1
|
Kerdreux E, Fraize J, Ntorkou A, Garzón P, Delorme R, Elmaleh‐Berges M, Duchesnay E, Hertz‐Pannier L, Leprince Y, Mangin J, Germanaud D. Pattern of Deep Grey Matter Undersizing Boosts MRI-Based Diagnostic Classifiers in Fetal Alcohol Spectrum Disorders. Hum Brain Mapp 2025; 46:e70233. [PMID: 40387267 PMCID: PMC12087005 DOI: 10.1002/hbm.70233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
In fetal alcohol spectrum disorders (FASD), brain growth deficiency is a hallmark of subjects with both fetal alcohol syndrome (FAS) and nonsyndromic FASD (NS-FASD, that is, those without specific diagnostic features). Although previous studies have suggested that the deep grey matter is heterogeneously affected at the group level, it has not yet been established within proper scaling modeling, nor has it been given a place in the FASD diagnostic criteria where neuroanatomical features still contribute almost nothing to diagnostic specificity. We segmented a 1.5T T1-weighted brain MRI dataset of 90 monocentric FASD patients (53 FAS, 37 NS-FASD) and 95 typically developing controls (ages 6-20), using volBrain-vol2Brain as reference, and both Freesurfer-SAMSEG and FSL-FIRST to estimate result robustness. The segmentation resulted in seven anatomical volumes: total brain (TBV), total deep grey matter, caudate, putamen, globus pallidus, thalamus, and accumbens. After adjusting for confounds, we fitted the scaling relationship between deep grey matter nuclei volumes (Vi) and TBV (Vi = b × TBVa) and evaluated the effect of FAS on scaling. We then estimated the volumetric deviation from typical scaling (vDTS) for each deep grey nucleus volume in the FAS sample. Finally, we tested the improvement of FAS versus control classifiers based on total deep grey matter vDTS or total brain deviation from typical volume, by adding the five nuclear vDTS, both in terms of performance and generalizability to NS-FASD. Scaling was significantly different between the FAS and control groups for all deep grey matter nuclei (p < 0.05). We confirmed the undersizing of total deep grey matter in FAS (vDTS = -6%) and identified a pattern of volumetric undersizing, most pronounced in the caudate (-13%) and globus pallidus (-11%), less so in the thalamus (-4%) and putamen (-2%) and sparing the accumbens (0%). These findings were consistent across segmentation tools, despite variations in magnitude. The pattern-based classifier was more efficient than the one based on total deep grey matter alone (p < 0.001) and identified 32.4% of the NS-FASD as having a FAS-like deep grey matter phenotype, compared to 18.9% with the classifier based on total deep grey matter alone (p = 0.113). Added to a classifier based on TBV only, the pattern improved the performance (p = 0.033) of the model and increased identification of NS-FASD with a FAS-like neuroanatomical phenotype from 37.8% to 62.2% (p = 0.002). This study details the volumetric undersizing of deep grey matter in a large series of FASD patients. It reveals a differential pattern of vulnerability to prenatal alcohol exposure partially convergent across automatic segmentation tools. It also strongly suggests that this pattern of volumetric undersizing in the deep grey matter may contribute to a neuroanatomical signature of FAS that is usable to improve the probabilistic diagnosis of NS-FASD by means of MRI-based diagnostic classifiers.
Collapse
Affiliation(s)
- Eliot Kerdreux
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Université Paris Cité, Inserm, NeuroDiderot, inDEV TeamParisFrance
| | - Justine Fraize
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Université Paris Cité, Inserm, NeuroDiderot, inDEV TeamParisFrance
| | - Alexandra Ntorkou
- Department of Pediatric Radiology, Centre of Excellence InovAND, AP‐HPRobert Debré HospitalParisFrance
| | - Pauline Garzón
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Université Paris Cité, Inserm, NeuroDiderot, inDEV TeamParisFrance
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Centre of Excellence InovAND, AP‐HPRobert Debré HospitalParisFrance
| | - Monique Elmaleh‐Berges
- Université Paris Cité, Inserm, NeuroDiderot, inDEV TeamParisFrance
- Department of Pediatric Radiology, Centre of Excellence InovAND, AP‐HPRobert Debré HospitalParisFrance
| | - Edouard Duchesnay
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, BAOBABGif‐sur‐YvetteFrance
| | - Lucie Hertz‐Pannier
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Université Paris Cité, Inserm, NeuroDiderot, inDEV TeamParisFrance
| | - Yann Leprince
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Université Paris Cité, Inserm, NeuroDiderot, inDEV TeamParisFrance
| | - Jean‐François Mangin
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, BAOBABGif‐sur‐YvetteFrance
| | - David Germanaud
- Université Paris‐Saclay, CEA, Joliot Institute, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Université Paris Cité, Inserm, NeuroDiderot, inDEV TeamParisFrance
- Department of Genetics, Centre of Excellence InovAND, AP‐HPRobert Debré HospitalParisFrance
| |
Collapse
|
2
|
Liu J, Wang J, Song Y, Becker B, Ming X, Lei Y. Enhanced disgust generalization in obsessive-compulsive disorder is related to insula and putamen hyperactivity. Psychol Med 2025; 55:e116. [PMID: 40223574 DOI: 10.1017/s0033291725000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BACKGROUND Compulsive cleaning is a characteristic symptom of a particular subtype of obsessive-compulsive disorder (OCD) and is often accompanied by intense disgust. While overgeneralization of threat is a key factor in the development of obsessive-compulsive symptoms, previous studies have primarily focused on fear generalization and have rarely examined disgust generalization. A systematic determination of the behavioral and neural mechanisms underlying disgust generalization in individuals with contamination concern is crucial for enhancing our understanding of OCD. METHOD In this study, we recruited 27 individuals with high contamination concerns and 30 individuals with low contamination concerns. Both groups performed a disgust generalization task while undergoing functional magnetic resonance imaging (fMRI). RESULTS The results revealed that individuals with high contamination concern had higher disgust expectancy scores for the generalization stimulus GS4 (the stimulus most similar to CS+) and exhibited higher levels of activation in the left insula and left putamen. Moreover, the activation of the left insula and putamen were positively correlated with a questionnaire core of the ratings of disgust and also positively correlated with the expectancy rating of CS+ during the generalization stage. CONCLUSION Hyperactivation of the insula and putamen during disgust generalization neutrally mediates the higher degree of disgust generalization in subclinical OCD individuals. This study indicates that altered disgust generalization plays an important role in individuals with high contamination concerns and provides evidence of the neural mechanisms involved. These insights may serve as a basis for further exploration of the pathogenesis of OCD in the future.
