1
|
Li Z, Sun J, Jia T, Ji L, Li C. Respiratory modulation of beta corticomuscular coherence in isometric hand movements. Cogn Neurodyn 2025; 19:54. [PMID: 40129876 PMCID: PMC11929664 DOI: 10.1007/s11571-025-10245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
Respiration is a fundamental physiological function in humans, often synchronized with movement to enhance performance and efficiency. Recent studies have underscored the modulatory effects of respiratory rhythms on brain oscillations and various behavioral responses, including sensorimotor processes. In light of this connection, our study aimed to investigate the influence of different respiratory patterns on beta corticomuscular coherence (CMC) during isometric hand flexion and extension. Utilizing electroencephalogram (EEG) and surface electromyography (sEMG), we examined three breathing conditions: normal breathing, deep inspiration, and deep expiration. Two experimental protocols were employed: the first experiment required participants to simultaneously breathe and exert force, while the other involved maintaining a constant force while varying breathing patterns. The results revealed that deep inspiration significantly enhanced beta CMC during respiration-synchronized tasks, whereas normal breathing resulted in higher CMC compared to deep respiration during sustained force exertion. In the second experiment, beta CMC was cyclically modulated by respiratory phase across all breathing conditions. The difference in the outcomes from the two protocols demonstrated a task-specific modulation of respiration on motor control. Overall, these findings indicate the complex dynamics of respiration-related effects on corticomuscular neural communication and provide valuable insights into the mechanisms underpinning the coupling between respiration and motor function. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-025-10245-x.
Collapse
Affiliation(s)
- Zhibin Li
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Jingyao Sun
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Tianyu Jia
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Linhong Ji
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Chong Li
- School of Clinical Medicine (BTCH), Tsinghua Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Stetza L, Hehemann L, Kayser C. Evidence That Respiratory Phase May Modulate Task-Related Neural Representations of Visual Stimuli. J Neurosci 2025; 45:e2236242025. [PMID: 40246524 DOI: 10.1523/jneurosci.2236-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
We investigate how respiration influences cognition by examining the interaction between respiratory phase and task-related brain activity during two visual categorization tasks. While prior research shows that cognitive performance varies along the respiratory cycle, the underlying neurophysiological mechanisms remain poorly understood. Though some studies have shown that large-scale neural activity reflecting for example changes in the excitation-inhibition balance is comodulated with the respiratory cycle, it remains unclear whether respiration directly shapes the neural signatures reflecting the encoding of task-specific external signals. We address this gap by applying single-trial multivariate analyses to EEG data obtained in humans (n = 25, any gender), allowing us to track how respiration relates to the sensory evidence reflected in this neurophysiological signal. Confirming previous studies, our data show that participant's performance varies with the respiratory phase prior and during a trial. Importantly, they suggest that respiration may directly influence the sensory evidence carried by neurophysiological processes emerging ∼300-200 ms prior to participant's responses. Hence, respiration and sensory-cognitive processes are not only highly intertwined but respiration may directly facilitate the representation of behaviorally relevant signals in the brain.
Collapse
Affiliation(s)
- Lisa Stetza
- Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Lena Hehemann
- Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Christoph Kayser
- Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
3
|
Vihonen H, Karvonen J, Gustafsberg H, Huhta JM, Kangasniemi H, Jama T, Hoppu S. Effectiveness of Finnish SISU training in enhancing prehospital personnels' work performance: A randomised controlled pilot study. BMC Emerg Med 2025; 25:80. [PMID: 40380107 DOI: 10.1186/s12873-025-01235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 05/08/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Resilience means coping with and recovering quickly from adversities. This is a highly beneficial quality for prehospital personnel, who encounter many unforeseen stressors while on duty. This study investigated whether a novel pre-emptive resilience coaching programme, 'Finnish SISU training' (hereafter SISU), based on the validated International Performance Resilience and Efficacy Program (iPREP), would improve the work performance by enhancing situational and decision-making skills of prehospital personnel. 'Sisu' is a Finnish word meaning the combination of toughness and resilience. METHODS This randomised controlled pilot study was conducted in Päijät-Häme, Finland. The sample comprised 16 paramedics, divided equally between the intervention and control groups. SISU was administered to the intervention group. Three full-scale simulation scenarios were then conducted. A blinded observer evaluated the participants' situational awareness and decision-making skills using a structured observer form, awarding them a maximum of 10 points. Participants completed a self-evaluation form before and after each simulation scenario and the responses were rated on a 5-point Likert scale. The results of these forms were compared between groups. We also compared the median values of heart rate variability (HRV), maximum heart rate, and respiratory rate between the groups. RESULTS After 16 h of pre-emptive SISU, the intervention group improved their situational awareness and decision-making skills in the third simulation scenario (observer form results: intervention group median 10 [IQR 9-10] and control group median 6 [IQR 5-7], p ≤ 0.01). In contrast, observer ratings of the control group showed a diminishing trend in work performance across the three simulation scenarios. Self-evaluation revealed increased confidence in work performance in both study groups, in contrast to the blinded observer findings. Regarding HRV, the intervention group in contrast to the control group, recovered in minutes following the simulation scenarios, especially after the third simulation scenario (third defusing session: intervention group median HRV 27 [IQR 21-28], control group median HRV 21 [IQR 17-22], p < 0.01). CONCLUSION SISU improved work performance, which was measured by situational awareness and decision-making skills under stressful conditions. Resilience, a skill gained from this novel training, may have positive effects on coping with stress. TRIAL REGISTRATION ISRCTN10221308. Registered at 19.3.2024. Retrospectively registered. https//www.isrctn.com/ISRCTN10221308.
Collapse
Affiliation(s)
- Hanna Vihonen
- Department of Emergency Medicine Services, Wellbeing Services County of Päijät-Häme, Lahti, Finland.
- Department of Emergency Medicine Services, Wellbeing Services County of Kymenlaakso, Kotka, Finland.
