During inference, the model can be applied to any image, even from an unknown acquisition site, making it a universal generator for harmonization. Trained on a dataset comprising T1-weighted images from 11 different scanners, IGUANe was evaluated on data from unseen sites. The assessments included the transformation of MR images with traveling subjects, the preservation of pairwise distances between MR images within domains, the evolution of volumetric patterns related to age and Alzheimer's disease (AD), and the performance in age regression and patient classification tasks. Comparisons with other harmonization and normalization methods suggest that IGUANe better preserves individual information in MR images and is more suitable for maintaining and reinforcing variabilities related to age and AD. Future studies may further assess IGUANe in other multicenter contexts, either using the same model or retraining it for applications to different image modalities. Codes and the trained IGUANe model are available at https://github.com/RocaVincent/iguane_harmonization.git.
Collapse
Affiliation(s)
- Vincent Roca
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France.
| | - Grégory Kuchcinski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Département de Neuroradiologie, F-59000 Lille, France
| | - Jean-Pierre Pruvo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Département de Neuroradiologie, F-59000 Lille, France
| | - Dorian Manouvriez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Renaud Lopes
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; CHU Lille, Département de Médecine Nucléaire, F-59000 Lille, France
| |
Collapse
|
6
|
Xu C, Li J, Wang Y, Wang L, Wang Y, Zhang X, Liu W, Chen J, Vatian A, Gusarova N, Ye C, Zheng Z. SiMix: A domain generalization method for cross-site brain MRI harmonization via site mixing. Neuroimage 2024; 299:120812. [PMID: 39197559 DOI: 10.1016/j.neuroimage.2024.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Brain magnetic resonance imaging (MRI) is widely used in clinical practice for disease diagnosis. However, MRI scans acquired at different sites can have different appearances due to the difference in the hardware, pulse sequence, and imaging parameter. It is important to reduce or eliminate such cross-site variations with brain MRI harmonization so that downstream image processing and analysis is performed consistently. Previous works on the harmonization problem require the data acquired from the sites of interest for model training. But in real-world scenarios there can be test data from a new site of interest after the model is trained, and training data from the new site is unavailable when the model is trained. In this case, previous methods cannot optimally handle the test data from the new unseen site. To address the problem, in this work we explore domain generalization for brain MRI harmonization and propose Site Mix (SiMix). We assume that images of travelling subjects are acquired at a few existing sites for model training. To allow the training data to better represent the test data from unseen sites, we first propose to mix the training images belonging to different sites stochastically, which substantially increases the diversity of the training data while preserving the authenticity of the mixed training images. Second, at test time, when a test image from an unseen site is given, we propose a multiview strategy that perturbs the test image with preserved authenticity and ensembles the harmonization results of the perturbed images for improved harmonization quality. To validate SiMix, we performed experiments on the publicly available SRPBS dataset and MUSHAC dataset that comprised brain MRI acquired at nine and two different sites, respectively. The results indicate that SiMix improves brain MRI harmonization for unseen sites, and it is also beneficial to the harmonization of existing sites.
Collapse
Affiliation(s)
- Chundan Xu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Jie Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yakui Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lixue Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yizhe Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xiaofeng Zhang
- School of Information and Electronics, Beijing Institute of Technology, Zhuhai, China
| | - Weiqi Liu
- Sophmind Technology (Beijing) Co., Ltd., Beijing, China
| | - Jingang Chen
- Sophmind Technology (Beijing) Co., Ltd., Beijing, China
| | - Aleksandra Vatian
- Faculty of Infocommunicational Technologies, ITMO University, St. Petersburg, Russia
| | - Natalia Gusarova
- Faculty of Infocommunicational Technologies, ITMO University, St. Petersburg, Russia
| | - Chuyang Ye
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China.