Collapse
Affiliation(s)
- Juntong Liu
- College of Psychology, Shenzhen University, Shenzhen, China
- Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Jinxia Wang
- Institution for Brain and Psychological Science, Sichuan Normal University, Chengdu, China
- Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen, China
- Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Yuchen Song
- Institution for Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Xianchao Ming
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yi Lei
- Institution for Brain and Psychological Science, Sichuan Normal University, Chengdu, China
- Center for Neurogenetics, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
3
|
He J, Bore MC, Jiang H, Gan X, Wang J, Li J, Xu X, Wang L, Fu K, Li L, Zhou B, Kendrick K, Becker B. Neural Basis of Pain Empathy Dysregulations in Mental Disorders: A Preregistered Neuroimaging Meta-Analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:127-137. [PMID: 39260566 DOI: 10.1016/j.bpsc.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Pain empathy represents a fundamental building block of several social functions, which have been demonstrated to be impaired across various mental disorders by accumulating evidence from case-control functional magnetic resonance imaging studies. However, it remains unclear whether the dysregulations are underpinned by robust neural alterations across mental disorders. METHODS This study utilized coordinate-based meta-analyses to quantitatively determine robust markers of altered pain empathy across mental disorders. To support the interpretation of the findings, exploratory network-level and behavioral meta-analyses were conducted. RESULTS Quantitative analysis of 11 case-control functional magnetic resonance imaging studies with data from 296 patients and 229 control participants revealed that patients with mental disorders exhibited increased pain empathic reactivity in the left anterior cingulate gyrus, adjacent medial prefrontal cortex, and right middle temporal gyrus but decreased activity in the left cerebellum IV/V and left middle occipital gyrus compared with control participants. The hyperactive regions showed network-level interactions with the core default mode network and were associated with affective and social cognitive domains. CONCLUSIONS The findings suggest that pain empathic alterations across mental disorders are underpinned by excessive empathic reactivity in brain systems involved in empathic distress and social processes, highlighting a shared therapeutic target to normalize basal social dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Jingxian He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Jiang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Max Planck School of Cognition, Leipzig, Germany
| | - Xiaolei Xu
- School of Psychology, Shandong Normal University, Jinan, China
| | - Lan Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Fu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychology, the University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Gu A, Chan CL, Xu X, Dexter JP, Becker B, Zhao Z. Real-Time fMRI Neurofeedback Modulation of Dopaminergic Midbrain Activity in Young Adults With Elevated Internet Gaming Disorder Risk: Randomized Controlled Trial. J Med Internet Res 2025; 27:e64687. [PMID: 39879613 PMCID: PMC11822309 DOI: 10.2196/64687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.gov NCT06063642; https://clinicaltrials.gov/study/NCT06063642).
Collapse
Affiliation(s)
- Anqi Gu
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Cheng Lam Chan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Xiaolei Xu
- School of Psychology, Shandong Normal University, Jinan, China
| | - Joseph P Dexter
- Centre for Data Science, Institute of Collaborative Innovation, University of Macau, Macau, China
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Zhiying Zhao
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| |
Collapse
|
5
|
Xu Q, Yin W, Zhou X, Wang S, Chen S, Yang J, Xi C, Sun Z. Transcranial direct current stimulation for patients with walking difficulties caused by cerebral small vessel disease: a randomized controlled study. Front Aging Neurosci 2025; 16:1511287. [PMID: 39850790 PMCID: PMC11756518 DOI: 10.3389/fnagi.2024.1511287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Cerebral small vessel disease (CSVD) is a chronic systemic degenerative disease affecting small blood vessels in the brain, leading to cognitive impairments. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that applies low electrical currents to the scalp, shows promise in treating cognitive and movement disorders. However, further clinical evaluation is required to assess the long-term effects of tDCS on neuroplasticity and gait in patients with CSVD. We investigated the effects of long-term, repeated tDCS on local brain perfusion, network connectivity, cognition, and gait in patients with CSVD and gait disorders (CSVD-GD). Methods This prospective, single-blind, multicenter, randomized controlled study enrolled 66 patients with CSVD-GD, categorized into the tDCS and Sham groups. Imaging and gait characteristic data were collected over three periods using magnetic resonance imaging and a gait analyzer, along with neuropsychological assessments. Results Among 156 volunteers with CSVD-GD, 66 participated in this study, with 60 completing the entire process. Compared to the Sham group, the tDCS group exhibited a more pronounced increase in the cerebral blood flow to the dural cerebrospinal fluid ratio in regions such as the orbitofrontal cortex and cingulate gyrus (P < 0.05, FDR corrected), along with significantly greater improvements in gait speed and stride length. Tolerance to tDCS was good, with no difference in adverse reactions between the groups, except for a scalp burning sensation reported during the 1st week (24.24% and 6.06% in the tDCS and Sham groups, respectively; P = 0.003). Discussion Long-term tDCS is effective and safe for improving neuroplasticity and gait cognition in patients with CSVD.
Collapse
Affiliation(s)
- Qiaoqiao Xu
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People's Hospital), Hefei, Anhui, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenwen Yin
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuo Wang
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People's Hospital), Hefei, Anhui, China
| | - Sishi Chen
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People's Hospital), Hefei, Anhui, China
| | - Jiajia Yang
- Department of Burns and Wound Healing, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University (Hefei City First People's Hospital), Hefei, Anhui, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Zhou X, Huang L, Becker B, Dou H, Wang J, Zhang X, Mei Y, Li H, Lei Y. Intolerance of uncertainty enhances adolescent fear generalization in both perceptual-based and category-based tasks: fNIRS studies. Behav Res Ther 2024; 183:104650. [PMID: 39536534 DOI: 10.1016/j.brat.2024.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Fear generalization undergoes marked changes during adolescence, which may relate to the high prevalence of anxiety disorders. While intolerance of uncertainty (IU) is a key factor that amplifies fear generalization, its impact and neural basis in adolescence remain unclear. Here, we investigated the effects of IU on perceptual-based (n = 72) and category-based (n = 68) fear generalization in adolescents aged 12-15 years. Specifically, Experiment 1 utilized two different size rings as conditioned stimuli, with middle-sized rings serving as the generalized stimuli; Experiment 2 employed pictures of sparrows and refrigerators as conditioned stimuli, with other animals categorically related to the sparrow as generalized stimuli. We collected self-reported threat expectancy, response times, and fear ratings in both experiments, and conducted functional near-infrared spectroscopy in Experiment 2. Results showed that high IU adolescents had higher threat expectancy in both experiments compare to low IU. Moreover, in category-based generalization, high IU adolescents had higher fear ratings, shorter response times and reduced engagement of the left dorsolateral prefrontal cortex (DLPFC). Results indicated that IU may enhance fear generalization by deficient left DLPFC recruitment. Together the present findings point to a behavioral and neural mechanism that can render adolescents vulnerable for mental disorders.
