1
|
Vockert N, Machts J, Kleineidam L, Nemali A, Incesoy EI, Bernal J, Schütze H, Yakupov R, Peters O, Gref D, Schneider LS, Preis L, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Rostamzadeh A, Glanz W, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Spottke A, Roy N, Heneka MT, Brosseron F, Wagner M, Wolfsgruber S, Dobisch L, Dechent P, Hetzer S, Scheffler K, Zeidman P, Stern Y, Schott BH, Jessen F, Düzel E, Maass A, Ziegler G. Cognitive reserve against Alzheimer's pathology is linked to brain activity during memory formation. Nat Commun 2024; 15:9815. [PMID: 39537609 PMCID: PMC11561234 DOI: 10.1038/s41467-024-53360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The cognitive reserve (CR) hypothesis posits that individuals can differ in how their brain function is disrupted by pathology associated with aging and neurodegeneration. Here, we test this hypothesis in the continuum from cognitively normal to at-risk stages for Alzheimer's Disease (AD) to AD dementia using longitudinal data from 490 participants of the DELCODE multicentric observational study. Brain function is measured using task fMRI of visual memory encoding. Using a multivariate moderation analysis, we identify a CR-related activity pattern underlying successful memory encoding that moderates the detrimental effect of AD pathological load on cognitive performance. CR is mainly represented by a more pronounced expression of the task-active network encompassing deactivation of the default mode network (DMN) and activation of inferior temporal regions including the fusiform gyrus. We devise personalized fMRI-based CR scores that moderate the impact of AD pathology on cognitive performance and are positively associated with years of education. Furthermore, higher CR scores attenuate the effect of AD pathology on cognitive decline over time. Our findings primarily provide evidence for the maintenance of core cognitive circuits including the DMN as the neural basis of CR. Individual brain activity levels of these areas during memory encoding have prognostic value for future cognitive decline.
Collapse
Affiliation(s)
- Niklas Vockert
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Judith Machts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Aditya Nemali
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Daria Gref
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Luisa Sophie Schneider
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| | - Lukas Preis
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
- School of Medicine, Technical University of Munich, Department of Psychiatry and Psychotherapy, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ayda Rostamzadeh
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Doreen Goerss
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | | | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- University of Bonn Medical Center, Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Goettingen, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, University of Cologne, Koeln, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Koeln, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
2
|
Soch J, Richter A, Kizilirmak JM, Schütze H, Ziegler G, Altenstein S, Brosseron F, Dechent P, Fliessbach K, Freiesleben SD, Glanz W, Gref D, Heneka MT, Hetzer S, Incesoy EI, Kilimann I, Kimmich O, Kleineidam L, Kuhn E, Laske C, Lohse A, Lüsebrink F, Munk MH, Peters O, Preis L, Priller J, Ramirez A, Roeske S, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schmid M, Schneider A, Spottke A, Spruth EJ, Teipel S, Wiltfang J, Jessen F, Wagner M, Düzel E, Schott BH. Single-value brain activity scores reflect both severity and risk across the Alzheimer's continuum. Brain 2024; 147:3789-3803. [PMID: 38743817 PMCID: PMC11531847 DOI: 10.1093/brain/awae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/22/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional MRI activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive ageing. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analysed subsequent memory functional MRI data from individuals with SCD, MCI and AD dementia as well as healthy controls and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-centre DELCODE study (n = 468). Based on the individual participants' whole-brain functional MRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity and APOE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to healthy controls, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aβ-positive and Aβ-negative individuals in SCD and AD-rel, and between ApoE ɛ4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.