- University of Helsinki, Helsinki, Finland.
| | - Janne Karvonen
- Department of Emergency Medicine Services, Wellbeing Services County of Päijät-Häme, Lahti, Finland.
| | - Harri Gustafsberg
- International Performance Resilience and Efficiency Program, Pirkkala, Finland
| | - Juha-Matti Huhta
- Research, Development and Innovation (RDI) Activities, Police University College, Tampere, Finland
| | - Heidi Kangasniemi
- Department of Emergency Medicine Services, Wellbeing Services County of Päijät-Häme, Lahti, Finland
- University of Helsinki, Helsinki, Finland
| | - Timo Jama
- Department of Emergency Medicine Services, Wellbeing Services County of Päijät-Häme, Lahti, Finland
| | - Sanna Hoppu
- Emergency Medicine Services, Centre for Prehospital Emergency Care, Pirkanmaa Wellbeing Services County, Tampere, Finland
| |
Collapse
|
4
|
Duan Y, Guo X, Ren B, Liu F, Li Y, Liu F, Xu F, Huang M. An alternating breathing pattern significantly affects the brain functional connectivity and mood states. Front Hum Neurosci 2025; 19:1539222. [PMID: 40309665 PMCID: PMC12040909 DOI: 10.3389/fnhum.2025.1539222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction To explore the impact of different breathing patterns on brain connectivity and emotional states. Methods We recruited 31 participants with an average age of 19 years. They were instructed to perform controlled breathing, including calm, shallow, deep, and alternating deep and shallow breathing patterns. We employed functional near-infrared spectroscopy (fNIRS) to investigate disparities in the effects of multiple breathing patterns on the brain. Meanwhile, we captured the participants' facial expressions and vital signs. Results There were significant variations in the effects of four breathing patterns on functional connectivity between brain regions, facial expressions, and vital signs. The four breathing patterns impacted six brain regions. Among them, alternating deep and shallow breathing had a particularly pronounced effect, and there was robust functional connectivity in different brain regions. Additionally, this breathing pattern elevated autonomic nervous system activity, which contributed to achieving a more tranquil state. Furthermore, alternating deep and shallow breathing had a more positive influence on the changes in oxyhaemoglobin concentration (Δ [HbO2]) of the brain compared with deep breathing. Discussion Alternating shallow and deep breathing could enhance emotional stability, improve autonomic nervous system function, and promote brain functional connectivity. Our findings unveiled distinct effects of diverse breathing patterns on both the brain and mood state, establishing a theoretical foundation for respiratory rehabilitation training for stroke patients.
Collapse
Affiliation(s)
- Yulin Duan
- Department of Physiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
- Department of Clinic Medicine, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xun Guo
- Department of Clinic Medicine, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Bingnan Ren
- Department of Clinic Medicine, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fang Liu
- Department of Clinic Medicine, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yuhang Li
- Department of Clinic Medicine, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangfang Liu
- Department of Art, Art College, Southwest Minzu University, Chengdu, China
| | - Fan Xu
- Department of Evidence-based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Chengdu, China
| | - Min Huang
- Department of Physiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Kluger DS, Erdbrügger T, Stier C, Höltershinken MB, Abbasi O, Saltafossi M, Unnwongse K, Wehner T, Wellmer J, Gross J, Wolters CH. Respiratory modulations of cortical excitability and interictal spike timing in focal epilepsy: a case report. COMMUNICATIONS MEDICINE 2025; 5:108. [PMID: 40211071 PMCID: PMC11985961 DOI: 10.1038/s43856-025-00811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/18/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Brain activity in focal epilepsy is marked by a pronounced excitation-inhibition (E:I) imbalance and interictal epileptiform discharges (IEDs) observed in periods between recurrent seizures. As a marker of E:I balance, aperiodic neural activity and its underlying 1/f characteristic reflect the dynamic interplay of excitatory and inhibitory currents. Recent studies have independently assessed 1/f changes both in epilepsy and in the context of body-brain interactions in neurotypical individuals where the respiratory rhythm has emerged as a potential modulator of excitability states in the brain. METHODS Here, we investigate respiration phase-locked modulations of E:I balance and their involvement in the timing of spike discharges in a case report of a 25 year-old focal epilepsy patient using magnetoencephalography (MEG). RESULTS We show that i) respiration differentially modulates E:I balance in focal epilepsy compared to N = 40 neurotypical controls and ii) IED timing depends on both excitability and respiratory states. CONCLUSIONS These findings overall suggest an intricate interplay of respiration phase-locked changes in excitation and the consequential susceptibility for IED generation and we hope they will spark interest in subsequent work on body-brain coupling and E:I balance in epilepsy.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Tim Erdbrügger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Christina Stier
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Malte B Höltershinken
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Martina Saltafossi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Kanjana Unnwongse
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Tim Wehner
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Jörg Wellmer
- Ruhr-Epileptology, Department of Neurology, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Harting C, Hehemann L, Stetza L, Kayser C. Respiration shapes response speed and accuracy with a systematic time lag. Proc Biol Sci 2025; 292:20242566. [PMID: 40199358 PMCID: PMC11978463 DOI: 10.1098/rspb.2024.2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 04/10/2025] Open
Abstract
Sensory-cognitive functions are intertwined with physiological processes such as the heart beat or respiration. For example, we tend to align our respiratory cycle to expected events or actions. This happens during sports but also in computer-based tasks and systematically structures respiratory phase around relevant events. However, studies also show that trial-by-trial variations in respiratory phase shape brain activity and the speed or accuracy of individual responses. We show that both phenomena-the alignment of respiration to expected events and the explanatory power of the respiratory phase on behaviour-co-exist. In fact, both the average respiratory phase of an individual relative to the experimental trials and trial-to-trial variations in respiratory phase hold significant predictive power on behavioural performance, in particular for reaction times. This co-modulation of respiration and behaviour emerges regardless of whether an individual generally breathes faster or slower and is strongest for the respiratory phase about 2 s prior to participant's responses. The persistence of these effects across 12 datasets with 277 participants performing sensory-cognitive tasks confirms the robustness of these results, and suggests a profound and time-lagged influence of structured respiration on sensory-motor responses.