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Bacon EJ, He D, Achi NAD, Wang L, Li H, Yao-Digba PDZ, Monkam P, Qi S. Neuroimage analysis using artificial intelligence approaches: a systematic review. Med Biol Eng Comput 2024; 62:2599-2627. [PMID: 38664348 DOI: 10.1007/s11517-024-03097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/14/2024] [Indexed: 08/18/2024]
Abstract
In the contemporary era, artificial intelligence (AI) has undergone a transformative evolution, exerting a profound influence on neuroimaging data analysis. This development has significantly elevated our comprehension of intricate brain functions. This study investigates the ramifications of employing AI techniques on neuroimaging data, with a specific objective to improve diagnostic capabilities and contribute to the overall progress of the field. A systematic search was conducted in prominent scientific databases, including PubMed, IEEE Xplore, and Scopus, meticulously curating 456 relevant articles on AI-driven neuroimaging analysis spanning from 2013 to 2023. To maintain rigor and credibility, stringent inclusion criteria, quality assessments, and precise data extraction protocols were consistently enforced throughout this review. Following a rigorous selection process, 104 studies were selected for review, focusing on diverse neuroimaging modalities with an emphasis on mental and neurological disorders. Among these, 19.2% addressed mental illness, and 80.7% focused on neurological disorders. It is found that the prevailing clinical tasks are disease classification (58.7%) and lesion segmentation (28.9%), whereas image reconstruction constituted 7.3%, and image regression and prediction tasks represented 9.6%. AI-driven neuroimaging analysis holds tremendous potential, transforming both research and clinical applications. Machine learning and deep learning algorithms outperform traditional methods, reshaping the field significantly.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | | | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Patrice Monkam
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
8
|
Liu S, Yap PT. Learning multi-site harmonization of magnetic resonance images without traveling human phantoms. COMMUNICATIONS ENGINEERING 2024; 3:6. [PMID: 38420332 PMCID: PMC10898625 DOI: 10.1038/s44172-023-00140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Harmonization improves Magn. Reson. Imaging (MRI) data consistency and is central to effective integration of diverse imaging data acquired across multiple sites. Recent deep learning techniques for harmonization are predominantly supervised in nature and hence require imaging data of the same human subjects to be acquired at multiple sites. Data collection as such requires the human subjects to travel across sites and is hence challenging, costly, and impractical, more so when sufficient sample size is needed for reliable network training. Here we show how harmonization can be achieved with a deep neural network that does not rely on traveling human phantom data. Our method disentangles site-specific appearance information and site-invariant anatomical information from images acquired at multiple sites and then employs the disentangled information to generate the image of each subject for any target site. We demonstrate with more than 6,000 multi-site T1- and T2-weighted images that our method is remarkably effective in generating images with realistic site-specific appearances without altering anatomical details. Our method allows retrospective harmonization of data in a wide range of existing modern large-scale imaging studies, conducted via different scanners and protocols, without additional data collection.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Clark KA, O’Donnell CM, Elliott MA, Tauhid S, Dewey BE, Chu R, Khalil S, Nair G, Sati P, DuVal A, Pellegrini N, Bar-Or A, Markowitz C, Schindler MK, Zurawski J, Calabresi PA, Reich DS, Bakshi R, Shinohara RT, NAIMS Cooperative. Intersite brain MRI volumetric biases persist even in a harmonized multisubject study of multiple sclerosis. J Neuroimaging 2023; 33:941-952. [PMID: 37587544 PMCID: PMC10981935 DOI: 10.1111/jon.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Multicenter study designs involving a variety of MRI scanners have become increasingly common. However, these present the issue of biases in image-based measures due to scanner or site differences. To assess these biases, we imaged 11 volunteers with multiple sclerosis (MS) with scan and rescan data at four sites. METHODS Images were acquired on Siemens or Philips scanners at 3 Tesla. Automated white matter lesion detection and whole-brain, gray and white matter, and thalamic volumetry were performed, as well as expert manual delineations of T1 magnetization-prepared rapid acquisition gradient echo and T2 fluid-attenuated inversion recovery lesions. Random-effect and permutation-based nonparametric modeling was performed to assess differences in estimated volumes within and across sites. RESULTS Random-effect modeling demonstrated model assumption violations for most comparisons of interest. Nonparametric modeling indicated that site explained >50% of the variation for most estimated volumes. This expanded to >75% when data from both Siemens and Philips scanners were included. Permutation tests revealed significant differences between average inter- and intrasite differences in most estimated brain volumes (P < .05). The automatic activation of spine coil elements during some acquisitions resulted in a shading artifact in these images. Permutation tests revealed significant differences between thalamic volume measurements from acquisitions with and without this artifact. CONCLUSION Differences in brain volumetry persisted across MR scanners despite protocol harmonization. These differences were not well explained by variance component modeling; however, statistical innovations for mitigating intersite differences show promise in reducing biases in multicenter studies of MS.
Collapse
Affiliation(s)
- Kelly A. Clark
- Penn Statistics in Imaging and Visualization Endeavor, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Carly M. O’Donnell
- Penn Statistics in Imaging and Visualization Endeavor, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mark A. Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Shahamat Tauhid
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Blake E. Dewey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Renxin Chu
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Samar Khalil
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Govind Nair
- Quantitative MRI core facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Anna DuVal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicole Pellegrini
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Clyde Markowitz
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Matthew K. Schindler
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Zurawski
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Neuroinflammation and Neurotherapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
10
|
Torbati ME, Minhas DS, Laymon CM, Maillard P, Wilson JD, Chen CL, Crainiceanu CM, DeCarli CS, Hwang SJ, Tudorascu DL. MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data. Med Image Anal 2023; 89:102926. [PMID: 37595405 PMCID: PMC10529705 DOI: 10.1016/j.media.2023.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 06/06/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets has brought benefits such as higher statistical power, reliability, and robustness to the studies. Despite these promises from growth in sample size, substantial technical variability stemming from differences in scanner specifications exists in the aggregated data and could inadvertently bias any downstream analyses on it. Such a challenge calls for data normalization and/or harmonization frameworks, in addition to comprehensive criteria to estimate the scanner-related variability and evaluate the harmonization frameworks. In this study, we propose MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a supervised multi-scanner harmonization method that is naturally extendable to more than two scanners. We also designed a set of criteria to investigate the scanner-related technical variability and evaluate the harmonization techniques. As an essential requirement of our criteria, we introduced a multi-scanner matched dataset of 3T T1 images across four scanners, which, to the best of our knowledge is one of the few datasets of this kind. We also investigated our evaluations using two popular segmentation frameworks: FSL and segmentation in statistical parametric mapping (SPM). Lastly, we compared MISPEL to popular methods of normalization and harmonization, namely White Stripe, RAVEL, and CALAMITI. MISPEL outperformed these methods and is promising for many other neuroimaging modalities.