Collapse
Affiliation(s)
- Xiao Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Lihui Huang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Benjamin Becker
- Department of Psychology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Haoran Dou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jinxia Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xukai Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Ying Mei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Hong Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| | - Yi Lei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
7
|
Bore MC, Liu X, Huang X, Kendrick KM, Zhou B, Zhang J, Klugah-Brown B, Becker B. Common and separable neural alterations in adult and adolescent depression - Evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 2024; 164:105835. [PMID: 39084585 DOI: 10.1016/j.neubiorev.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Depression is a highly prevalent and debilitating mental disorder that often begins in adolescence. However, it remains unclear whether adults and adolescents with depression exhibit common or distinct brain dysfunctions during reward processing. We aimed to identify common and separable neurofunctional alterations during receipt of rewards and brain structure in adolescents and adults with depression. A coordinate-based meta-analysis was employed using Seed-based d mapping with permutation of subject images (SDM-PSI). Compared with healthy controls, both age groups exhibited common activity decreases in the right striatum (putamen, caudate) and subgenual ACC. Adults with depression showed decreased reactivity in the right putamen and subgenual ACC, while adolescents with depression showed decreased activity in the left mid cingulate, right caudate but increased reactivity in the right postcentral gyrus. This meta-analysis revealed shared (caudate) and separable (putamen and mid cingulate cortex) reward-related alterations in adults and adolescents with depression. The findings suggest age-specific neurofunctional alterations and stress the importance of adolescent-specific interventions that target social functions.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; The Xiaman Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Klugah-Brown B, Bore MC, Liu X, Gan X, Biswal BB, Kendrick KM, Chang DHF, Zhou B, Becker B. The neurostructural consequences of glaucoma and their overlap with disorders exhibiting emotional dysregulations: A voxel-based meta-analysis and tripartite system model. J Affect Disord 2024; 358:487-499. [PMID: 38705527 DOI: 10.1016/j.jad.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Glaucoma, a progressive neurodegenerative disorder leading to irreversible blindness, is associated with heightened rates of generalized anxiety and depression. This study aims to comprehensively investigate brain morphological changes in glaucoma patients, extending beyond visual processing areas, and explores overlaps with morphological alterations observed in anxiety and depression. METHODS A comparative meta-analysis was conducted, using case-control studies of brain structural integrity in glaucoma patients. We aimed to identify regions with gray matter volume (GMV) changes, examine their role within distinct large-scale networks, and assess overlap with alterations in generalized anxiety disorder (GAD) and major depressive disorder (MDD). RESULTS Glaucoma patients exhibited significant GMV reductions in visual processing regions (lingual gyrus, thalamus). Notably, volumetric reductions extended beyond visual systems, encompassing the left putamen and insula. Behavioral and functional network decoding revealed distinct large-scale networks, implicating visual, motivational, and affective domains. The insular region, linked to pain and affective processes, displayed reductions overlapping with alterations observed in GAD. LIMITATIONS While the study identified significant morphological alterations, the number of studies from both the glaucoma and GAD cohorts remains limited due to the lack of independent studies meeting our inclusion criteria. CONCLUSION The study proposes a tripartite brain model for glaucoma, with visual processing changes related to the lingual gyrus and additional alterations in the putamen and insular regions tied to emotional or motivational functions. These neuroanatomical changes extend beyond the visual system, implying broader implications for brain structure and potential pathological developments, providing insights into the overall neurological consequences of glaucoma.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy C Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, USA
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Kaliuzhna M, Carruzzo F, Kuenzi N, Tobler PN, Kirschner M, Geffen T, Katthagen T, Böge K, Zierhut MM, Schlagenhauf F, Kaiser S. Adaptive coding of reward in schizophrenia, its change over time and relationship to apathy. Brain 2024; 147:2459-2470. [PMID: 38608149 PMCID: PMC11224610 DOI: 10.1093/brain/awae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
Adaptive coding of reward is the process by which neurons adapt their response to the context of available compensations. Higher rewards lead to a stronger brain response, but the increase of the response depends on the range of available rewards. A steeper increase is observed in a narrow range and a more gradual slope in a wider range. In schizophrenia, adaptive coding appears to be affected in different domains, especially in the reward domain. Here, we tested adaptive coding of reward in a large group of patients with schizophrenia (n = 86) and control subjects (n = 66). We assessed: (i) the association between adaptive coding deficits and symptoms; (ii) the longitudinal stability of deficits (the same task was performed 3 months apart); and (iii) the stability of results between two experimental sites. We used functional MRI and the monetary incentive delay task to assess adaptation of participants to two different reward ranges: a narrow range and a wide range. We used a region-of-interest analysis to evaluate adaptation within striatal and visual regions. Patients and control subjects underwent a full demographic and clinical assessment. We found reduced adaptive coding in patients, with a decreased slope in the narrow reward range with respect to that of control participants, in striatal but not visual regions. This pattern was observed at both research sites. Upon retesting, patients increased their narrow-range slopes, showing improved adaptive coding, whereas control subjects slightly reduced them. At retesting, patients with overly steep slopes in the narrow range also showed higher levels of negative symptoms. Our data confirm deficits in reward adaptation in schizophrenia and reveal an effect of practice in patients, leading to improvement, with steeper slopes upon retesting. However, in some patients, an excessively steep slope may result in poor discriminability of larger rewards, owing to early saturation of the brain response. Together, the loss of precision of reward representation in new (first exposure, underadaptation) and more familiar (retest, overadaptation) situations might contribute to the multiple motivational symptoms in schizophrenia.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- Clinical and Experimental Psychopathology Laboratory, Department of Psychiatry, University of Geneva, 1205 Geneva, Switzerland
| | - Fabien Carruzzo
- Clinical and Experimental Psychopathology Laboratory, Department of Psychiatry, University of Geneva, 1205 Geneva, Switzerland
| | - Noémie Kuenzi
- Department of Psychiatry, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Philippe N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, 8006 Zurich, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Tal Geffen
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Teresa Katthagen
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Kerem Böge
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marco M Zierhut
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefan Kaiser
- Department of Psychiatry, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
10
|
Lapate RC, Heckner MK, Phan AT, Tambini A, D'Esposito M. Information-based TMS to mid-lateral prefrontal cortex disrupts action goals during emotional processing. Nat Commun 2024; 15:4294. [PMID: 38769359 PMCID: PMC11106324 DOI: 10.1038/s41467-024-48015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The ability to respond to emotional events in a context-sensitive and goal-oriented manner is essential for adaptive functioning. In models of behavioral and emotion regulation, the lateral prefrontal cortex (LPFC) is postulated to maintain goal-relevant representations that promote cognitive control, an idea rarely tested with causal inference. Here, we altered mid-LPFC function in healthy individuals using a putatively inhibitory brain stimulation protocol (continuous theta burst; cTBS), followed by fMRI scanning. Participants performed the Affective Go/No-Go task, which requires goal-oriented action during affective processing. We targeted mid-LPFC (vs. a Control site) based on the individualized location of action-goal representations observed during the task. cTBS to mid-LPFC reduced action-goal representations in mid-LPFC and impaired goal-oriented action, particularly during processing of negative emotional cues. During negative-cue processing, cTBS to mid-LPFC reduced functional coupling between mid-LPFC and nodes of the default mode network, including frontopolar cortex-a region thought to modulate LPFC control signals according to internal states. Collectively, these results indicate that mid-LPFC goal-relevant representations play a causal role in governing context-sensitive cognitive control during emotional processing.