Collapse
Affiliation(s)
| | - Lena Hehemann
- Biology, Bielefeld University, Bielefeld33615, Germany
| | - Lisa Stetza
- Biology, Bielefeld University, Bielefeld33615, Germany
| | | |
Collapse
|
7
|
Karjalainen S, Kujala J, Parviainen T. Neural activity is modulated by spontaneous and volitionally controlled breathing. Biol Psychol 2025; 197:109026. [PMID: 40204086 DOI: 10.1016/j.biopsycho.2025.109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Recent studies have provided evidence regarding respiration-brain coupling, but our understanding of how continuously varying dynamics of breathing modulate neural activity remains incomplete. We examined whether the neural state differs between spontaneous and volitionally controlled breathing and across the phases of breathing, inspiration and expiration. Magnetoencephalography (MEG) with a respiratory belt was used to record cortical oscillatory activity during spontaneous, deep, and square breathing (n = 33). Additionally, self-report measures of mood and arousal were applied to assess changes in the psychological state during the breathing techniques. Alpha power was suppressed during inspiration and increased during expiration (p < .01) indicating dynamically fluctuating neural states across the respiratory cycle. This effect was observed in the sensorimotor areas during both spontaneous and volitionally controlled deep breathing. Compared to spontaneous and volitionally controlled square breathing, alpha power increased during deep breathing (p < .01) within a cortical network extending to frontal and temporal areas. We also observed a steeper aperiodic slope and a broadband shift in the power spectrum in the left superior frontal gyrus during square breathing in comparison with spontaneous breathing suggesting that not only oscillatory activity but also the more general spectral characteristics of ongoing neural activity are modulated by the rate, depth, and pattern of breathing. Self-reported mood and arousal did not differ across the breathing techniques. Altogether, we demonstrate that neural activity is modulated by the phases of breathing and can also be volitionally influenced by varying the rate, depth, and pattern of breathing.
Collapse
Affiliation(s)
- Suvi Karjalainen
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland.
| | - Jan Kujala
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland; Centre for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, Jyväskylä FI-40014, Finland
| |
Collapse
|
8
|
Schaefer M, Mathôt S, Lundqvist M, Lundström JN, Arshamian A. The pupillary respiratory-phase response: pupil size is smallest around inhalation onset and largest during exhalation. J Physiol 2025; 603:1607-1625. [PMID: 39981599 PMCID: PMC11908488 DOI: 10.1113/jp287205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/31/2025] [Indexed: 02/22/2025] Open
Abstract
Respiration shapes brain activity and synchronizes sensory and exploratory motor actions, with some evidence suggesting that it also affects pupil size. However, evidence for a coupling between respiration and pupil size remains scarce and inconclusive, hindered by small sample sizes and limited controls. Given the importance of pupil size in visual perception and as a reflection of brain state, understanding its relationship with respiration is essential. In five experiments using a pre-registered protocol, we systematically investigated how respiratory phase affects pupil size across different conditions. In Experiment 1 (n = 50), we examined nasal and oral breathing at rest under dim lighting with nearby fixation points, then replicated these results under identical conditions in Experiment 2 (n = 53). Experiment 3 (n = 112) extended this to active visual tasks, while Experiment 4 (n = 57) extended this to controlled breathing at different paces under ambient lighting with distant fixation. Finally, in Experiment 5 (n = 34), individuals with isolated congenital anosmia (born without olfactory bulbs) were used as a lesion-type model during visual-auditory tasks to assess whether the respiratory-pupil link depends on olfactory bulb-driven oscillations. Across all conditions - free and controlled breathing; different tasks, lighting and fixation distances; and with and without olfactory bulbs - we consistently found that pupil size is smallest around inhalation onset and largest during exhalation. We term this effect the pupillary respiratory-phase response, the fourth known mechanism influencing pupil size, alongside the pupillary light, near fixation and psychosensory responses. KEY POINTS: The influence of respiration on pupil size dynamics has long been debated. In this study, we systematically investigated how pupil size changes across the breathing cycle through a series of five experiments, while varying tasks, lighting, fixation distance and brain region involvement. We show that pupil size is smallest around inhalation onset and largest during exhalation, with pupil dilatation occurring through most of inhalation and the early phase of exhalation, and pupil constriction occurring primarily during the latter part of exhalation. This pattern was consistent across all experimental conditions, demonstrating that it is robust and likely controlled by brainstem circuits. We term this effect the pupillary respiratory-phase response, the fourth known mechanism influencing pupil size.
Collapse
Affiliation(s)
- Martin Schaefer
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Sebastiaan Mathôt
- Department of PsychologyUniversity of GroningenGroningenThe Netherlands
| | - Mikael Lundqvist
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Johan N. Lundström
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Monell Chemical Senses CenterPhiladelphiaPAUSA
- Department of OtorhinolaryngologyKarolinska University HospitalStockholmSweden
| | - Artin Arshamian
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| |
Collapse
|
9
|
Saltafossi M, Heck D, Kluger DS, Varga S. Common threads: Altered interoceptive processes across affective and anxiety disorders. J Affect Disord 2025; 369:244-254. [PMID: 39321982 DOI: 10.1016/j.jad.2024.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
There is growing attention towards atypical brain-body interactions and interoceptive processes and their potential role in psychiatric conditions, including affective and anxiety disorders. This paper aims to synthesize recent developments in this field. We present emerging explanatory models and focus on brain-body coupling and modulations of the underlying neurocircuitry that support the concept of a continuum of affective disorders. Grounded in theoretical frameworks like peripheral theories of emotion and predictive processing, we propose that altered interoceptive processes might represent transdiagnostic mechanisms that confer common vulnerability traits across multiple disorders. A deeper understanding of the interplay between bodily states and neural processing is essential for a holistic conceptualization of mental disorders.
Collapse
Affiliation(s)
- Martina Saltafossi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Detlef Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA; Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Somogy Varga
- Department of Philosophy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Kalauzi A, Matić Z, Suljovrujić E, Bojić T. Detection of respiratory frequency rhythm in human alpha phase shifts: topographic distributions in wake and drowsy states. Front Physiol 2025; 15:1511998. [PMID: 39835197 PMCID: PMC11743705 DOI: 10.3389/fphys.2024.1511998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The relationship between brain activity and respiration is recently attracting increasing attention, despite being studied for a long time. Respiratory modulation was evidenced in both single-cell activity and field potentials. Among EEG and intracranial measurements, the effect of respiration was prevailingly studied on amplitude/power in all frequency bands. Methods Since phases of EEG oscillations received less attention, we applied our previously published carrier frequency (CF) mathematical model of human alpha oscillations on a group of 10 young healthy participants in wake and drowsy states, using a 14-channel average reference montage. Since our approach allows for a more precise calculation of CF phase shifts (CFPS) than any individual Fourier component, by using a 2-s moving Fourier window, we validated the new method and studied, for the first time, temporal waveforms CFPS(t) and their oscillatory content through FFT (CFPS(t)). Results Although not appearing equally in all channel pairs and every subject, a clear peak in the respiratory frequency region, 0.21-0.26 Hz, was observed (max at 0.22 Hz). When five channel pairs with the most prominent group averaged amplitudes at 0.22 Hz were plotted in both states, topographic distributions changed significantly-from longitudinal, connecting frontal and posterior channels in the wake state to topographically split two separate regions-frontal and posterior in the drowsy state. In addition, in the drowsy state, 0.22-Hz amplitudes decreased for all pairs, while statistically significant reduction was obtained for 20/91 (22%) pairs. Discussion These results potentially evidence, for the first time, the respiratory frequency modulation of alpha phase shifts, as well as the significant impact of wakeful consciousness on the observed oscillations.