Collapse
Affiliation(s)
- Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), 10117 Berlin, Germany
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS), 04103 Leipzig, Germany
| | - Anni Richter
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, 39120 Magdeburg, Germany
| | - Jasmin M Kizilirmak
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Research Area Educational Careers and Graduate Employment, German Center for Higher Education Research and Science Studies (DZHW), 30159 Hannover, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg August University, 37075 Göttingen, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Silka Dawn Freiesleben
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Daria Gref
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, 39120 Magdeburg, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Okka Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Elizabeth Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Lukas Preis
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, 81675 Munich, Germany
- Centre for Clinical Brain Sciences, University of Edinburgh and UK DRI, Edinburgh EH16 4SB, UK
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50924 Cologne, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Ayda Rostamzadeh
- Medical Faculty, Department of Psychiatry, University of Cologne, 50924 Cologne, Germany
| | - Nina Roy-Kluth
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Institute for Medical Biometry, University Hospital Bonn, 53127 Bonn, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), 18147 Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147 Rostock, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, 37075 Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany
- Medical Faculty, Department of Psychiatry, University of Cologne, 50924 Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127 Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, 37075 Göttingen, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| |
Collapse
|
3
|
Kizilirmak JM, Soch J, Richter A, Schott BH. Age-related differences in fMRI subsequent memory effects are directly linked to local grey matter volume differences. Neurobiol Aging 2024; 134:160-164. [PMID: 38096708 DOI: 10.1016/j.neurobiolaging.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Episodic memory performance declines with increasing age, and older adults typically show reduced activation of inferior temporo-parietal cortices in functional magnetic resonance imaging (fMRI) studies of episodic memory formation. Given the age-related cortical volume loss, it is conceivable that age-related reduction of memory-related fMRI activity may be partially attributable to reduced grey matter volume (GMV). We performed a voxel-wise multimodal neuroimaging analysis of fMRI correlates of successful memory encoding, using regional GMV as covariate. In a large cohort of healthy adults (106 young, 111 older), older adults showed reduced GMV across the entire neocortex and reduced encoding-related activation of inferior temporal and parieto-occipital cortices compared to young adults. Importantly, these reduced fMRI activations during successful encoding could in part be attributed to lower regional GMV. Our results highlight the importance of controlling for structural MRI differences in fMRI studies in older adults but also demonstrate that age-related differences in memory-related fMRI activity cannot be attributed to structural variability alone.
Collapse
Affiliation(s)
- Jasmin M Kizilirmak
- Cognitive Geriatric Psychiatry Group, German Center for Neurodegenerative Diseases, Göttingen, Germany; Neurodidactics and NeuroLab, Institute for Psychology, University of Hildesheim, Hildesheim, Germany; German Centre for Higher Education Research and Science Studies, Hannover, Germany.
| | - Joram Soch
- Cognitive Geriatric Psychiatry Group, German Center for Neurodegenerative Diseases, Göttingen, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg, Halle, Germany; German Center for Mental Health (DZPG), Germany
| | - Björn H Schott
- Cognitive Geriatric Psychiatry Group, German Center for Neurodegenerative Diseases, Göttingen, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Schott BH, Soch J, Kizilirmak JM, Schütze H, Assmann A, Maass A, Ziegler G, Sauvage M, Richter A. Inhibitory temporo-parietal effective connectivity is associated with explicit memory performance in older adults. iScience 2023; 26:107765. [PMID: 37744028 PMCID: PMC10514462 DOI: 10.1016/j.isci.2023.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Successful explicit memory encoding is associated with inferior temporal activations and medial parietal deactivations, which are attenuated in aging. Here we used dynamic causal modeling (DCM) of functional magnetic resonance imaging data to elucidate effective connectivity patterns between hippocampus, parahippocampal place area (PPA), and precuneus during encoding of novel visual scenes. In 117 young adults, DCM revealed pronounced activating input from the PPA to the hippocampus and inhibitory connectivity from the PPA to the precuneus during novelty processing, with both being enhanced during successful encoding. This pattern could be replicated in two cohorts (N = 141 and 148) of young and older adults. In both cohorts, older adults selectively exhibited attenuated inhibitory PPA-precuneus connectivity, which correlated negatively with memory performance. Our results provide insight into the network dynamics underlying explicit memory encoding and suggest that age-related differences in memory-related network activity are, at least partly, attributable to altered temporo-parietal neocortical connectivity.
Collapse
Affiliation(s)
- Björn H. Schott
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany
| | - Jasmin M. Kizilirmak
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurodidactics and NeuroLab, Institute for Psychology, University of Hildesheim, Hildesheim, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Assmann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | | | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- German Center for Mental Health (DZPG), Magdeburg, Germany
- Center for Intervention and Research on adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C) Jena-Magdeburg-Halle, Magdeburg, Germany
| |
Collapse
|
5
|
Kizilirmak JM, Soch J, Schütze H, Düzel E, Feldhoff H, Fischer L, Knopf L, Maass A, Raschick M, Schult A, Yakupov R, Richter A, Schott BH. The relationship between resting-state amplitude fluctuations and memory-related deactivations of the default mode network in young and older adults. Hum Brain Mapp 2023; 44:3586-3609. [PMID: 37051727 PMCID: PMC10203811 DOI: 10.1002/hbm.26299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
The default mode network (DMN) typically exhibits deactivations during demanding tasks compared to periods of relative rest. In functional magnetic resonance imaging (fMRI) studies of episodic memory encoding, increased activity in DMN regions even predicts later forgetting in young healthy adults. This association is attenuated in older adults and, in some instances, increased DMN activity even predicts remembering rather than forgetting. It is yet unclear whether this phenomenon is due to a compensatory mechanism, such as self-referential or schema-dependent encoding, or whether it reflects overall reduced DMN activity modulation in older age. We approached this question by systematically comparing DMN activity during successful encoding and tonic, task-independent, DMN activity at rest in a sample of 106 young (18-35 years) and 111 older (60-80 years) healthy participants. Using voxel-wise multimodal analyses, we assessed the age-dependent relationship between DMN resting-state amplitude (mean percent amplitude of fluctuation, mPerAF) and DMN fMRI signals related to successful memory encoding, as well as their modulation by age-related hippocampal volume loss, while controlling for regional grey matter volume. Older adults showed lower resting-state DMN amplitudes and lower task-related deactivations. However, a negative relationship between resting-state mPerAF and subsequent memory effect within the precuneus was observed only in young, but not older adults. Hippocampal volumes showed no relationship with the DMN subsequent memory effect or mPerAF. Lastly, older adults with higher mPerAF in the DMN at rest tend to show higher memory performance, pointing towards the importance of a maintained ability to modulate DMN activity in old age.