Collapse
Affiliation(s)
- R C Lapate
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - M K Heckner
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany
| | - A T Phan
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - A Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - M D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Zhu S, Liu Q, Zhang X, Zhou M, Zhou X, Ding F, Zhang R, Becker B, Kendrick KM, Zhao W. Transcutaneous auricular vagus nerve stimulation enhanced emotional inhibitory control via increasing intrinsic prefrontal couplings. Int J Clin Health Psychol 2024; 24:100462. [PMID: 38665809 PMCID: PMC11044052 DOI: 10.1016/j.ijchp.2024.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background Inhibitory control represents a core executive function that critically facilitates adaptive behavior and survival in an ever-changing environment. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has been hypothesized to improve behavioral inhibition performance, however the neurocomputational mechanism of taVNS-induced neuroenhancement remains elusive. Method In the current study, we investigated the efficacy of taVNS in a sham-controlled between-subject functional near infrared spectroscopy (fNIRS) experiment with an emotional face Go/No-Go paradigm in ninety healthy young adults. Results After a data quality check, eighty-two subjects were included in the final data analysis. Behaviorally, the taVNS improved No-Go response accuracy, together with computational modeling using Hierarchical Bayesian estimation of the Drift Diffusion Model (HDDM) indicating that it specifically reduced the information accumulation rate for Go responses, and this was negatively associated with increased accuracy of No-Go responses. On the neural level, taVNS enhanced engagement of the bilateral inferior frontal gyrus (IFG) during inhibition of angry expression faces and modulated functional couplings (FCs) within the prefrontal inhibitory control network. Mediation models revealed that taVNS-induced facilitation of inhibitory control was critically mediated by a decreased information accumulation for Go responses and concomitantly enhanced neurofunctional coupling between the inferior and orbital frontal cortex. Discussion Our findings demonstrate a potential for taVNS to improve emotional inhibitory control via reducing pre-potent responses and enhancing FCs within prefrontal inhibitory control networks, suggesting a promising therapeutic role in treating specific disorders characterized by inhibitory control deficits.
Collapse
Affiliation(s)
- Siyu Zhu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- The Laboratory of Sport Psychology, School of Sport Training, Chengdu Sport University, Chengdu, 610041, PR China
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Sichuan Normal University, Chengdu 610066, PR China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xiaolu Zhang
- Anhui Children's Hospital, Pediatric Hospital Affiliated to Fudan University, Hefei 230051, PR China
| | - Menghan Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xinqi Zhou
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, PR China
| | - Fangyuan Ding
- College of National Culture and Cognitive Science, Guizhou Minzu University, Guiyang, 550025, PR China
| | - Rong Zhang
- Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education of China, National Committee of Health and Family Planning of China and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Department of Psychology, Hong Kong, 999077, PR China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|
12
|
Zheng X, Zhou F, Fu M, Xu L, Wang J, Li J, Li K, Sindermann C, Montag C, Becker B, Zhan Y, Kendrick KM. Patterns of neural activity in response to threatening faces are predictive of autistic traits: modulatory effects of oxytocin receptor genotype. Transl Psychiatry 2024; 14:168. [PMID: 38553454 PMCID: PMC10980722 DOI: 10.1038/s41398-024-02889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autistic individuals generally demonstrate impaired emotion recognition but it is unclear whether effects are emotion-specific or influenced by oxytocin receptor (OXTR) genotype. Here we implemented a dimensional approach using an implicit emotion recognition task together with functional MRI in a large cohort of neurotypical adult participants (N = 255, male = 131, aged 17-29 years) to establish associations between autistic traits and neural and behavioral responses to specific face emotions, together with modulatory effects of OXTR genotype. A searchlight-based multivariate pattern analysis (MVPA) revealed an extensive network of frontal, basal ganglia, cingulate and limbic regions exhibiting significant predictability for autistic traits from patterns of responses to angry relative to neutral expression faces. Functional connectivity analyses revealed a genotype interaction (OXTR SNPs rs2254298, rs2268491) for coupling between the orbitofrontal cortex and mid-cingulate during angry expression processing, with a negative association between coupling and autistic traits in the risk-allele group and a positive one in the non-risk allele group. Overall, results indicate extensive emotion-specific associations primarily between patterns of neural responses to angry faces and autistic traits in regions processing motivation, reward and salience but not in early visual processing. Functional connections between these identified regions were not only associated with autistic traits but also influenced by OXTR genotype. Thus, altered patterns of neural responses to threatening faces may be a potential biomarker for autistic symptoms although modulatory influences of OXTR genotype need to be taken into account.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Zhou
- Southwest University, Chongqing, China
| | - Meina Fu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lei Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Sichuan Normal University, Chengdu, Sichuan, China
| | - Jiayuan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Keshuang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cornelia Sindermann
- University of Stuttgart, Computational Digital Psychology, Interchange Forum for Reflecting on Intelligent Systems, Stuttgart, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hongkong, Hongkong, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Bore MC, Liu X, Gan X, Wang L, Xu T, Ferraro S, Li L, Zhou B, Zhang J, Vatansever D, Biswal B, Klugah-Brown B, Becker B. Distinct neurofunctional alterations during motivational and hedonic processing of natural and monetary rewards in depression - a neuroimaging meta-analysis. Psychol Med 2024; 54:639-651. [PMID: 37997708 DOI: 10.1017/s0033291723003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Wu H, Guo Y, Zhang Y, Zhao L, Guo C. Self-esteem and cortical thickness correlate with aggression in healthy children: A surface-based analysis. Behav Brain Res 2024; 458:114737. [PMID: 37924850 DOI: 10.1016/j.bbr.2023.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Aggressive behavior can have serious physical, psychological, and social consequences. However, little is known about the personality and neurological antecedents underlying aggressive behavior in children. The objective of this study was to investigate the relationship between self-esteem, aggression, and brain structure (i.e., cortical thickness and surface area) in a population of healthy children (N = 78; 9-12 years; mean age: 9.95 ± 0.90 years). The results revealed that self-esteem showed a negative association with aggression and significantly predicted aggressive behavior. No gender differences were found in aggression and its neural correlates. We performed the cortical parcellation method to further explore the neural foundations underlying the association of self-esteem with aggression. Children with higher aggression had increased cortical thickness in four clusters after multiple comparison correction: right medial orbitofrontal cortex, right lateral orbitofrontal cortex, right superior frontal gyrus, and left insula. In a mediation analysis, cortical thickness in the right medial orbitofrontal cortex contributed to the effect of self-esteem on aggression. These findings extend our understanding of morphological correlates of aggression in children, suggesting that an increased cortical thickness in childhood is a potential mechanism linking low self-esteem to aggression.