Collapse
Affiliation(s)
- Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Zoran Matić
- Laboratory for Radiation Chemistry and Physics-030, Institute for Nuclear Sciences Vinča-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Edin Suljovrujić
- Laboratory for Radiation Chemistry and Physics-030, Institute for Nuclear Sciences Vinča-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Bojić
- Laboratory for Radiation Chemistry and Physics-030, Institute for Nuclear Sciences Vinča-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Kluger DS, Gross J, Keitel C. A Dynamic Link between Respiration and Arousal. J Neurosci 2024; 44:e1173242024. [PMID: 39379154 PMCID: PMC11580776 DOI: 10.1523/jneurosci.1173-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Viewing brain function through the lens of other physiological processes has critically added to our understanding of human cognition. Further advances though may need a closer look at the interactions between these physiological processes themselves. Here we characterize the interplay of the highly periodic, and metabolically vital respiratory process and fluctuations in arousal neuromodulation, a process classically seen as nonperiodic. In the data from three experiments (N = 56 / 27 / 25 women and men), we tested for covariations in respiratory and pupil size (arousal) dynamics. After substantiating a robust coupling in the largest dataset, we further show that coupling strength decreases during task performance compared with rest and that it mirrors a decreased respiratory rate when participants take deeper breaths. Taken together, these findings suggest a stronger link between respiratory and arousal processes than previously thought. Moreover, these links imply a stronger coupling during periods of rest, and the effect of respiratory rate on the coupling suggests a driving role. As a consequence, studying the role of neuromodulatory arousal on cortical function may also need to consider respiratory influences.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster 48149, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster 48149, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - Christian Keitel
- Psychology, University of Dundee, Dundee DD1 4HN, United Kingdom
| |
Collapse
|
12
|
Andelman-Gur M, Snitz K, Honigstein D, Weissbrod A, Soroka T, Ravia A, Gorodisky L, Pinchover L, Ezra A, Hezi N, Gurevich T, Sobel N. Discriminating Parkinson's disease patients from healthy controls using nasal respiratory airflow. COMMUNICATIONS MEDICINE 2024; 4:233. [PMID: 39543393 PMCID: PMC11564766 DOI: 10.1038/s43856-024-00660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Breathing patterns may inform on health. We note that the sites of earliest brain damage in Parkinson's disease (PD) house the neural pace-makers of respiration. We therefore hypothesized that ongoing long-term temporal dynamics of respiration may be altered in PD. METHODS We applied a wearable device that precisely logs nasal airflow over time in 28 PD patients (mostly H&Y stage-II) and 33 matched healthy controls. Each participant wore the device for 24 h of otherwise routine daily living. RESULTS We observe significantly altered temporal patterns of nasal airflow in PD, where inhalations are longer and less variable than in matched controls (mean PD = -1.22 ± 1.9 (combined respiratory features score), Control = 1.04 ± 2.16, Wilcoxon rank-sum test, z = -4.1, effect size Cliff's δ = -0.61, 95% confidence interval = -0.79 - (-0.34), P = 4.3 × 10-5). The extent of alteration is such that using only 30 min of recording we detect PD at 87% accuracy (AUC = 0.85, 79% sensitivity (22 of 28), 94% specificity (31 of 33), z = 5.7, p = 3.5 × 10-9), and also predict disease severity (correlation with UPDRS-Total score: r = 0.49; P = 0.008). CONCLUSIONS We conclude that breathing patterns are altered by H&Y stage-II in the disease cascade, and our methods may be further refined in the future to provide an indication with diagnostic and prognostic value.
Collapse
Affiliation(s)
- Michal Andelman-Gur
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Kobi Snitz
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Danielle Honigstein
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Weissbrod
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Ravia
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Pinchover
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Ezra
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Neomi Hezi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Sourasky Medical Center (TASMC), Tel-Aviv, Israel
- Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- Department for Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Ghibaudo V, Juventin M, Buonviso N, Peter-Derex L. The timing of sleep spindles is modulated by the respiratory cycle in humans. Clin Neurophysiol 2024; 166:252-261. [PMID: 39030100 DOI: 10.1016/j.clinph.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE Coupling of sleep spindles with cortical slow waves and hippocampus sharp-waves ripples is crucial for sleep-related memory consolidation. Recent literature evidenced that nasal respiration modulates neural activity in large-scale brain networks. In rodents, this respiratory drive strongly varies according to vigilance states. Whether sleep oscillations are also respiration-modulated in humans remains open. In this work, we investigated the influence of breathing on sleep spindles during non-rapid-eye-movement sleep in humans. METHODS Full night polysomnography of twenty healthy participants were analysed. Spindles and slow waves were automatically detected during N2 and N3 stages. Spindle-related sigma power as well as spindle and slow wave events were analysed according to the respiratory phase. RESULTS We found a significant coupling between both slow and fast spindles and the respiration cycle, with enhanced sigma activity and occurrence probability of spindles during the middle part of the expiration phase. A different coupling was observed for slow waves negative peaks which were rather distributed around the two respiration phase transitions. CONCLUSION Our findings suggest that breathing cycle influences the dynamics of brain activity during non-rapid-eye-movement sleep. SIGNIFICANCE This coupling may enable sleep spindles to synchronize with other sleep oscillations and facilitate information transfer between distributed brain networks.
