1
|
Sharma R, Thirugnanasambandam N. Theta-Gamma Decoupling - A neurophysiological marker of impaired reward processing in Parkinson's disease. Brain Res 2025; 1850:149406. [PMID: 39708901 DOI: 10.1016/j.brainres.2024.149406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Individuals with Parkinson's disease (PD) exhibit altered reward processing, reflected by a decreased amplitude of an event-related potential (ERP) marker called reward positivity (RewP). Most studies have used RewP to investigate reward behavior due to the high temporal resolution of EEG and its high sensitivity. However, traditional single-electrode ERP analyses often overlook the intricate dynamics of non-phase-locked oscillatory activity and the complex interactions within these neural oscillatory patterns. Studying oscillatory activity is crucial as it provides mechanistic insights into the functional, spatial, and temporal aspects of neuronal processing. To address this gap, we employed a data-driven approach to identify EEG-based markers associated with PD reward processing deficits. Using an openly available 64-channel EEG dataset of 28 age- and sex-matched PD and control participants during a reinforcement learning task, we conducted a comprehensive secondary analysis. First, we employed a cluster-based permutation method to extract ERP markers, finding a consistent decrease in reward positivity in PD, regardless of medication status. Additionally, through region of interest (ROI) analysis on time-frequency data, we identified specific oscillatory patterns during reward processing. PD patients exhibited attenuated theta power and increased gamma power compared to healthy controls (HC). Notably, within the PD group, those off medication showed anterior localization of high gamma power, while those on medication displayed higher posterior gamma power. Building upon these findings, we explored phase-amplitude coupling between theta phase and gamma amplitude measured by the modulation index. We observed a trend of decreased theta-gamma coupling in PD patients, with statistically significant differences between on and off medication conditions. These results highlight the potential role of theta-gamma coupling as a neuromodulatory target for improving goal-oriented behavior in PD. Our correlation analyses suggest that high gamma power is linked to longer disease duration, while reduced reward positivity and low theta-gamma coupling may serve as markers of the dopaminergic impact on reward processing. Thus, our study unveils the intricate time-frequency dynamics underlying reward processing deficits in PD, emphasizing the utility of a data-driven approach to elucidate neural mechanisms and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Rashi Sharma
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India.
| |
Collapse
|
2
|
Meyer GM, Riou M, Boulinguez P, Sescousse G. Mechanisms of Proactive Adaptation in a Rewarded Response Inhibition Task: Executive, Motor, or Attentional Effects? COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01269-1. [PMID: 39939462 DOI: 10.3758/s13415-025-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
A growing number of studies have demonstrated the effects of reward motivation on inhibitory control performance. However, the exact neurocognitive mechanisms supporting these effects are not fully elucidated. In this preregistered study, we test the hypothesis that changes in speed-accuracy trade-off across contexts that alternatively incentivize fast responses versus accurate inhibition rely on a modulation of proactive inhibitory control, a mechanism intended to lock movement initiation in anticipation of stimulus presentation. Thirty healthy participants performed a modified Go/NoGo task in which the motivation to prioritize Go vs. NoGo successes was manipulated using monetary rewards of different magnitudes. High-density EEG was recorded throughout the task. Source-space analyses were performed to track brain oscillatory activities consistent with proactive inhibitory control. We observed that participants adapted their behavior to the motivational context but found no evidence that this adaptation relied on a modulation of proactive inhibitory control, hence failing to provide support for our pre-registered hypothesis. Unplanned analyses of brain-behavior relationships suggested an association between faster reaction times and enhanced top-down attention to the stimuli associated with larger rewards, as well as between increased commission error rates and stronger motor activations when Go stimuli were associated with larger rewards. The latter was related to inter-individual differences in trait reward responsiveness. These results highlight the need to carefully parse the different contributing mechanisms when studying the influence of reward motivation on inhibitory performance in impulsivity disorders. Exploratory results suggest alternative mechanisms that may be directly tested in further studies.
Collapse
Affiliation(s)
- Garance M Meyer
- Université de Lyon, 69622, Lyon, France.
- Université Lyon 1, Villeurbanne, France.
- INSERM, U 1028, Lyon Neuroscience Research Center, 69000, Lyon, France.
- CNRS, UMR 5292, Lyon Neuroscience Research Center, 69000, Lyon, France.