Collapse
Affiliation(s)
- Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yaoyao Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- School of Applied Psychology, Beijing Normal University, Zhuhai, China
| | - Cheng Guo
- Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Xu T, Chen Z, Zhou X, Wang L, Zhou F, Yao D, Zhou B, Becker B. The central renin-angiotensin system: A genetic pathway, functional decoding, and selective target engagement characterization in humans. Proc Natl Acad Sci U S A 2024; 121:e2306936121. [PMID: 38349873 PMCID: PMC10895353 DOI: 10.1073/pnas.2306936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Accumulating evidence suggests that the brain renin angiotensin system (RAS) plays a pivotal role in the regulation of cognition and behavior as well as in the neuropathology of neurological and mental disorders. The angiotensin II type 1 receptor (AT1R) mediates most functional and neuropathology-relevant actions associated with the central RAS. However, an overarching comprehension to guide translation and utilize the therapeutic potential of the central RAS in humans is currently lacking. We conducted a comprehensive characterization of the RAS using an innovative combination of transcriptomic gene expression mapping, image-based behavioral decoding, and pre-registered randomized controlled discovery-replication pharmacological resting-state functional magnetic resonance imaging (fMRI) trials (N = 132) with a selective AT1R antagonist. The AT1R exhibited a particular dense expression in a subcortical network encompassing the thalamus, striatum, and amygdalo-hippocampal formation. Behavioral decoding of the AT1R gene expression brain map showed an association with memory, stress, reward, and motivational processes. Transient pharmacological blockade of the AT1R further decreased neural activity in subcortical systems characterized by a high AT1R expression, while increasing functional connectivity in the cortico-basal ganglia-thalamo-cortical circuitry. Effects of AT1R blockade on the network level were specifically associated with the transcriptomic signatures of the dopaminergic, opioid, acetylcholine, and corticotropin-releasing hormone signaling systems. The robustness of the results was supported in an independent pharmacological fMRI trial. These findings present a biologically informed comprehensive characterization of the central AT1R pathways and their functional relevance on the neural and behavioral level in humans.
Collapse
Affiliation(s)
- Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing400037, People’s Republic of China
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing400715, People’s Republic of China
| | - Dezhong Yao
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu610054, People’s Republic of China
- Ministry of Education Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology, Chengdu610054, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong999077, People’s Republic of China
- Department of Psychology, The University of Hong Kong, Hong Kong999077, People’s Republic of China
| |
Collapse
|
16
|
Matsunaga M, Ohtsubo Y, Ishii K, Tsuboi H, Suzuki K, Takagishi H. Association between internet addiction, brain structure, and social capital in adolescents. Soc Neurosci 2023; 18:355-364. [PMID: 37772408 DOI: 10.1080/17470919.2023.2264543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/24/2023] [Indexed: 09/30/2023]
Abstract
Of late, internet addiction among adolescents has become a serious problem, with increased internet use. Previous research suggests that the more people become addicted to the internet, the more they isolate themselves from society. Conversely, it has been suggested that abundant social capital (the networks of relationships among people who live and work in a particular society) protects people from becoming addicted to the internet. This study focused on the brain structure of typical adolescents (10-18 years of age) and hypothesized that the size of the left dorsolateral prefrontal cortex (DLPFC), which is thought to be associated with self-control ability, is associated with both internet addiction and social capital. Voxel-based morphometry analysis indicated that left DLPFC volume was negatively correlated with the severity of internet addiction and positively correlated with social capital. Furthermore, correlation analysis demonstrated that the severity of internet addiction and social capital were negatively correlated. The statistical association between them was no longer significant when left DLPFC volume was used as a control variable. These results suggest that the left DLPFC may mediate the relationship between social capital and internet addiction in adolescents.