Collapse
Affiliation(s)
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA 95816, USA
| | - James D Wilson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chang-Le Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Charles S DeCarli
- Department of Neurology, University of California Davis, Davis, CA 95816, USA
| | - Seong Jae Hwang
- Department of Artificial Intelligence, Yonsei University, Seoul, South Korea
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Bhagavatula S, Cabeen R, Harris NG, Gröhn O, Wright DK, Garner R, Bennett A, Alba C, Martinez A, Ndode-Ekane XE, Andrade P, Paananen T, Ciszek R, Immonen R, Manninen E, Puhakka N, Tohka J, Heiskanen M, Ali I, Shultz SR, Casillas-Espinosa PM, Yamakawa GR, Jones NC, Hudson MR, Silva JC, Braine EL, Brady RD, Santana-Gomez CE, Smith GD, Staba R, O'Brien TJ, Pitkänen A, Duncan D. Image data harmonization tools for the analysis of post-traumatic epilepsy development in preclinical multisite MRI studies. Epilepsy Res 2023; 195:107201. [PMID: 37562146 PMCID: PMC10528111 DOI: 10.1016/j.eplepsyres.2023.107201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.
Collapse
Affiliation(s)
- Sweta Bhagavatula
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - Ryan Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Neil G Harris
- Department of Neurology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - David K Wright
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Rachael Garner
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Alexis Bennett
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Celina Alba
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Aubrey Martinez
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | | | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eppu Manninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Idrish Ali
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Matthew R Hudson
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Juliana C Silva
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Emma L Braine
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Rhys D Brady
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Cesar E Santana-Gomez
- Department of Neurology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Gregory D Smith
- Department of Neurology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Terence J O'Brien
- Departments of Neuroscience and Neurology, Central Clinical School, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dominique Duncan
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Sugimoto K, Oita M, Kuroda M. Bayesian statistical modeling to predict observer-specific optimal windowing parameters in magnetic resonance imaging. Heliyon 2023; 9:e19038. [PMID: 37636402 PMCID: PMC10448025 DOI: 10.1016/j.heliyon.2023.e19038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Magnetic resonance (MR) images require a process known as windowing for optimizing the display conditions. However, the conventional windowing process often fails to achieve the preferred display conditions for observers due to various factors. This study proposes a novel framework for predicting the preferred windowing parameters for each observer using Bayesian statistical modeling. MR images obtained from 1000 patients were divided into training and test sets at a 7:3 ratio. The image intensity and windowing parameters were standardized using previously reported methods. Bayesian statistical modeling was utilized to predict the windowing parameters preferred by three MR imaging (MRI) operators. The performance of the proposed framework was evaluated by assessing the mean relative error (MRE), mean absolute error (MAE), and Pearson's correlation coefficient (ρ) of the test set. In addition, the naive method, which presumes that the average value of the windowing parameters for each acquisition sequence and body region in the training set is optimal, was also used for comparison. Three MRI operators and three radiologists conducted visual assessments. The mean MRE, MAE, and ρ values for the window level and width (WL/WW) in the proposed framework were 12.6 and 13.9, 42.9 and 85.4, and 0.98 and 0.98, respectively. These results outperformed those obtained using the naive method. The visual assessments revealed no significant differences between the original and predicted display conditions, indicating that the proposed framework accurately predicts individualized windowing parameters with the additional advantages of robustness and ease of use. Thus, the proposed framework can effectively predict the windowing parameters preferred by each observer.
Collapse
Affiliation(s)
- Kohei Sugimoto
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, Okayama, 700-8558, Japan
- Division of Imaging Technology, Okayama Diagnostic Imaging Center, 3-25, Daiku, 2-chome, Kita-ku, Okayama, Okayama, 700-0913, Japan
| | - Masataka Oita
- Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, Okayama, 700-8558, Japan
| | - Masahiro Kuroda
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, Okayama, 700-8558, Japan
| |
Collapse
|
13
|
Hu F, Chen AA, Horng H, Bashyam V, Davatzikos C, Alexander-Bloch A, Li M, Shou H, Satterthwaite TD, Yu M, Shinohara RT. Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. Neuroimage 2023; 274:120125. [PMID: 37084926 PMCID: PMC10257347 DOI: 10.1016/j.neuroimage.2023.120125] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.
Collapse
Affiliation(s)
- Fengling Hu
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States.