Collapse
Affiliation(s)
- Valentin Ghibaudo
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Maxime Juventin
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Nathalie Buonviso
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France
| | - Laure Peter-Derex
- Lyon Neuroscience Research Centre, INSERM U 1028/CNRS UMR5292, Bron, France; Centre for Sleep Medicine and Respiratory Diseases, Hospices Civils de Lyon, Lyon 1 University, Lyon, France.
| |
Collapse
|
14
|
Catrambone V, Candia‐Rivera D, Valenza G. Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes. Hum Brain Mapp 2024; 45:e26677. [PMID: 38656080 PMCID: PMC11041380 DOI: 10.1002/hbm.26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in theδ $$ \delta $$ ,β $$ \beta $$ , andγ $$ \gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP‐HP, Hôpital Pitié‐SalpêtriŕeParisFrance
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|
15
|
Catrambone V, Zallocco L, Ramoretti E, Mazzoni MR, Sebastiani L, Valenza G. Integrative neuro-cardiovascular dynamics in response to test anxiety: A brain-heart axis study. Physiol Behav 2024; 276:114460. [PMID: 38215864 DOI: 10.1016/j.physbeh.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Test anxiety (TA), a recognized form of social anxiety, is the most prominent cause of anxiety among students and, if left unmanaged, can escalate to psychiatric disorders. TA profoundly impacts both central and autonomic nervous systems, presenting as a dual manifestation of cognitive and autonomic components. While limited studies have explored the physiological underpinnings of TA, none have directly investigated the intricate interplay between the CNS and ANS in this context. In this study, we introduce a non-invasive, integrated neuro-cardiovascular approach to comprehensively characterize the physiological responses of 27 healthy subjects subjected to test anxiety induced via a simulated exam scenario. Our experimental findings highlight that an isolated analysis of electroencephalographic and heart rate variability data fails to capture the intricate information provided by a brain-heart axis assessment, which incorporates an analysis of the dynamic interaction between the brain and heart. With respect to resting state, the simulated examination induced a decrease in the neural control onto heartbeat dynamics at all frequencies, while the studying condition induced a decrease in the ascending heart-to-brain interplay at EEG oscillations up to 12Hz. This underscores the significance of adopting a multisystem perspective in understanding the complex and especially functional directional mechanisms underlying test anxiety.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory, Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy.
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Eleonora Ramoretti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Rosa Mazzoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Sebastiani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Institute of Information Science and Technologies A. Faedo, ISTI-CNR, Pisa, Italy
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory, Department of Information Engineering & Bioengineering and Robotics Research Center E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Li Z, Li W, Lin PJ, Jia T, Ji L, Li C. Motor-Respiratory Coupling Improves Endurance Performance during Rhythmic Isometric Handgrip Exercise. Med Sci Sports Exerc 2024; 56:536-544. [PMID: 37882076 DOI: 10.1249/mss.0000000000003329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
PURPOSE This study aimed to evaluate whether motor-respiratory coupling exists in rhythmic isometric handgrip exercises and its effect on endurance performance. In addition, the mechanism underlying observed effects was to be investigated if higher motor-respiratory coupling rate could enhance endurance performance. METHODS Eleven subjects completed three rhythmic isometric handgrip trials to task failure in a randomized manner. After one pretraining session to determine personal grip frequency, one trial was performed without respiration requirement (CON), and two trials were performed with inspiration-motor coupling (IMC) or expiration-motor coupling. Changes in maximal voluntary contraction (MVC) and EMG were used to measure neuromuscular fatigue. Force data during test were used to assess exercise intensity. Another 10 subjects completed electrical stimulation-induced finger flexion and extension during normal inspiration, normal expiration, fast inspiration, fast expiration, and breath holding. Force changes of different breathing conditions were compared. RESULTS Normalized exercise time to exhaustion was significantly longer in IMC (1.27 ± 0.23) compared with expiration-motor coupling (0.82 ± 0.18) and CON (0.91 ± 0.18, P < 0.001). ΔMVC, grip frequency, force, and EMG indices were not different among conditions (all P > 0.05). Electrical stimulation-induced finger extensor force was significant higher during fast inspiration (1.11 ± 0.09) than normal respiration (1.00 ± 0.05) and fast expiration (0.94 ± 0.08, P < 0.05). CONCLUSIONS IMC is an effective way to improve endurance performance of rhythmic handgrip exercise. This is likely due to a reduction in the energy consumption of motion control, as evidenced by similar peripheral fatigue in different conditions and modulation of corticospinal excitability by respiration.
Collapse
Affiliation(s)
- Zhibin Li
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Wei Li
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Ping-Ju Lin
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Tianyu Jia
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Linhong Ji
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | | |
Collapse
|
17
|
Karjalainen S, Aro T, Parviainen T. Coactivation of Autonomic and Central Nervous Systems During Processing of Socially Relevant Information in Autism Spectrum Disorder: A Systematic Review. Neuropsychol Rev 2024; 34:214-231. [PMID: 36849624 PMCID: PMC10920494 DOI: 10.1007/s11065-023-09579-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/29/2022] [Indexed: 03/01/2023]
Abstract
Body-brain interaction provides a novel approach to understand neurodevelopmental conditions such as autism spectrum disorder (ASD). In this systematic review, we analyse the empirical evidence regarding coexisting differences in autonomic (ANS) and central nervous system (CNS) responses to social stimuli between individuals with ASD and typically developing individuals. Moreover, we review evidence of deviations in body-brain interaction during processing of socially relevant information in ASD. We conducted systematic literature searches in PubMed, Medline, PsychInfo, PsychArticles, and Cinahl databases (until 12.1.2022). Studies were included if individuals with ASD were compared with typically developing individuals, study design included processing of social information, and ANS and CNS activity were measured simultaneously. Out of 1892 studies identified based on the titles and abstracts, only six fulfilled the eligibility criteria to be included in synthesis. The quality of these studies was assessed using a quality assessment checklist. The results indicated that individuals with ASD demonstrate atypicalities in ANS and CNS signalling which, however, are context dependent. There were also indications for altered contribution of ANS-CNS interaction in processing of social information in ASD. However, the findings must be considered in the context of several limitations, such as small sample sizes and high variability in (neuro)physiological measures. Indeed, the methodological choices varied considerably, calling for a need for unified guidelines to improve the interpretability of results. We summarize the current experimentally supported understanding of the role of socially relevant body-brain interaction in ASD. Furthermore, we propose developments for future studies to improve incremental knowledge building across studies of ANS-CNS interaction involving individuals with ASD.
Collapse
Affiliation(s)
- Suvi Karjalainen
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland.