Collapse
Affiliation(s)
- Masahiro Matsunaga
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yohsuke Ohtsubo
- Graduate School of Humanities and Sociology, The University of Tokyo, Bunkyo-ku, Japan
| | - Keiko Ishii
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Hirohito Tsuboi
- Graduate School of Human Nursing, The University of Shiga Prefecture, Hikone, Japan
| | - Kohta Suzuki
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | |
Collapse
|
17
|
Zhuang Q, Qiao L, Xu L, Yao S, Chen S, Zheng X, Li J, Fu M, Li K, Vatansever D, Ferraro S, Kendrick KM, Becker B. The right inferior frontal gyrus as pivotal node and effective regulator of the basal ganglia-thalamocortical response inhibition circuit. PSYCHORADIOLOGY 2023; 3:kkad016. [PMID: 38666118 PMCID: PMC10917375 DOI: 10.1093/psyrad/kkad016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 04/28/2024]
Abstract
Background The involvement of specific basal ganglia-thalamocortical circuits in response inhibition has been extensively mapped in animal models. However, the pivotal nodes and directed causal regulation within this inhibitory circuit in humans remains controversial. Objective The main aim of the present study was to determine the causal information flow and critical nodes in the basal ganglia-thalamocortical inhibitory circuits and also to examine whether these are modulated by biological factors (i.e. sex) and behavioral performance. Methods Here, we capitalize on the recent progress in robust and biologically plausible directed causal modeling (DCM-PEB) and a large response inhibition dataset (n = 250) acquired with concomitant functional magnetic resonance imaging to determine key nodes, their causal regulation and modulation via biological variables (sex) and inhibitory performance in the inhibitory circuit encompassing the right inferior frontal gyrus (rIFG), caudate nucleus (rCau), globus pallidum (rGP), and thalamus (rThal). Results The entire neural circuit exhibited high intrinsic connectivity and response inhibition critically increased causal projections from the rIFG to both rCau and rThal. Direct comparison further demonstrated that response inhibition induced an increasing rIFG inflow and increased the causal regulation of this region over the rCau and rThal. In addition, sex and performance influenced the functional architecture of the regulatory circuits such that women displayed increased rThal self-inhibition and decreased rThal to GP modulation, while better inhibitory performance was associated with stronger rThal to rIFG communication. Furthermore, control analyses did not reveal a similar key communication in a left lateralized model. Conclusions Together, these findings indicate a pivotal role of the rIFG as input and causal regulator of subcortical response inhibition nodes.
Collapse
Affiliation(s)
- Qian Zhuang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Lei Qiao
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Department of Psychology, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
18
|
Souter NE, Reddy A, Walker J, Marino Dávolos J, Jefferies E. How do valence and meaning interact? The contribution of semantic control. J Neuropsychol 2023; 17:521-539. [PMID: 37010272 DOI: 10.1111/jnp.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
The hub-and-spoke model of semantic cognition proposes that conceptual representations in a heteromodal 'hub' interact with and emerge from modality-specific features or 'spokes', including valence (whether a concept is positive or negative), along with visual and auditory features. As a result, valence congruency might facilitate our ability to link words conceptually. Semantic relatedness may similarly affect explicit judgements about valence. Moreover, conflict between meaning and valence may recruit semantic control processes. Here we tested these predictions using two-alternative forced-choice tasks, in which participants matched a probe word to one of two possible target words, based on either global meaning or valence. Experiment 1 examined timed responses in healthy young adults, while Experiment 2 examined decision accuracy in semantic aphasia patients with impaired controlled semantic retrieval following left hemisphere stroke. Across both experiments, semantically related targets facilitated valence matching, while related distractors impaired performance. Valence congruency was also found to facilitate semantic decision-making. People with semantic aphasia showed impaired valence matching and had particular difficulty when semantically related distractors were presented, suggesting that the selective retrieval of valence information relies on semantic control processes. Taken together, the results are consistent with the hypothesis that automatic access to the global meaning of written words affects the processing of valence, and that the valence of words is also retrieved even when this feature is task-irrelevant, affecting the efficiency of global semantic judgements.
Collapse
Affiliation(s)
| | - Ariyana Reddy
- Department of Psychology, University of York, York, UK
- Faculty of Health Sciences, University of Hull, Hull, UK
| | - Jake Walker
- Department of Psychology, University of York, York, UK
- School of Psychology and Computer Science, University of Central Lancashire, Preston, UK
| | | | | |
Collapse
|
19
|
Xu S, Zhang Z, Li L, Zhou Y, Lin D, Zhang M, Zhang L, Huang G, Liu X, Becker B, Liang Z. Functional connectivity profiles of the default mode and visual networks reflect temporal accumulative effects of sustained naturalistic emotional experience. Neuroimage 2023; 269:119941. [PMID: 36791897 DOI: 10.1016/j.neuroimage.2023.119941] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Determining and decoding emotional brain processes under ecologically valid conditions remains a key challenge in affective neuroscience. The current functional Magnetic Resonance Imaging (fMRI) based emotion decoding studies are mainly based on brief and isolated episodes of emotion induction, while sustained emotional experience in naturalistic environments that mirror daily life experiences are scarce. Here we used 12 different 10-minute movie clips as ecologically valid emotion-evoking procedures in n = 52 individuals to explore emotion-specific fMRI functional connectivity (FC) profiles on the whole-brain level at high spatial resolution (432 parcellations including cortical and subcortical structures). Employing machine-learning based decoding and cross validation procedures allowed to investigate FC profiles contributing to classification that can accurately distinguish sustained happiness and sadness and that generalize across subjects, movie clips, and parcellations. Both functional brain network-based and subnetwork-based emotion classification results suggested that emotion manifests as distributed representation of multiple networks, rather than a single functional network or subnetwork. Further, the results showed that the Visual Network (VN) and Default Mode Network (DMN) associated functional networks, especially VN-DMN, exhibited a strong contribution to emotion classification. To further estimate the temporal accumulative effect of naturalistic long-term movie-based video-evoking emotions, we divided the 10-min episode into three stages: early stimulation (1∼200 s), middle stimulation (201∼400 s), and late stimulation (401∼600 s) and examined the emotion classification performance at different stimulation stages. We found that the late stimulation contributes most to the classification (accuracy=85.32%, F1-score=85.62%) compared to early and middle stimulation stages, implying that continuous exposure to emotional stimulation can lead to more intense emotions and further enhance emotion-specific distinguishable representations. The present work demonstrated that sustained happiness and sadness under naturalistic conditions are presented in emotion-specific network profiles and these expressions may play different roles in the generation and modulation of emotions. These findings elucidated the importance of network level adaptations for sustained emotional experiences during naturalistic contexts and open new venues for imaging network level contributions under naturalistic conditions.