| | - Andrew A Chen
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
| | - Hannah Horng
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
| | - Vishnu Bashyam
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Penn-CHOP Lifespan Brain Institute, United States; Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, United States
| | - Mingyao Li
- Statistical Center for Single-Cell and Spatial Genomics, Perelman School of Medicine, University of Pennsylvania, United States
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Penn-CHOP Lifespan Brain Institute, United States; The Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, United States
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| |
Collapse
|
14
|
Gebre RK, Senjem ML, Raghavan S, Schwarz CG, Gunter JL, Hofrenning EI, Reid RI, Kantarci K, Graff-Radford J, Knopman DS, Petersen RC, Jack CR, Vemuri P. Cross-scanner harmonization methods for structural MRI may need further work: A comparison study. Neuroimage 2023; 269:119912. [PMID: 36731814 PMCID: PMC10170652 DOI: 10.1016/j.neuroimage.2023.119912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
The clinical usefulness MRI biomarkers for aging and dementia studies relies on precise brain morphological measurements; however, scanner and/or protocol variations may introduce noise or bias. One approach to address this is post-acquisition scan harmonization. In this work, we evaluate deep learning (neural style transfer, CycleGAN and CGAN), histogram matching, and statistical (ComBat and LongComBat) methods. Participants who had been scanned on both GE and Siemens scanners (cross-sectional participants, known as Crossover (n = 113), and longitudinally scanned participants on both scanners (n = 454)) were used. The goal was to match GE MPRAGE (T1-weighted) scans to Siemens improved resolution MPRAGE scans. Harmonization was performed on raw native and preprocessed (resampled, affine transformed to template space) scans. Cortical thicknesses were measured using FreeSurfer (v.7.1.1). Distributions were checked using Kolmogorov-Smirnov tests. Intra-class correlation (ICC) was used to assess the degree of agreement in the Crossover datasets and annualized percent change in cortical thickness was calculated to evaluate the Longitudinal datasets. Prior to harmonization, the least agreement was found at the frontal pole (ICC = 0.72) for the raw native scans, and at caudal anterior cingulate (0.76) and frontal pole (0.54) for the preprocessed scans. Harmonization with NST, CycleGAN, and HM improved the ICCs of the preprocessed scans at the caudal anterior cingulate (>0.81) and frontal poles (>0.67). In the Longitudinal raw native scans, over- and under-estimations of cortical thickness were observed due to the changing of the scanners. ComBat matched the cortical thickness distributions throughout but was not able to increase the ICCs or remove the effects of scanner changeover in the Longitudinal datasets. CycleGAN and NST performed slightly better to address the cortical thickness variations between scanner change. However, none of the methods succeeded in harmonizing the Longitudinal dataset. CGAN was the worst performer for both datasets. In conclusion, the performance of the methods was overall similar and region dependent. Future research is needed to improve the existing approaches since none of them outperformed each other in terms of harmonizing the datasets at all ROIs. The findings of this study establish framework for future research into the scan harmonization problem.
Collapse
Affiliation(s)
- Robel K Gebre
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
15
|
Wrobel J, Harris C, Vandekar S. Statistical Analysis of Multiplex Immunofluorescence and Immunohistochemistry Imaging Data. Methods Mol Biol 2023; 2629:141-168. [PMID: 36929077 DOI: 10.1007/978-1-0716-2986-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Advances in multiplexed single-cell immunofluorescence (mIF) and multiplex immunohistochemistry (mIHC) imaging technologies have enabled the analysis of cell-to-cell spatial relationships that promise to revolutionize our understanding of tissue-based diseases and autoimmune disorders. Multiplex images are collected as multichannel TIFF files; then denoised, segmented to identify cells and nuclei, normalized across slides with protein markers to correct for batch effects, and phenotyped; and then tissue composition and spatial context at the cellular level are analyzed. This chapter discusses methods and software infrastructure for image processing and statistical analysis of mIF/mIHC data.
Collapse
Affiliation(s)
- Julia Wrobel
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Coleman Harris
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Shaaban CE, Tudorascu DL, Glymour MM, Cohen AD, Thurston RC, Snyder HM, Hohman TJ, Mukherjee S, Yu L, Snitz BE. A guide for researchers seeking training in retrospective data harmonization for population neuroscience studies of Alzheimer's disease and related dementias. FRONTIERS IN NEUROIMAGING 2022; 1:978350. [PMID: 37464990 PMCID: PMC10353763 DOI: 10.3389/fnimg.2022.978350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Due to needs surrounding rigor and reproducibility, subgroup specific disease knowledge, and questions of external validity, data harmonization is an essential tool in population neuroscience of Alzheimer's disease and related dementias (ADRD). Systematic harmonization of data elements is necessary to pool information from heterogeneous samples, and such pooling allows more expansive evaluations of health disparities, more precise effect estimates, and more opportunities to discover effective prevention or treatment strategies. The key goal of this Tutorial in Population Neuroimaging Curriculum, Instruction, and Pedagogy article is to guide researchers in creating a customized population neuroscience of ADRD harmonization training plan to fit their needs or those of their mentees. We provide brief guidance for retrospective data harmonization of multiple data types in this area, including: (1) clinical and demographic, (2) neuropsychological, and (3) neuroimaging data. Core competencies and skills are reviewed, and resources are provided to fill gaps in training as well as data needs. We close with an example study in which harmonization is a critical tool. While several aspects of this tutorial focus specifically on ADRD, the concepts and resources are likely to benefit population neuroscientists working in a range of research areas.