- Brigham and Women's Hospital, Center for Brain Circuit Therapeutics, 60 Fenwood Rd, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Maëlle Riou
- Université de Lyon, 69622, Lyon, France
- Université Lyon 1, Villeurbanne, France
- INSERM, U 1028, Lyon Neuroscience Research Center, 69000, Lyon, France
- CNRS, UMR 5292, Lyon Neuroscience Research Center, 69000, Lyon, France
| | - Philippe Boulinguez
- Université de Lyon, 69622, Lyon, France
- Université Lyon 1, Villeurbanne, France
- INSERM, U 1028, Lyon Neuroscience Research Center, 69000, Lyon, France
- CNRS, UMR 5292, Lyon Neuroscience Research Center, 69000, Lyon, France
| | - Guillaume Sescousse
- Université de Lyon, 69622, Lyon, France
- Université Lyon 1, Villeurbanne, France
- INSERM, U 1028, Lyon Neuroscience Research Center, 69000, Lyon, France
- CNRS, UMR 5292, Lyon Neuroscience Research Center, 69000, Lyon, France
| |
Collapse
|
3
|
Zhu C, Zhang J, Fang S, Zhang Y, Li J, Wu L, Huang H, Lin W. Intrinsic brain activity differences in drug-resistant epilepsy and well-controlled epilepsy patients: an EEG microstate analysis. Ther Adv Neurol Disord 2024; 17:17562864241307846. [PMID: 39735404 PMCID: PMC11672497 DOI: 10.1177/17562864241307846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024] Open
Abstract
Background Drug-resistant epilepsy (DRE) patients exhibit aberrant large-scale brain networks. Objective The purpose of investigation is to explore the differences in resting-state electroencephalogram (EEG) microstates between patients with DRE and well-controlled (W-C) epilepsy. Design Retrospective study. Methods Clinical data of epilepsy patients treated at the Epilepsy Center of Fujian Medical University Union Hospital from January 2020 to May 2023 were collected for a minimum follow-up period of 2 years. Participants meeting inclusion and exclusion criteria were categorized into two groups based on follow-up records: W-C group and DRE group. To ensure that the recorded EEG data were not influenced by medication, all EEG recordings were collected before patients commenced any antiepileptic drug treatment. Resting-state EEG datasets of all participants underwent microstate analysis. This study comprehensively compared the average duration, frequency per second, coverage, and transition probabilities (TPs) of each microstate between the two groups. Results A total of 289 individuals who met the criteria were included, categorized into the W-C group (n = 112) and the DRE group (n = 177). EEG microstate analysis revealed substantial variances between the two groups. The analysis highlights differences in three of four microstate classifications. Microstate transition analysis demonstrated altered probabilities in DRE patients. Increased probabilities were observed in TPAB, TPBA, TPBC, TPCB, TPBD, and TPDB. Decreased probabilities included TPCA, TPDA, TPAC, TPAD, TPCD, and TPDC. Conclusion This study highlights distinctive EEG microstate parameters and TPs in DRE patients compared to those with W-C epilepsy. The results may potentially advance the clinical application of EEG microstates.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shenzhi Fang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Juan Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Wu
- Department of Neurology, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou 350001, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| |
Collapse
|
4
|
Arnau S, Liegel N, Wascher E. Frontal midline theta power during the cue-target-interval reflects increased cognitive effort in rewarded task-switching. Cortex 2024; 180:94-110. [PMID: 39393200 DOI: 10.1016/j.cortex.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/15/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Cognitive performance largely depends on how much effort is invested during task-execution. This also means that we rarely perform as good as we could. Cognitive effort is adjusted to the expected outcome of performance, meaning that it is driven by motivation. The results from recent studies suggest that the expenditure of cognitive control is particularly prone to being affected by modulations of cognitive effort. Although recent EEG studies investigated the neural underpinnings of the interaction of effort and control, reports on how cognitive effort is reflected by oscillatory activity of the EEG are quite sparse. It is the goal of the present study to bridge this gap by performing an exploratory analysis of high-density EEG data from a switching-task using manipulations of monetary incentives. A beamformer approach is used to localize the sensor-level effects in source-space. The results indicate that the manipulation of cognitive effort was successful. The participants reported significantly higher motivation and cognitive effort in high versus low reward trials. Performance was also significantly increased. The analysis of the EEG data revealed that the increase of cognitive effort was reflected by an increased mid-frontal theta activity during the cue-target interval, suggesting an increased use of proactive control. This interpretation is supported by the result from a regression analysis performed on single-trial data, showing higher mid-frontal theta power prior to target-onset being associated with faster responses. Alpha-desynchronization throughout the trial was also more pronounced in high reward trials, signaling a bias of attention towards the processing of external stimuli. Source reconstruction suggests that these effects are located in areas related to cognitive control, and visual processing.