Collapse
Affiliation(s)
- Shuyue Xu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhiguo Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China; Peng Cheng Laboratory, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, Shenzhen, China
| | - Danyi Lin
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Min Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China.
| |
Collapse
|
20
|
Zhang R, Zhao W, Qi Z, Xu T, Zhou F, Becker B. Angiotensin II Regulates the Neural Expression of Subjective Fear in Humans: A Precision Pharmaco-Neuroimaging Approach. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:262-270. [PMID: 36174930 DOI: 10.1016/j.bpsc.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Rodent models and pharmacological neuroimaging studies in humans have been used to test novel pharmacological agents to reduce fear. However, these strategies are limited with respect to determining process-specific effects on the actual subjective experience of fear, which represents the key symptom that motivates patients to seek treatment. In this study, we used a novel precision pharmacological functional magnetic resonance imaging approach based on process-specific neuroaffective signatures to determine effects of the selective angiotensin II type 1 receptor (AT1R) antagonist losartan on the subjective experience of fear. METHODS In a double-blind, placebo-controlled, randomized pharmacological functional magnetic resonance imaging design, healthy participants (N = 87) were administered 50 mg losartan or placebo before they underwent an oddball paradigm that included neutral, novel, and fear oddballs. Effects of losartan on brain activity and connectivity as well as on process-specific multivariate neural signatures were examined. RESULTS AT1R blockade selectively reduced neurofunctional reactivity to fear-inducing visual oddballs in terms of attenuating dorsolateral prefrontal activity and amygdala-ventral anterior cingulate communication. Neurofunctional decoding further demonstrated fear-specific effects in that AT1R blockade reduced the neural expression of subjective fear but not of threat or nonspecific negative affect and did not influence reactivity to novel oddballs. CONCLUSIONS These results show a specific role of the AT1R in regulating the subjective fear experience and demonstrate the feasibility of a precision pharmacological functional magnetic resonance imaging approach to the affective characterization of novel receptor targets for fear in humans.
Collapse
Affiliation(s)
- Ran Zhang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyu Qi
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, ChongQing, China; Key Laboratory of Cognition and Personality, Ministry of Education, ChongQing, China.
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education, Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Petrican R, Paine AL, Escott-Price V, Shelton KH. Overlapping brain correlates of superior cognition among children at genetic risk for Alzheimer's disease and/or major depressive disorder. Sci Rep 2023; 13:984. [PMID: 36653486 PMCID: PMC9849214 DOI: 10.1038/s41598-023-28057-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Early life adversity (ELA) tends to accelerate neurobiological ageing, which, in turn, is thought to heighten vulnerability to both major depressive disorder (MDD) and Alzheimer's disease (AD). The two conditions are putatively related, with MDD representing either a risk factor or early symptom of AD. Given the substantial environmental susceptibility of both disorders, timely identification of their neurocognitive markers could facilitate interventions to prevent clinical onset. To this end, we analysed multimodal data from the Adolescent Brain and Cognitive Development study (ages 9-10 years). To disentangle genetic from correlated genetic-environmental influences, while also probing gene-adversity interactions, we compared adoptees, a group generally exposed to substantial ELA, with children raised by their biological families via genetic risk scores (GRS) from genome-wide association studies. AD and MDD GRSs predicted overlapping and widespread neurodevelopmental alterations associated with superior fluid cognition. Specifically, among adoptees only, greater AD GRS were related to accelerated structural maturation (i.e., cortical thinning) and higher MDD GRS were linked to delayed functional neurodevelopment, as reflected in compensatory brain activation on an inhibitory control task. Our study identifies compensatory mechanisms linked to MDD risk and highlights the potential cognitive benefits of accelerated maturation linked to AD vulnerability in late childhood.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool, L69 7ZA, UK.
| | - Amy L Paine
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Katherine H Shelton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
22
|
Kaiser J, Gentsch A, Rodriguez-Manrique D, Schütz-Bosbach S. Function without feeling: neural reactivity and intercommunication during flexible motor adjustments evoked by emotional and neutral stimuli. Cereb Cortex 2022; 33:6000-6012. [PMID: 36513350 DOI: 10.1093/cercor/bhac478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Motor conflicts arise when we need to quickly overwrite prepotent behavior. It has been proposed that affective stimuli modulate the neural processing of motor conflicts. However, previous studies have come to inconsistent conclusions regarding the neural impact of affective information on conflict processing. We employed functional magnetic resonance imaging during a Go/Change-Go task, where motor conflicts were either evoked by neutral or emotionally negative stimuli. Dynamic causal modeling was used to investigate how motor conflicts modulate the intercommunication between the anterior cingulate cortex (ACC) and the anterior insula (AI) as 2 central regions for cognitive control. Conflicts compared to standard actions were associated with increased BOLD activation in several brain areas, including the dorsal ACC and anterior insula. There were no differences in neural activity between emotional and non-emotional conflict stimuli. Conflicts compared to standard actions lowered neural self-inhibition of the ACC and AI and led to increased effective connectivity from the ACC to AI contralateral to the acting hand. Thus, our study indicates that neural conflict processing is primarily driven by the functional relevance of action-related stimuli, not their inherent affective meaning. Furthermore, it sheds light on the role of interconnectivity between ACC and AI for the implementation of flexible behavioral change.
Collapse
Affiliation(s)
- Jakob Kaiser
- LMU Munich, Department of Psychology, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| | - Antje Gentsch
- LMU Munich, Department of Psychology, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| | | | - Simone Schütz-Bosbach
- LMU Munich, Department of Psychology, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| |
Collapse
|
23
|
Klugah-Brown B, Zhou X, Wang L, Gan X, Zhang R, Liu X, Song X, Zhao W, Biswal BB, Yu F, Montag C, Becker B. Associations between levels of Internet Gaming Disorder symptoms and striatal morphology-replication and associations with social anxiety. PSYCHORADIOLOGY 2022; 2:207-215. [PMID: 38665272 PMCID: PMC10917202 DOI: 10.1093/psyrad/kkac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 04/28/2024]
Abstract
Background Brain structural alterations of the striatum have been frequently observed in internet gaming disorder (IGD); however, the replicability of the results and the associations with social-affective dysregulations such as social anxiety remain to be determined. Methods The present study combined a dimensional neuroimaging approach with both voxel-wise and data-driven multivariate approaches to (i) replicate our previous results on a negative association between IGD symptom load (assessed by the Internet Gaming Disorder Scale-Short Form) and striatal volume, (ii) extend these findings to female individuals, and (iii) employ multivariate and mediation models to determine common brain structural representations of IGD and social anxiety (assessed by the Liebowitz Social Anxiety Scale). Results In line with the original study, the voxel-wise analyses revealed a negative association between IGD and volumes of the bilateral caudate. Going beyond the earlier study investigating only male participants, the present study demonstrates that the association in the right caudate was comparable in both the male and the female subsamples. Further examination using the multivariate approach revealed regionally different associations between IGD and social anxiety with striatal density representations in the dorsal striatum (caudate) and ventral striatum (nucleus accumbens). Higher levels of IGD were associated with higher social anxiety and the association was critically mediated by the multivariate neurostructural density variations of the striatum. Conclusions Altered striatal volumes may represent a replicable and generalizable marker of IGD symptoms. However, exploratory multivariate analyses revealed more complex and regional specific associations between striatal density and IGD as well as social anxiety symptoms. Variations in both tendencies may share common structural brain representations, which mediate the association between increased IGD and social anxiety.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89069 Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| |
Collapse
|
24
|
Yu F, Li J, Xu L, Zheng X, Fu M, Li K, Yao S, Kendrick KM, Montag C, Becker B. Opposing associations of Internet Use Disorder symptom domains with structural and functional organization of the striatum: A dimensional neuroimaging approach. J Behav Addict 2022; 11:1068-1079. [PMID: 36422683 PMCID: PMC9881660 DOI: 10.1556/2006.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests brain structural and functional alterations in Internet Use Disorder (IUD). However, conclusions are strongly limited due to the retrospective case-control design of the studies, small samples, and the focus on general rather than symptom-specific approaches. METHODS We here employed a dimensional multi-methodical MRI-neuroimaging design in a final sample of n = 203 subjects to examine associations between levels of IUD and its symptom-dimensions (loss of control/time management, craving/social problems) with brain structure, resting state and task-based (pain empathy, affective go/no-go) brain function. RESULTS Although the present sample covered the entire range of IUD, including normal, problematic as well as pathological levels, general IUD symptom load was not associated with brain structural or functional alterations. However, the symptom-dimensions exhibited opposing associations with the intrinsic and structural organization of the brain, such that loss of control/time management exhibited negative associations with intrinsic striatal networks and hippocampal volume, while craving/social problems exhibited a positive association with intrinsic striatal networks and caudate volume. CONCLUSIONS Our findings provided the first evidence for IUD symptom-domain specific associations with progressive alterations in the intrinsic structural and functional organization of the brain, particularly of striatal systems involved in reward, habitual and cognitive control processes.