Collapse
Affiliation(s)
- C. Elizabeth Shaaban
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dana L. Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ann D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca C. Thurston
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heather M. Snyder
- Medical and Scientific Relations, Alzheimer’s Association, Chicago, IL, United States
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Lan Yu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Saponaro S, Giuliano A, Bellotti R, Lombardi A, Tangaro S, Oliva P, Calderoni S, Retico A. Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: An example from the ABIDE dataset. Neuroimage Clin 2022; 35:103082. [PMID: 35700598 PMCID: PMC9198380 DOI: 10.1016/j.nicl.2022.103082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Machine Learning (ML) techniques have been widely used in Neuroimaging studies of Autism Spectrum Disorders (ASD) both to identify possible brain alterations related to this condition and to evaluate the predictive power of brain imaging modalities. The collection and public sharing of large imaging samples has favored an even greater diffusion of the use of ML-based analyses. However, multi-center data collections may suffer the batch effect, which, especially in case of Magnetic Resonance Imaging (MRI) studies, should be curated to avoid confounding effects for ML classifiers and masking biases. This is particularly important in the study of barely separable populations according to MRI data, such as subjects with ASD compared to controls with typical development (TD). Here, we show how the implementation of a harmo- nization protocol on brain structural features unlocks the case-control ML separation capability in the analysis of a multi-center MRI dataset. This effect is demonstrated on the ABIDE data collection, involving subjects encompassing a wide age range. After data harmonization, the overall ASD vs. TD discrimination capability by a Random Forest (RF) classifier improves from a very low performance (AUC = 0.58 ± 0.04) to a still low, but reasonably significant AUC = 0.67 ± 0.03. The performances of the RF classifier have been evaluated also in the age-specific subgroups of children, adolescents and adults, obtaining AUC = 0.62 ± 0.02, AUC = 0.65 ± 0.03 and AUC = 0.69 ± 0.06, respectively. Specific and consistent patterns of anatomical differences related to the ASD condition have been identified for the three different age subgroups.
Collapse
Affiliation(s)
- Sara Saponaro
- University of Pisa, Pisa, Italy; National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Alessia Giuliano
- Medical Physics Department, San Luca Hospital, 55100 Lucca, Italy
| | - Roberto Bellotti
- Physics Department, University of Bari Aldo Moro, Bari, Italy; National Institute of Nuclear Physics (INFN), Bari Division, Bari, Italy
| | - Angela Lombardi
- Physics Department, University of Bari Aldo Moro, Bari, Italy; National Institute of Nuclear Physics (INFN), Bari Division, Bari, Italy.
| | - Sabina Tangaro
- National Institute of Nuclear Physics (INFN), Bari Division, Bari, Italy; Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Piernicola Oliva
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy; National Institute for Nuclear Physics (INFN), Cagliari Division, Cagliari, Italy
| | - Sara Calderoni
- Developmental Psychiatry Unit - IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| |
Collapse
|
18
|
Nan Y, Ser JD, Walsh S, Schönlieb C, Roberts M, Selby I, Howard K, Owen J, Neville J, Guiot J, Ernst B, Pastor A, Alberich-Bayarri A, Menzel MI, Walsh S, Vos W, Flerin N, Charbonnier JP, van Rikxoort E, Chatterjee A, Woodruff H, Lambin P, Cerdá-Alberich L, Martí-Bonmatí L, Herrera F, Yang G. Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2022; 82:99-122. [PMID: 35664012 PMCID: PMC8878813 DOI: 10.1016/j.inffus.2022.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research.
Collapse
Affiliation(s)
- Yang Nan
- National Heart and Lung Institute, Imperial College London, London, Northern Ireland UK
| | - Javier Del Ser
- Department of Communications Engineering, University of the Basque Country UPV/EHU, Bilbao 48013, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), Derio 48160, Spain
| | - Simon Walsh
- National Heart and Lung Institute, Imperial College London, London, Northern Ireland UK
| | - Carola Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, Northern Ireland UK
| | - Michael Roberts
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, Northern Ireland UK
- Oncology R&D, AstraZeneca, Cambridge, Northern Ireland UK
| | - Ian Selby
- Department of Radiology, University of Cambridge, Cambridge, Northern Ireland UK
| | - Kit Howard
- Clinical Data Interchange Standards Consortium, Austin, TX, United States of America
| | - John Owen
- Clinical Data Interchange Standards Consortium, Austin, TX, United States of America
| | - Jon Neville
- Clinical Data Interchange Standards Consortium, Austin, TX, United States of America
| | - Julien Guiot
- University Hospital of Liège (CHU Liège), Respiratory medicine department, Liège, Belgium
- University of Liege, Department of clinical sciences, Pneumology-Allergology, Liège, Belgium
| | - Benoit Ernst
- University Hospital of Liège (CHU Liège), Respiratory medicine department, Liège, Belgium
- University of Liege, Department of clinical sciences, Pneumology-Allergology, Liège, Belgium
| | | | | | - Marion I. Menzel
- Technische Hochschule Ingolstadt, Ingolstadt, Germany
- GE Healthcare GmbH, Munich, Germany
| | - Sean Walsh
- Radiomics (Oncoradiomics SA), Liège, Belgium
| | - Wim Vos
- Radiomics (Oncoradiomics SA), Liège, Belgium
| | - Nina Flerin
- Radiomics (Oncoradiomics SA), Liège, Belgium
| | | | | | - Avishek Chatterjee
- Department of Precision Medicine, Maastricht University, Maastricht, The Netherlands
| | - Henry Woodruff
- Department of Precision Medicine, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, Maastricht University, Maastricht, The Netherlands
| | - Leonor Cerdá-Alberich
- Medical Imaging Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Luis Martí-Bonmatí
- Medical Imaging Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Francisco Herrera
- Department of Computer Sciences and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) University of Granada, Granada, Spain
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London, Northern Ireland UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, Northern Ireland UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, Northern Ireland UK
| |
Collapse
|
19
|
De Stefano N, Battaglini M, Pareto D, Cortese R, Zhang J, Oesingmann N, Prados F, Rocca MA, Valsasina P, Vrenken H, Gandini Wheeler-Kingshott CAM, Filippi M, Barkhof F, Rovira À. MAGNIMS recommendations for harmonization of MRI data in MS multicenter studies. Neuroimage Clin 2022; 34:102972. [PMID: 35245791 PMCID: PMC8892169 DOI: 10.1016/j.nicl.2022.102972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
Sharing data from cooperative studies is essential to develop new biomarkers in MS. Differences in MRI acquisition, analysis, storage represent a substantial constraint. We review the state of the art and developments in the harmonization of MRI. We provide recommendations to harmonize large MRI datasets in the MS field.