Collapse
Affiliation(s)
- Jasmin M. Kizilirmak
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Neurodidactics and NeuroLabInstitute for Psychology, University of HildesheimHildesheimGermany
- German Centre for Higher Education Research and Science StudiesHannoverGermany
| | - Joram Soch
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Hartmut Schütze
- Medical Faculty, Institute for Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| | - Emrah Düzel
- Medical Faculty, Institute for Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | | | | | - Lea Knopf
- Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Anne Maass
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | | | | | - Renat Yakupov
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Anni Richter
- Leibniz Institute for NeurobiologyMagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Jena‐Magdeburg‐HalleGermany
| | - Björn H. Schott
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- Leibniz Institute for NeurobiologyMagdeburgGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
6
|
Raschick M, Richter A, Fischer L, Knopf L, Schult A, Yakupov R, Behnisch G, Guttek K, Düzel E, Dunay IR, Seidenbecher CI, Schraven B, Reinhold D, Schott BH. Plasma concentrations of anti-inflammatory cytokine TGF-β are associated with hippocampal structure related to explicit memory performance in older adults. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02638-1. [PMID: 37115329 PMCID: PMC10374779 DOI: 10.1007/s00702-023-02638-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-β1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-β1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.
Collapse
Affiliation(s)
- Matthias Raschick
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gusalija Behnisch
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
7
|
Richter A, Soch J, Kizilirmak JM, Fischer L, Schütze H, Assmann A, Behnisch G, Feldhoff H, Knopf L, Raschick M, Schult A, Seidenbecher CI, Yakupov R, Düzel E, Schott BH. Single‐value scores of memory‐related brain activity reflect dissociable neuropsychological and anatomical signatures of neurocognitive aging. Hum Brain Mapp 2023; 44:3283-3301. [PMID: 36972323 PMCID: PMC10171506 DOI: 10.1002/hbm.26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.
Collapse
|
8
|
Sisakhti M, Sachdev PS, Batouli SAH. The Effect of Cognitive Load on the Retrieval of Long-Term Memory: An fMRI Study. Front Hum Neurosci 2021; 15:700146. [PMID: 34720904 PMCID: PMC8548369 DOI: 10.3389/fnhum.2021.700146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
One of the less well-understood aspects of memory function is the mechanism by which the brain responds to an increasing load of memory, either during encoding or retrieval. Identifying the brain structures which manage this increasing cognitive demand would enhance our knowledge of human memory. Despite numerous studies about the effect of cognitive loads on working memory processes, whether these can be applied to long-term memory processes is unclear. We asked 32 healthy young volunteers to memorize all possible details of 24 images over a 12-day period ending 2 days before the fMRI scan. The images were of 12 categories relevant to daily events, with each category including a high and a low load image. Behavioral assessments on a separate group of participants (#22) provided the average loads of the images. The participants had to retrieve these previously memorized images during the fMRI scan in 15 s, with their eyes closed. We observed seven brain structures showing the highest activation with increasing load of the retrieved images, viz. parahippocampus, cerebellum, superior lateral occipital, fusiform and lingual gyri, precuneus, and posterior cingulate gyrus. Some structures showed reduced activation when retrieving higher load images, such as the anterior cingulate, insula, and supramarginal and postcentral gyri. The findings of this study revealed that the mechanism by which a difficult-to-retrieve memory is handled is mainly by elevating the activation of the responsible brain areas and not by getting other brain regions involved, which is a help to better understand the LTM retrieval process in the human brain.