Collapse
Affiliation(s)
- Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Corresponding author. E-mail:
| |
Collapse
|
25
|
Lin G, Lan F, Wu D, Cao G, Li Z, Qi Z, Liu Y, Yang S, Lu J, Wang T. Resting-state functional connectivity alteration in elderly patients with knee osteoarthritis and declined cognition: An observational study. Front Aging Neurosci 2022; 14:1002642. [PMID: 36337709 PMCID: PMC9634173 DOI: 10.3389/fnagi.2022.1002642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 01/16/2024] Open
Abstract
OBJECTIVE This study is designed to investigate the brain function changed regions in elderly patients with knee osteoarthritis (KOA) and to explore the relationship between neuropsychological tests and resting-state functional magnetic resonance imaging (rs-fMRI) network to clarify the possible mechanism underlying cognitive changes in KOA patients. MATERIALS AND METHODS Fifty-two patients aged ≥ 65 with KOA and twenty-two healthy-matched controls were recruited in this study. All participants were given rs-fMRI check. We used graph theory analysis to characterize functional connectivity (FC) and topological organization of the brain structural network. The relationship between FC values, topological properties, and the neuropsychological test scores was analyzed. RESULTS Compared with the controls, fourteen edges with lower functional connectivity were noted in the KOA group. Local efficiency and small-worldness of KOA patients decreased compared to the healthy controls. No significant alterations of nodal topological properties were found between the two groups. There was a significant positive correlation between the AVLT-H (L) and the internetwork of default mode network (DMN) (left/right orbitofrontal Superior cortex) and limbic/cortical areas (left/right caudate, right amygdala). AVLT-H(L) was positively correlated with small-worldness and local efficiency. CONCLUSION The results indicated that for elderly KOA patients with declined cognition, topological properties, FC between DMN and subcortical limbic network related regions are significantly decreased compared to healthy controls. These alterations demonstrated a significant correlation with the neuropsychological test scores.
Collapse
Affiliation(s)
- Guanwen Lin
- Department of Anesthesiology, National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fei Lan
- Department of Anesthesiology, National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhigang Qi
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Anesthesiology, National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyi Yang
- Department of Anesthesiology, National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianlong Wang
- Department of Anesthesiology, National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Lapate RC, Ballard IC, Heckner MK, D'Esposito M. Emotional Context Sculpts Action Goal Representations in the Lateral Frontal Pole. J Neurosci 2022; 42:1529-1541. [PMID: 34969868 PMCID: PMC8883870 DOI: 10.1523/jneurosci.1522-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Emotional states provide an ever-present source of contextual information that should inform behavioral goals. Despite the ubiquity of emotional signals in our environment, the neural mechanisms underlying their influence on goal-directed action remains unclear. Prior work suggests that the lateral frontal pole (FPl) is uniquely positioned to integrate affective information into cognitive control representations. We used pattern similarity analysis to examine the content of representations in FPl and interconnected mid-lateral prefrontal and amygdala circuitry. Healthy participants (n = 37; n = 21 females) were scanned while undergoing an event-related Affective Go/No-Go task, which requires goal-oriented action selection during emotional processing. We found that FPl contained conjunctive emotion-action goal representations that were related to successful cognitive control during emotional processing. These representations differed from conjunctive emotion-action goal representations found in the basolateral amygdala. While robust action goal representations were present in mid-lateral prefrontal cortex, they were not modulated by emotional valence. Finally, converging results from functional connectivity and multivoxel pattern analyses indicated that FPl emotional valence signals likely originated from interconnected subgenual anterior cingulate cortex (ACC) (BA25), which was in turn functionally coupled with the amygdala. Thus, our results identify a key pathway by which internal emotional states influence goal-directed behavior.SIGNIFICANCE STATEMENT Optimal functioning in everyday life requires behavioral regulation that flexibly adapts to dynamically changing emotional states. However, precisely how emotional states influence goal-directed action remains unclear. Unveiling the neural architecture that supports emotion-goal integration is critical for our understanding of disorders such as psychopathy, which is characterized by deficits in incorporating emotional cues into goals, as well as mood and anxiety disorders, which are characterized by impaired goal-based emotion regulation. Our study identifies a key circuit through which emotional states influence goal-directed behavior. This circuitry comprised the lateral frontal pole (FPl), which represented integrated emotion-goal information, as well as interconnected amygdala and subgenual ACC, which conveyed emotional signals to FPl.
Collapse
Affiliation(s)
- Regina C Lapate
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Ian C Ballard
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| | - Marisa K Heckner
- Institute of Neuroscience and Medicine, Research Centre Jülich, 52428 Jülich, Germany
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|