There is an increasing need of sharing harmonized data from large, cooperative studies as this is essential to develop new diagnostic and prognostic biomarkers. In the field of multiple sclerosis (MS), the issue has become of paramount importance due to the need to translate into the clinical setting some of the most recent MRI achievements. However, differences in MRI acquisition parameters, image analysis and data storage across sites, with their potential bias, represent a substantial constraint. This review focuses on the state of the art, recent technical advances, and desirable future developments of the harmonization of acquisition, analysis and storage of large-scale multicentre MRI data of MS cohorts. Huge efforts are currently being made to achieve all the requirements needed to provide harmonized MRI datasets in the MS field, as proper management of large imaging datasets is one of our greatest opportunities and challenges in the coming years. Recommendations based on these achievements will be provided here. Despite the advances that have been made, the complexity of these tasks requires further research by specialized academical centres, with dedicated technical and human resources. Such collective efforts involving different professional figures are of crucial importance to offer to MS patients a personalised management while minimizing consumption of resources.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jian Zhang
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, United Kingdom; e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hugo Vrenken
- Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Brain MRI 3T Research Center, C. Mondino National Neurological Institute, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, UCL, London, WC1V 6LJ, United Kingdom; Amsterdam Neuroscience, MS Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Harris CR, McKinley ET, Roland JT, Liu Q, Shrubsole MJ, Lau KS, Coffey RJ, Wrobel J, Vandekar SN. Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images. Bioinformatics 2022; 38:1700-1707. [PMID: 34983062 PMCID: PMC8896603 DOI: 10.1093/bioinformatics/btab877] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Multiplexed imaging is a nascent single-cell assay with a complex data structure susceptible to technical variability that disrupts inference. These in situ methods are valuable in understanding cell-cell interactions, but few standardized processing steps or normalization techniques of multiplexed imaging data are available. RESULTS We implement and compare data transformations and normalization algorithms in multiplexed imaging data. Our methods adapt the ComBat and functional data registration methods to remove slide effects in this domain, and we present an evaluation framework to compare the proposed approaches. We present clear slide-to-slide variation in the raw, unadjusted data and show that many of the proposed normalization methods reduce this variation while preserving and improving the biological signal. Furthermore, we find that dividing multiplexed imaging data by its slide mean, and the functional data registration methods, perform the best under our proposed evaluation framework. In summary, this approach provides a foundation for better data quality and evaluation criteria in multiplexed imaging. AVAILABILITY AND IMPLEMENTATION Source code is provided at: https://github.com/statimagcoll/MultiplexedNormalization and an R package to implement these methods is available here: https://github.com/ColemanRHarris/mxnorm. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Coleman R Harris
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martha J Shrubsole
- Division of Epidemiology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julia Wrobel
- Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
21
|
Mouches P, Wilms M, Rajashekar D, Langner S, Forkert ND. Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions. Hum Brain Mapp 2022; 43:2554-2566. [PMID: 35138012 PMCID: PMC9057090 DOI: 10.1002/hbm.25805] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Biological brain age predicted using machine learning models based on high-resolution imaging data has been suggested as a potential biomarker for neurological and cerebrovascular diseases. In this work, we aimed to develop deep learning models to predict the biological brain age using structural magnetic resonance imaging and angiography datasets from a large database of 2074 adults (21-81 years). Since different imaging modalities can provide complementary information, combining them might allow to identify more complex aging patterns, with angiography data, for instance, showing vascular aging effects complementary to the atrophic brain tissue changes seen in T1-weighted MRI sequences. We used saliency maps to investigate the contribution of cortical, subcortical, and arterial structures to the prediction. Our results show that combining T1-weighted and angiography MR data led to a significantly improved brain age prediction accuracy, with a mean absolute error of 3.85 years comparing the predicted and chronological age. The most predictive brain regions included the lateral sulcus, the fourth ventricle, and the amygdala, while the brain arteries contributing the most to the prediction included the basilar artery, the middle cerebral artery M2 segments, and the left posterior cerebral artery. Our study proposes a framework for brain age prediction using multimodal imaging, which gives accurate predictions and allows identifying the most predictive regions for this task, which can serve as a surrogate for the brain regions that are most affected by aging.