Collapse
Affiliation(s)
- Minoo Sisakhti
- Institute for Cognitive Sciences Studies, Tehran, Iran.,Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Seyed Amir Hossein Batouli
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Soch J, Richter A, Schütze H, Kizilirmak JM, Assmann A, Behnisch G, Feldhoff H, Fischer L, Heil J, Knopf L, Merkel C, Raschick M, Schietke C, Schult A, Seidenbecher CI, Yakupov R, Ziegler G, Wiltfang J, Düzel E, Schott BH. A comprehensive score reflecting memory-related fMRI activations and deactivations as potential biomarker for neurocognitive aging. Hum Brain Mapp 2021; 42:4478-4496. [PMID: 34132437 PMCID: PMC8410542 DOI: 10.1002/hbm.25559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Older adults and particularly those at risk for developing dementia typically show a decline in episodic memory performance, which has been associated with altered memory network activity detectable via functional magnetic resonance imaging (fMRI). To quantify the degree of these alterations, a score has been developed as a putative imaging biomarker for successful aging in memory for older adults (Functional Activity Deviations during Encoding, FADE; Düzel et al., Hippocampus, 2011; 21: 803-814). Here, we introduce and validate a more comprehensive version of the FADE score, termed FADE-SAME (Similarity of Activations during Memory Encoding), which differs from the original FADE score by considering not only activations but also deactivations in fMRI contrasts of stimulus novelty and successful encoding, and by taking into account the variance of young adults' activations. We computed both scores for novelty and subsequent memory contrasts in a cohort of 217 healthy adults, including 106 young and 111 older participants, as well as a replication cohort of 117 young subjects. We further tested the stability and generalizability of both scores by controlling for different MR scanners and gender, as well as by using different data sets of young adults as reference samples. Both scores showed robust age-group-related differences for the subsequent memory contrast, and the FADE-SAME score additionally exhibited age-group-related differences for the novelty contrast. Furthermore, both scores correlate with behavioral measures of cognitive aging, namely memory performance. Taken together, our results suggest that single-value scores of memory-related fMRI responses may constitute promising biomarkers for quantifying neurocognitive aging.
Collapse
Affiliation(s)
- Joram Soch
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Bernstein Center for Computational Neuroscience (BCCN)BerlinGermany
| | - Anni Richter
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
| | - Hartmut Schütze
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | | | - Anne Assmann
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | | | - Hannah Feldhoff
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Julius Heil
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Lea Knopf
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Christian Merkel
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Clara‐Johanna Schietke
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Annika Schult
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Constanze I. Seidenbecher
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
| | - Renat Yakupov
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Gabriel Ziegler
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Emrah Düzel
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
| | - Björn Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
10
|
Kizilirmak JM, Fischer L, Krause J, Soch J, Richter A, Schott BH. Learning by Insight-Like Sudden Comprehension as a Potential Strategy to Improve Memory Encoding in Older Adults. Front Aging Neurosci 2021; 13:661346. [PMID: 34194316 PMCID: PMC8236646 DOI: 10.3389/fnagi.2021.661346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/07/2021] [Indexed: 12/23/2022] Open
Abstract
Several cognitive functions show a decline with advanced age, most prominently episodic memory. Problem-solving by insight represents a special associative form of problem-solving that has previously been shown to facilitate long-term memory formation. Recent neuroimaging evidence suggests that the encoding network involved in insight-based memory formation is largely hippocampus-independent. This may represent a potential advantage in older adults, as the hippocampus is one of the earliest brain structures to show age-related volume loss and functional impairment. Here, we investigated the potential beneficial effects of learning by insight in healthy older (60-79 years) compared to young adults (19-28 years). To this end, we compared later memory performance for verbal riddles encoded incidentally via induced insight-like sudden comprehension in both age groups. We employed a variant of the Compound Remote Associate Task (CRAT) for incidental encoding, during which participants were instructed to judge the solvability of items. In a 24-h delayed surprise memory test, participants attempted to solve previously encountered items and additionally performed a recognition memory test. During this test, older adults correctly solved an equal proportion of new CRA items compared to young adults and both age groups reported a similar frequency of Aha! experiences. While overall memory performance was better in young participants (higher proportion of correctly solved and correctly recognized old CRA items), older participants exhibited a stronger beneficial effect of insight-like sudden comprehension on later recognition memory for CRA items. Our results suggest that learning via insight might constitute a promising approach to improve memory function in old age.
Collapse
Affiliation(s)
- Jasmin M. Kizilirmak
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Institute of Psychology, University of Hildesheim, Hildesheim, Germany
| | | | - Justus Krause
- Institute of Psychology, University of Hildesheim, Hildesheim, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Björn H. Schott
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|