1
|
Wongtrakun J, Zhou SH, O'Connell RG, Chong TTJ, Bellgrove MA, Coxon JP. The role of human intraparietal sulcus in evidence accumulation revealed by EEG and model-informed fMRI: IPS accumulates evidence during decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636628. [PMID: 39975060 PMCID: PMC11838566 DOI: 10.1101/2025.02.05.636628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sequential sampling models propose that the repeated sampling of sensory information is a fundamental component of perceptual decision-making. Electroencephalographic investigations in humans have demonstrated motor-independent representations of evidence accumulation, but such observations have seldom been made in neuroimaging studies exploring the neuroanatomical origins of evidence accumulation. Here, we aimed to reveal the neuroanatomical locus of sensory evidence accumulation in the human brain by regressing an electrophysiological marker of evidence accumulation (centroparietal positivity, CPP) against changes in blood oxygen level-dependent (BOLD) signal during perceptual decision-making. Our cross-modal imaging approach revealed a cluster within left intraparietal sulcus (IPS), located within putative lateral intraparietal area (region hIP3), for which BOLD signals scaled in relation to the slope of the CPP. Furthermore, the drift rate parameter of a drift diffusion model parametrically modulated BOLD activity within an overlapping region of left IPS. In contrast, parametric modulation by reaction time revealed a distributed fronto-parietal network, demonstrating the utility of our approach for isolating a discrete neuroanatomical locus of evidence accumulation. Together, our findings provide strong support for intraparietal sulcus involvement in the accumulation of sensory evidence during human perceptual decision-making.
Collapse
Affiliation(s)
- Jaeger Wongtrakun
- School of Psychological Sciences, Monash University, Victoria, Australia
| | - Shou-Han Zhou
- School of Psychological Sciences, Monash University, Victoria, Australia
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | - Redmond G O'Connell
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Trevor T-J Chong
- School of Psychological Sciences, Monash University, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Mark A Bellgrove
- School of Psychological Sciences, Monash University, Victoria, Australia
| | - James P Coxon
- School of Psychological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
2
|
Lee DH, Chung CK, Kim JS, Ryun S. Unraveling tactile categorization and decision-making in the subregions of supramarginal gyrus via direct cortical stimulation. Clin Neurophysiol 2024; 158:16-26. [PMID: 38134532 DOI: 10.1016/j.clinph.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE This study aims to investigate the potential of direct cortical stimulation (DCS) to modulate tactile categorization and decision-making, as well as to identify the specific locations where these cognitive functions occur. METHODS We analyzed behavioral changes in three epilepsy patients with implanted electrodes using electrocorticography (ECoG) and a vibrotactile discrimination task. DCS was applied to investigate its impact on tactile categorization and decision-making processes. We determined the precise location of the electrodes where each cognitive function was modulated. RESULTS This functional discrimination was related with gamma band activity from ECoG. DCS selectively affected either tactile categorization or decision-making processes. Tactile categorization was modulated by stimulating the rostral part of the supramarginal gyrus, while decision-making was modulated by stimulating the caudal part. CONCLUSIONS DCS can enhance cognitive processes and map brain regions responsible for tactile categorization and decision-making within the supramarginal gyrus. This study also demonstrates that DCS and the gamma activity of ECoG can concordantly identify the detailed brain mapping in a tactile process compared to other functional neuroimaging. SIGNIFICANCE The combination of DCS and ECoG gamma activity provides a more nuanced and detailed understanding of brain function than traditional neuroimaging techniques alone.