Collapse
Affiliation(s)
- Pauline Mouches
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deepthi Rajashekar
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Program, University of Calgary, Calgary, Alberta, Canada
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Eshaghzadeh Torbati M, Minhas DS, Ahmad G, O'Connor EE, Muschelli J, Laymon CM, Yang Z, Cohen AD, Aizenstein HJ, Klunk WE, Christian BT, Hwang SJ, Crainiceanu CM, Tudorascu DL. A multi-scanner neuroimaging data harmonization using RAVEL and ComBat. Neuroimage 2021; 245:118703. [PMID: 34736996 PMCID: PMC8820090 DOI: 10.1016/j.neuroimage.2021.118703] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.
Collapse
Affiliation(s)
- Mahbaneh Eshaghzadeh Torbati
- Intelligent System Program, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15213, USA
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ghasan Ahmad
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin E O'Connor
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Charles M Laymon
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zixi Yang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seong Jae Hwang
- Intelligent System Program, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15213, USA; Department of Computer Science, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15213, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Torbati ME, Tudorascu DL, Minhas DS, Maillard P, DeCarli CS, Hwang SJ. Multi-scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning. ... IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS. IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION 2021; 2021:3277-3286. [PMID: 34909551 PMCID: PMC8668020 DOI: 10.1109/iccvw54120.2021.00367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies. Despite numerous benefits from the growth in sample size, substantial technical variability associated with site/scanner-related effects exists which may inadvertently bias subsequent downstream analyses. Such a challenge calls for a data harmonization procedure which reduces the scanner effects and allows the scans to be combined for pooled analyses. In this work, we present MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a multi-scanner harmonization framework. Unlike existing techniques, MISPEL does not assume a perfect coregistration across the scans, and the framework is naturally extendable to more than two scanners. Importantly, we incorporate our multi-scanner dataset where each subject is scanned on four different scanners. This unique paired dataset allows us to define and aim for an ideal harmonization (e.g., each subject with identical brain tissue volumes on all scanners). We extensively view scanner effects under varying metrics and demonstrate how MISPEL significantly improves them.
Collapse
|
24
|
Meyer MI, de la Rosa E, Pedrosa de Barros N, Paolella R, Van Leemput K, Sima DM. A Contrast Augmentation Approach to Improve Multi-Scanner Generalization in MRI. Front Neurosci 2021; 15:708196. [PMID: 34531715 PMCID: PMC8439197 DOI: 10.3389/fnins.2021.708196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Most data-driven methods are very susceptible to data variability. This problem is particularly apparent when applying Deep Learning (DL) to brain Magnetic Resonance Imaging (MRI), where intensities and contrasts vary due to acquisition protocol, scanner- and center-specific factors. Most publicly available brain MRI datasets originate from the same center and are homogeneous in terms of scanner and used protocol. As such, devising robust methods that generalize to multi-scanner and multi-center data is crucial for transferring these techniques into clinical practice. We propose a novel data augmentation approach based on Gaussian Mixture Models (GMM-DA) with the goal of increasing the variability of a given dataset in terms of intensities and contrasts. The approach allows to augment the training dataset such that the variability in the training set compares to what is seen in real world clinical data, while preserving anatomical information. We compare the performance of a state-of-the-art U-Net model trained for segmenting brain structures with and without the addition of GMM-DA. The models are trained and evaluated on single- and multi-scanner datasets. Additionally, we verify the consistency of test-retest results on same-patient images (same and different scanners). Finally, we investigate how the presence of bias field influences the performance of a model trained with GMM-DA. We found that the addition of the GMM-DA improves the generalization capability of the DL model to other scanners not present in the training data, even when the train set is already multi-scanner. Besides, the consistency between same-patient segmentation predictions is improved, both for same-scanner and different-scanner repetitions. We conclude that GMM-DA could increase the transferability of DL models into clinical scenarios.