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Tuija Aro
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
18
|
Abstract
Historically, the human sense of smell has been regarded as the odd stepchild of the senses, especially compared to the sensory bravado of seeing, touching, and hearing. The idea that the human olfaction has little to contribute to our experience of the world is commonplace, though with the emergence of COVID-19 there has rather been a sea change in this understanding. An ever increasing body of work has convincingly highlighted the keen capabilities of the human nose and the sophistication of the human olfactory system. Here, we provide a concise overview of the neuroscience of human olfaction spanning the last 10-15 years, with focus on the peripheral and central mechanisms that underlie how odor information is processed, packaged, parceled, predicted, and perturbed to serve odor-guided behaviors. We conclude by offering some guideposts for harnessing the next decade of olfactory research in all its shapes and forms.
Collapse
Affiliation(s)
| | - Jay A Gottfried
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci 2023; 26:1670-1684. [PMID: 37697110 DOI: 10.1038/s41593-023-01425-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.
Collapse
Affiliation(s)
- Tahnée Engelen
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Marco Solcà
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Catherine Tallon-Baudry
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France.
| |
Collapse
|
20
|
Zhang X, Liu W, Xu F, He W, Song Y, Li G, Zhang Y, Dai G, Xiao Q, Meng Q, Zeng X, Bai S, Zhong R. Neural signals-based respiratory motion tracking: a proof-of-concept study. Phys Med Biol 2023; 68:195015. [PMID: 37683675 DOI: 10.1088/1361-6560/acf819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Objective.Respiratory motion tracking techniques can provide optimal treatment accuracy for thoracoabdominal radiotherapy and robotic surgery. However, conventional imaging-based respiratory motion tracking techniques are time-lagged owing to the system latency of medical linear accelerators and surgical robots. This study aims to investigate the precursor time of respiratory-related neural signals and analyze the potential of neural signals-based respiratory motion tracking.Approach.The neural signals and respiratory motion from eighteen healthy volunteers were acquired simultaneously using a 256-channel scalp electroencephalography (EEG) system. The neural signals were preprocessed using the MNE python package to extract respiratory-related EEG neural signals. Cross-correlation analysis was performed to assess the precursor time and cross-correlation coefficient between respiratory-related EEG neural signals and respiratory motion.Main results.Respiratory-related neural signals that precede the emergence of respiratory motion are detectable via non-invasive EEG. On average, the precursor time of respiratory-related EEG neural signals was 0.68 s. The representative cross-correlation coefficients between EEG neural signals and respiratory motion of the eighteen healthy subjects varied from 0.22 to 0.87.Significance.Our findings suggest that neural signals have the potential to compensate for the system latency of medical linear accelerators and surgical robots. This indicates that neural signals-based respiratory motion tracking is a potential promising solution to respiratory motion and could be useful in thoracoabdominal radiotherapy and robotic surgery.
Collapse
Affiliation(s)
- Xiangbin Zhang
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wenjie Liu
- Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, People's Republic of China
| | - Feng Xu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Weizhong He
- Magstim Electrical Geodesics, Inc, Plymouth, MA, United States of America
| | - Yingpeng Song
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guangjun Li
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yingjie Zhang
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guyu Dai
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qing Xiao
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qianqian Meng
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xianhu Zeng
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Sen Bai
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Renming Zhong
- Radiotherapy Physics and Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
21
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
22
|
Kluger DS, Forster C, Abbasi O, Chalas N, Villringer A, Gross J. Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling. Nat Commun 2023; 14:4699. [PMID: 37543697 PMCID: PMC10404236 DOI: 10.1038/s41467-023-40250-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/13/2023] [Indexed: 08/07/2023] Open
Abstract
Bodily rhythms such as respiration are increasingly acknowledged to modulate neural oscillations underlying human action, perception, and cognition. Conversely, the link between respiration and aperiodic brain activity - a non-oscillatory reflection of excitation-inhibition (E:I) balance - has remained unstudied. Aiming to disentangle potential respiration-related dynamics of periodic and aperiodic activity, we applied recently developed algorithms of time-resolved parameter estimation to resting-state MEG and EEG data from two labs (total N = 78 participants). We provide evidence that fluctuations of aperiodic brain activity (1/f slope) are phase-locked to the respiratory cycle, which suggests that spontaneous state shifts of excitation-inhibition balance are at least partly influenced by peripheral bodily signals. Moreover, differential temporal dynamics in their coupling to non-oscillatory and oscillatory activity raise the possibility of a functional distinction in the way each component is related to respiration. Our findings highlight the role of respiration as a physiological influence on brain signalling.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Carina Forster
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, MindBrainBody Institute, Berlin, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Liang WM, Xiao J, Ren FF, Chen ZS, Li CR, Bai ZM, Rukšenas O. Acute effect of breathing exercises on muscle tension and executive function under psychological stress. Front Psychol 2023; 14:1155134. [PMID: 37303921 PMCID: PMC10249663 DOI: 10.3389/fpsyg.2023.1155134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Intensive and long-lasting office work is a common cause of muscular and mental disorders due to workplace stressors. Mindful and slow breathing exercises decrease psychological stress and improve mental health, whereas fast breathing increases neuronal excitability. This study aimed to explore the influence of 5 min of mindful breathing (MINDFUL), slow breathing (SLOW), fast breathing (FAST), and listening to music (MUSIC) on muscle tension and executive function during an intensive psychological task. Methods Forty-eight participants (24 men and 24 women) were enrolled. Muscle tension was recorded using surface electromyography, and executive function was assessed using the Stroop Color and Word Test (Stroop Test). The respiration rate (RR), oxygen saturation (SpO2), end-tidal carbon dioxide (EtCO2), and the subjects' preferred method were also recorded. During the experiment, participants performed a one-time baseline test (watching a neutral video for 5 min) and then completed 5 min of MUSIC, MINDFUL, SLOW, and FAST in a random sequence. The Stroop Test was performed after each intervention, including the baseline test, and was followed by a 5 min rest before performing the next intervention. Results None of the methods significantly influenced muscular activity and performance of the Stroop Test in both men and women, based on the average 5 min values. However, at the fifth minute, men's accuracy rate in the Stroop Test was significantly higher after SLOW than after MUSIC and FAST, and the reaction time after the SLOW was the shortest. SpO2 was significantly higher during SLOW than during MUSIC, and RR was relatively lower after SLOW than after MUSIC. Most men preferred SLOW, and most women preferred MUSIC, whereas FAST was the most unfavorable method for both men and women. Conclusion Brief breathing exercises did not substantially affect muscle tension under psychological stress. SLOW demonstrated greater potential for sustaining executive function in men, possibly via its superior respiration efficiency on SpO2 and inhibition of RR.