Collapse
Affiliation(s)
- Dong Hyeok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - June Sic Kim
- The Research Institute of Basic Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seokyun Ryun
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Lee DH, Kim JS, Ryun S, Chung CK. Discrete tactile feature comparison subprocess in human brain during a decision-making process. Cortex 2024; 171:383-396. [PMID: 38101274 DOI: 10.1016/j.cortex.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
From sensory input to motor action, encoded sensory features flow sequentially along cortical networks for decision-making. Despite numerous studies probing the decision-making process, the subprocess that compares encoded sensory features before making a decision has not been fully elucidated in humans. In this study, we investigated sensory feature comparison by presenting two different tasks (a discrimination task, in which participants made decisions by comparing two sequential tactile stimuli; and a detection task, in which participants responded to the second tactile stimulus in two sequential stimuli) to epilepsy patients while recording electrocorticography (ECoG). By comparing tactile-specific gamma band (30-200 Hz) power between the two tasks, the decision-making process was divided into three subprocesses-categorization, comparison, and decision-consistent with a previous study (Heekeren et al., 2004). These subprocesses occurred sequentially in the dorsolateral prefrontal cortex, premotor cortex, secondary somatosensory cortex, and parietal lobe. Gamma power showed two different patterns of correlation with response time. In the inferior parietal lobule (IPL), there was a negative correlation. This means that as gamma power increased, response time decreased. In the secondary somatosensory cortex (S2), there was a positive correlation. Here, as gamma power increased, response time also increased. These results indicate that the IPL and S2 encode tactile feature comparison differently. Our connectivity analysis showed that the S2 transmitted tactile information to the IPL. Our findings suggest that multiple areas in the parietal lobe encode sensory feature comparison differently before making a decision.
Collapse
Affiliation(s)
- Dong Hyeok Lee
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - June Sic Kim
- The Research Institute of Basic Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seokyun Ryun
- Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Sandhaeger F, Omejc N, Pape AA, Siegel M. Abstract perceptual choice signals during action-linked decisions in the human brain. PLoS Biol 2023; 21:e3002324. [PMID: 37816222 PMCID: PMC10564462 DOI: 10.1371/journal.pbio.3002324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Humans can make abstract choices independent of motor actions. However, in laboratory tasks, choices are typically reported with an associated action. Consequentially, knowledge about the neural representation of abstract choices is sparse, and choices are often thought to evolve as motor intentions. Here, we show that in the human brain, perceptual choices are represented in an abstract, motor-independent manner, even when they are directly linked to an action. We measured MEG signals while participants made choices with known or unknown motor response mapping. Using multivariate decoding, we quantified stimulus, perceptual choice, and motor response information with distinct cortical distributions. Choice representations were invariant to whether the response mapping was known during stimulus presentation, and they occupied a distinct representational space from motor signals. As expected from an internal decision variable, they were informed by the stimuli, and their strength predicted decision confidence and accuracy. Our results demonstrate abstract neural choice signals that generalize to action-linked decisions, suggesting a general role of an abstract choice stage in human decision-making.
Collapse
Affiliation(s)
- Florian Sandhaeger
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Nina Omejc
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Anna-Antonia Pape
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- MEG Center, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
5
|
Onishi H, Nagasaka K, Yokota H, Kojima S, Ohno K, Sakurai N, Kodama N, Sato D, Otsuru N. Association between somatosensory sensitivity and regional gray matter volume in healthy young volunteers: a voxel-based morphometry study. Cereb Cortex 2023; 33:2001-2010. [PMID: 35580840 PMCID: PMC9977372 DOI: 10.1093/cercor/bhac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Two-point discrimination (2PD) test reflects somatosensory spatial discrimination ability, but evidence on the relationship between 2PD and cortical gray matter (GM) volume is limited. This study aimed to analyze the relationship between cortical GM volume and 2PD threshold in young healthy individuals and to clarify the characteristics of brain structure reflecting the individual differences in somatosensory function. 2PD was measured in 42 healthy (20 females) volunteers aged 20-32 years using a custom-made test system that can be controlled by a personal computer. The 2PD of the right index finger measured with this device has been confirmed to show good reproducibility. T1-weighted images were acquired using a 3-T magnetic resonance imaging scanner for voxel-based morphometry analysis. The mean 2PD threshold was 2.58 ± 0.54 mm. Whole-brain multiple regression analysis of the relationship between 2PD and GM volume showed that a lower 2PD threshold (i.e. better somatosensory function) significantly correlated with decreased GM volume from the middle temporal gyrus to the inferior parietal lobule (IPL) in the contralateral hemisphere. In conclusion, a lower GM volume in the middle temporal gyrus and IPL correlates with better somatosensory function. Thus, cortical GM volume may be a biomarker of somatosensory function.
Collapse
Affiliation(s)
- Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Ken Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Noriko Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|