Collapse
Affiliation(s)
- Maria Ines Meyer
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Icometrix, Leuven, Belgium
| | - Ezequiel de la Rosa
- Icometrix, Leuven, Belgium.,Department of Computer Science, Technical University of Munich, Munich, Germany
| | | | - Roberto Paolella
- Icometrix, Leuven, Belgium.,Imec Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Koen Van Leemput
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
25
|
Oathes DJ, Balderston NL, Kording KP, DeLuisi JA, Perez GM, Medaglia JD, Fan Y, Duprat RJ, Satterthwaite TD, Sheline YI, Linn KA. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 12:e1553. [PMID: 33470055 DOI: 10.1002/wcs.1553] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Combining transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging offers an unprecedented tool for studying how brain networks interact in vivo and how repetitive trains of TMS modulate those networks among patients diagnosed with affective disorders. TMS compliments neuroimaging by allowing the interrogation of causal control among brain circuits. Together with TMS, neuroimaging can provide valuable insight into the mechanisms underlying treatment effects and downstream circuit communication. Here we provide a background of the method, review relevant study designs, consider methodological and equipment options, and provide statistical recommendations. We conclude by describing emerging approaches that will extend these tools into exciting new applications. This article is categorized under: Psychology > Emotion and Motivation Psychology > Theory and Methods Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A DeLuisi
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gianna M Perez
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Drexel University, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Romain J Duprat
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yvette I Sheline
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kristin A Linn
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics (CBICA), Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Guan H, Liu Y, Yang E, Yap PT, Shen D, Liu M. Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification. Med Image Anal 2021; 71:102076. [PMID: 33930828 PMCID: PMC8184627 DOI: 10.1016/j.media.2021.102076] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 04/03/2021] [Indexed: 01/18/2023]
Abstract
Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in computer-aided brain disorder identification. Multi-site MRI data increase sample size and statistical power, but are susceptible to inter-site heterogeneity caused by different scanners, scanning protocols, and subject cohorts. Multi-site MRI harmonization (MMH) helps alleviate the inter-site difference for subsequent analysis. Some MMH methods performed at imaging level or feature extraction level are concise but lack robustness and flexibility to some extent. Even though several machine/deep learning-based methods have been proposed for MMH, some of them require a portion of labeled data in the to-be-analyzed target domain or ignore the potential contributions of different brain regions to the identification of brain disorders. In this work, we propose an attention-guided deep domain adaptation (AD2A) framework for MMH and apply it to automated brain disorder identification with multi-site MRIs. The proposed framework does not need any category label information of target data, and can also automatically identify discriminative regions in whole-brain MR images. Specifically, the proposed AD2A is composed of three key modules: (1) an MRI feature encoding module to extract representations of input MRIs, (2) an attention discovery module to automatically locate discriminative dementia-related regions in each whole-brain MRI scan, and (3) a domain transfer module trained with adversarial learning for knowledge transfer between the source and target domains. Experiments have been performed on 2572 subjects from four benchmark datasets with T1-weighted structural MRIs, with results demonstrating the effectiveness of the proposed method in both tasks of brain disorder identification and disease progression prediction.
Collapse
Affiliation(s)
- Hao Guan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunbi Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Erkun Yang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Chen J, Li X, Calhoun VD, Turner JA, van Erp TGM, Wang L, Andreassen OA, Agartz I, Westlye LT, Jönsson E, Ford JM, Mathalon DH, Macciardi F, O'Leary DS, Liu J, Ji S. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification. Hum Brain Mapp 2021; 42:2556-2568. [PMID: 33724588 PMCID: PMC8090768 DOI: 10.1002/hbm.25387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/20/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Deep learning methods hold strong promise for identifying biomarkers for clinical application. However, current approaches for psychiatric classification or prediction do not allow direct interpretation of original features. In the present study, we introduce a sparse deep neural network (DNN) approach to identify sparse and interpretable features for schizophrenia (SZ) case–control classification. An L0‐norm regularization is implemented on the input layer of the network for sparse feature selection, which can later be interpreted based on importance weights. We applied the proposed approach on a large multi‐study cohort with gray matter volume (GMV) and single nucleotide polymorphism (SNP) data for SZ classification. A total of 634 individuals served as training samples, and the classification model was evaluated for generalizability on three independent datasets of different scanning protocols (N = 394, 255, and 160, respectively). We examined the classification power of pure GMV features, as well as combined GMV and SNP features. Empirical experiments demonstrated that sparse DNN slightly outperformed independent component analysis + support vector machine (ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ discrimination, with an average error rate of 28.98% on external data. The importance weights suggested that the DNN model prioritized to select frontal and superior temporal gyrus for SZ classification with high sparsity, with parietal regions further included with lower sparsity, echoing previous literature. The results validate the application of the proposed approach to SZ classification, and promise extended utility on other data modalities and traits which ultimately may result in clinically useful tools.
Collapse
Affiliation(s)
- Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA
| | - Xiang Li
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Department of Computer Science, Georgia State University, Atlanta, Georgia, USA.,Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Jessica A Turner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Psychology Department and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, Illinois, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Erik Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Ford
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Veterans Affairs San Francisco Healthcare System, San Francisco, California, USA
| | - Daniel H Mathalon
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Veterans Affairs San Francisco Healthcare System, San Francisco, California, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Daniel S O'Leary
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology and Emory University), Atlanta, Georgia, USA.,Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Shihao Ji
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Dinsdale NK, Jenkinson M, Namburete AIL. Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal. Neuroimage 2021; 228:117689. [PMID: 33385551 PMCID: PMC7903160 DOI: 10.1016/j.neuroimage.2020.117689] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Increasingly large MRI neuroimaging datasets are becoming available, including many highly multi-site multi-scanner datasets. Combining the data from the different scanners is vital for increased statistical power; however, this leads to an increase in variance due to nonbiological factors such as the differences in acquisition protocols and hardware, which can mask signals of interest. We propose a deep learning based training scheme, inspired by domain adaptation techniques, which uses an iterative update approach to aim to create scanner-invariant features while simultaneously maintaining performance on the main task of interest, thus reducing the influence of scanner on network predictions. We demonstrate the framework for regression, classification and segmentation tasks with two different network architectures. We show that not only can the framework harmonise many-site datasets but it can also adapt to many data scenarios, including biased datasets and limited training labels. Finally, we show that the framework can be extended for the removal of other known confounds in addition to scanner. The overall framework is therefore flexible and should be applicable to a wide range of neuroimaging studies.
Collapse
Affiliation(s)
- Nicola K Dinsdale
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Australian Institute for Machine Learning (AIML), School of Computer Science, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, Australia
| | - Ana I L Namburete
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| |
Collapse
|