Collapse
Affiliation(s)
- Wen-Ming Liang
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Physiotherapy and Rehabilitation, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xiao
- Department of Physiotherapy and Rehabilitation, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Fei-Fei Ren
- Department of Physical Education, Beijing Language and Culture University, Beijing, China
| | - Zi-Shuai Chen
- Department of Traditional Chinese Exercises, College of Physical Education, Minzu University of China, Beijing, China
| | - Chun-Ri Li
- Department of Acupuncture, College of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Faculty of Health, Slovak Medical University, Banská Bystrica, Slovakia
| | - Zhen-Min Bai
- Department of Sports Rehabilitation, School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Osvaldas Rukšenas
- Department of Neurobiology and Biophysics, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
24
|
Pfurtscheller G, Kaminski M, J Blinowska K, Rassler B, Schwarz G, Klimesch W. Respiration-entrained brain oscillations in healthy fMRI participants with high anxiety. Sci Rep 2023; 13:2380. [PMID: 36765092 PMCID: PMC9918542 DOI: 10.1038/s41598-023-29482-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Brain-body interactions can be studied by using directed coupling measurements of fMRI oscillations in the low (0.1-0.2 Hz) and high frequency bands (HF; 0.2-0.4 Hz). Recently, a preponderance of oscillations in the information flow between the brainstem and the prefrontal cortex at around 0.15/0.16 Hz was shown. The goal of this study was to investigate the information flow between BOLD-, respiratory-, and heart beat-to-beat interval (RRI) signals in the HF band in healthy subjects with high anxiety during fMRI examinations. A multivariate autoregressive model was concurrently applied to the BOLD signals from the middle frontal gyrus (MFG), precentral gyrus and the brainstem, as well as to respiratory and RRI signals. Causal coupling between all signals was determined using the Directed Transfer Function (DTF). We found a salience of fast respiratory waves with a period of 3.1 s (corresponding to ~ 0.32 Hz) and a highly significant (p < 0.001) top-down information-flow from BOLD oscillations in the MFG to the brainstem. Additionally, there was a significant (p < 0.01) information flow from RRI to respiratory oscillations. We speculate that brain oscillations around 0.32 Hz, triggered by nasal breathing, are projected downwards to the brainstem. Particularly interesting is the driving force of cardiac to respiratory waves with a ratio of 1:1 or 1:2. These results support the binary hierarchy model with preferred respiratory frequencies at 0.32 Hz and 0.16 Hz.
Collapse
Affiliation(s)
- Gert Pfurtscheller
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Maciej Kaminski
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland.
| | - Katarzyna J Blinowska
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109, Warsaw, Poland
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schwarz
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Wolfgang Klimesch
- Centre of Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
25
|
Parviainen T, Lyyra P, Nokia MS. Cardiorespiratory rhythms, brain oscillatory activity and cognition: review of evidence and proposal for significance. Neurosci Biobehav Rev 2022; 142:104908. [DOI: 10.1016/j.neubiorev.2022.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022]
|
26
|
Mongold SJ, Piitulainen H, Legrand T, Ghinst MV, Naeije G, Jousmäki V, Bourguignon M. Temporally stable beta sensorimotor oscillations and cortico-muscular coupling underlie force steadiness. Neuroimage 2022; 261:119491. [PMID: 35908607 DOI: 10.1016/j.neuroimage.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.
Collapse
Affiliation(s)
- Scott J Mongold
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Thomas Legrand
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| |
Collapse
|
27
|
Corticomuscular coherence dependence on body side and visual feedback. Neuroscience 2022; 490:144-154. [DOI: 10.1016/j.neuroscience.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022]
|
28
|
Recent insights into respiratory modulation of brain activity offer new perspectives on cognition and emotion. Biol Psychol 2022; 170:108316. [PMID: 35292337 PMCID: PMC10155500 DOI: 10.1016/j.biopsycho.2022.108316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Over the past six years, a rapidly growing number of studies have shown that respiration exerts a significant influence on sensory, affective, and cognitive processes. At the same time, an increasing amount of experimental evidence indicates that this influence occurs via modulation of neural oscillations and their synchronization between brain areas. In this article, we review the relevant findings and discuss whether they might inform our understanding of a variety of disorders that have been associated with abnormal patterns of respiration. We review literature on the role of respiration in chronic obstructive pulmonary disease (COPD), anxiety (panic attacks), and autism spectrum disorder (ASD), and we conclude that the new insights into respiratory modulation of neuronal activity may help understand the relationship between respiratory abnormalities and cognitive and affective deficits.
Collapse
|
29
|
The influence of the respiratory cycle on reaction times in sensory-cognitive paradigms. Sci Rep 2022; 12:2586. [PMID: 35173204 PMCID: PMC8850565 DOI: 10.1038/s41598-022-06364-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/25/2022] [Indexed: 11/08/2022] Open
Abstract
Behavioural and electrophysiological studies point to an apparent influence of the state of respiration, i.e., whether we inhale or exhale, on brain activity and cognitive performance. Still, the prevalence and relevance of such respiratory-behavioural relations in typical sensory-cognitive tasks remain unclear. We here used a battery of six tasks probing sensory detection, discrimination and short-term memory to address the questions of whether and by how much behaviour covaries with the respiratory cycle. Our results show that participants tend to align their respiratory cycle to the experimental paradigm, in that they tend to inhale around stimulus presentation and exhale when submitting their responses. Furthermore, their reaction times, but not so much their response accuracy, consistently and significantly covary with the respiratory cycle, differing between inhalation and exhalation. This effect is strongest when analysed contingent on the respiratory state around participants' responses. The respective effect sizes of these respiration-behaviour relations are comparable to those seen in other typical experimental manipulations in sensory-cognitive tasks, highlighting the relevance of these effects. Overall, our results support a prominent relation between respiration and sensory-cognitive function and show that sensation is intricately linked to rhythmic bodily or interoceptive functions.
Collapse
|
30
|
Kluger DS, Balestrieri E, Busch NA, Gross J. Respiration aligns perception with neural excitability. eLife 2021; 10:e70907. [PMID: 34904567 PMCID: PMC8763394 DOI: 10.7554/elife.70907] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies from the field of interoception have highlighted the link between bodily and neural rhythms during action, perception, and cognition. The mechanisms underlying functional body-brain coupling, however, are poorly understood, as are the ways in which they modulate behavior. We acquired respiration and human magnetoencephalography data from a near-threshold spatial detection task to investigate the trivariate relationship between respiration, neural excitability, and performance. Respiration was found to significantly modulate perceptual sensitivity as well as posterior alpha power (8-13 Hz), a well-established proxy of cortical excitability. In turn, alpha suppression prior to detected versus undetected targets underscored the behavioral benefits of heightened excitability. Notably, respiration-locked excitability changes were maximized at a respiration phase lag of around -30° and thus temporally preceded performance changes. In line with interoceptive inference accounts, these results suggest that respiration actively aligns sampling of sensory information with transient cycles of heightened excitability to facilitate performance.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Elio Balestrieri
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute of Psychology, University of MünsterMünsterGermany
| | - Niko A Busch
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute of Psychology, University of MünsterMünsterGermany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
31
|
Kluger DS, Gross J. Respiration modulates oscillatory neural network activity at rest. PLoS Biol 2021; 19:e3001457. [PMID: 34762645 PMCID: PMC8610250 DOI: 10.1371/journal.pbio.3001457] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in understanding how respiration affects neural signalling to influence perception, cognition, and behaviour, it is yet unclear to what extent breathing modulates brain oscillations at rest. We acquired respiration and resting state magnetoencephalography (MEG) data from human participants to investigate if, where, and how respiration cyclically modulates oscillatory amplitudes (2 to 150 Hz). Using measures of phase-amplitude coupling, we show respiration-modulated brain oscillations (RMBOs) across all major frequency bands. Sources of these modulations spanned a widespread network of cortical and subcortical brain areas with distinct spectrotemporal modulation profiles. Globally, delta and gamma band modulations varied with distance to the head centre, with stronger modulations at distal (versus central) cortical sites. Overall, we provide the first comprehensive mapping of RMBOs across the entire brain, highlighting respiration-brain coupling as a fundamental mechanism to shape neural processing within canonical resting state and respiratory control networks (RCNs).
Collapse
Affiliation(s)
- Daniel S. Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Muenster, Muenster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- * E-mail:
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Muenster, Muenster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
32
|
Gross J, Kluger DS, Abbasi O, Chalas N, Steingräber N, Daube C, Schoffelen JM. Comparison of undirected frequency-domain connectivity measures for cerebro-peripheral analysis. Neuroimage 2021; 245:118660. [PMID: 34715317 DOI: 10.1016/j.neuroimage.2021.118660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 12/31/2022] Open
Abstract
Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity (measured by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or physiological rhythms (such as pupil dilation or respiration). Due to the distinct rhythmicity of these signals, undirected connectivity is typically assessed in the frequency domain. This leaves the investigator with two critical choices, namely a) the appropriate measure for spectral estimation (i.e., the transformation into the frequency domain) and b) the actual connectivity measure. As there is no consensus regarding best practice, a wide variety of methods has been applied. Here we systematically compare combinations of six standard spectral estimation methods (comprising fast Fourier and continuous wavelet transformation, bandpass filtering, and short-time Fourier transformation) and six connectivity measures (phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase consistency, magnitude squared coherence, and entropy). We provide performance measures of each combination for simulated data (with precise control over true connectivity), a single-subject set of real MEG data, and a full group analysis of real MEG data. Our results show that, overall, WPPC and GCMI tend to outperform other connectivity measures, while entropy was the only measure sensitive to bimodal deviations from a uniform phase distribution. For group analysis, choosing the appropriate spectral estimation method appears to be more critical than the connectivity measure. We discuss practical implications (sampling rate, SNR, computation time, and data length) and aim to provide recommendations tailored to particular research questions.
Collapse
Affiliation(s)
- Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Nikolas Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Nadine Steingräber
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Christoph Daube
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK
| | - Jan-Mathijs Schoffelen
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, NL, the Netherlands
| |
Collapse
|
33
|
Boyadzhieva A, Kayhan E. Keeping the Breath in Mind: Respiration, Neural Oscillations, and the Free Energy Principle. Front Neurosci 2021; 15:647579. [PMID: 34267621 PMCID: PMC8275985 DOI: 10.3389/fnins.2021.647579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Scientific interest in the brain and body interactions has been surging in recent years. One fundamental yet underexplored aspect of brain and body interactions is the link between the respiratory and the nervous systems. In this article, we give an overview of the emerging literature on how respiration modulates neural, cognitive and emotional processes. Moreover, we present a perspective linking respiration to the free-energy principle. We frame volitional modulation of the breath as an active inference mechanism in which sensory evidence is recontextualized to alter interoceptive models. We further propose that respiration-entrained gamma oscillations may reflect the propagation of prediction errors from the sensory level up to cortical regions in order to alter higher level predictions. Accordingly, controlled breathing emerges as an easily accessible tool for emotional, cognitive, and physiological regulation.
Collapse
Affiliation(s)
| | - Ezgi Kayhan
- Department of Developmental Psychology, University of Potsdam, Potsdam, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
34
|
Boulanger-Bertolus J, Mouly AM. Ultrasonic Vocalizations Emission across Development in Rats: Coordination with Respiration and Impact on Brain Neural Dynamics. Brain Sci 2021; 11:616. [PMID: 34064825 PMCID: PMC8150956 DOI: 10.3390/brainsci11050616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 01/09/2023] Open
Abstract
Rats communicate using ultrasonic vocalizations (USV) throughout their life when confronted with emotionally stimulating situations, either negative or positive. The context of USV emission and the psychoacoustic characteristics of the vocalizations change greatly between infancy and adulthood. Importantly, the production of USV is tightly coordinated with respiration, and respiratory rhythm is known to influence brain activity and cognitive functions. This review goes through the acoustic characteristics and mechanisms of production of USV both in infant and adult rats and emphasizes the tight relationships that exist between USV emission and respiration throughout the rat's development. It further describes how USV emission and respiration collectively affect brain oscillatory activities. We discuss the possible association of USV emission with emotional memory processes and point out several avenues of research on USV that are currently overlooked and could fill gaps in our knowledge.
Collapse
Affiliation(s)
- Julie Boulanger-Bertolus
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109-5048, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Lyon 1, 69366 Lyon, France
| |
Collapse
|