Collapse
Affiliation(s)
- Stefan Arnau
- Leibniz Research Centre for Working Environment and Human Factors Dortmund (IfADo), Germany.
| | - Nathalie Liegel
- Leibniz Research Centre for Working Environment and Human Factors Dortmund (IfADo), Germany
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors Dortmund (IfADo), Germany
| |
Collapse
|
5
|
Zheng Y, Yang C, Jiang H, Gao B. Neural dynamics underlying the illusion of control during reward processing. Soc Cogn Affect Neurosci 2024; 19:nsae063. [PMID: 39300953 PMCID: PMC11466228 DOI: 10.1093/scan/nsae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024] Open
Abstract
The illusion of control refers to a behavioral bias in which people believe they have greater control over completely stochastic events than they actually do, leading to an inflated estimate of reward probability than objective probability warrants. In this study, we examined how reward system is modulated by the illusion of control through the lens of neural dynamics. Participants in a behavioral task exhibited a classical illusion of control, assigning a higher value to the gambling wheels they picked themselves than to those given randomly. An event-related potential study of the same task revealed that this behavioral bias is associated with reduced reward anticipation, as indexed by the stimulus-preceding negativity, diminished positive prediction error signals, as reflected by the reward positivity, and enhanced motivational salience, as revealed by the P300. Our findings offer a mechanistic understanding of the illusion of control in terms of reward dynamics.
Collapse
Affiliation(s)
- Ya Zheng
- Department of Psychology, Guangzhou University, Guangzhou 510006, China
- Center for Reward and Social Cognition, School of Education, Guangzhou University, Guangzhou 510006, China
| | - Canming Yang
- Department of Psychology, Dalian Medical University, Dalian 116044, China
| | - Huiping Jiang
- Faculty of Psychology, Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- Center for Reward and Social Cognition, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Psychology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
6
|
Zeng X, Sun YH, Gao F, Hua L, Xu S, Yuan Z. Concurrent behavioral modeling and multimodal neuroimaging reveals how feedback affects the performance of decision making in internet gaming disorder. Neuroimage 2024; 297:120726. [PMID: 38986794 DOI: 10.1016/j.neuroimage.2024.120726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Internet gaming disorder (IGD) prompts inquiry into how feedback from prior gaming rounds influences subsequent risk-taking behavior and potential neural mechanisms. Forty-two participants, including 15 with IGD and 27 health controls (HCs), underwent a sequential risk-taking task. Hierarchy Bayesian modeling was adopted to measure risky propensity, behavioral consistence, and affection by emotion ratings from last trial. Concurrent electroencephalogram and functional near-infrared spectroscopy (EEG-fNIRS) recordings were performed to demonstrate when, where and how the previous-round feedback affects the decision making to the next round. We discovered that the IGD illustrated heightened risk-taking propensity as compared to the HCs, indicating by the computational modeling (p = 0.028). EEG results also showed significant time window differences in univariate and multivariate pattern analysis between the IGD and HCs after the loss of the game. Further, reduced brain activation in the prefrontal cortex during the task was detected in IGD as compared to that of the control group. The findings underscore the importance of understanding the aberrant decision-making processes in IGD and suggest potential implications for future interventions and treatments aimed at addressing this behavioral addiction.
Collapse
Affiliation(s)
- Xinglin Zeng
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China 999078; Faculty of Health Sciences, University of Macau, Macau SAR, China 999078
| | - Ying Hao Sun
- Faculty of Business Administration, University of Macau, Macau SAR, China 999078
| | - Fei Gao
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai, China 200433
| | - Lin Hua
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China 999078; Faculty of Health Sciences, University of Macau, Macau SAR, China 999078
| | - Shiyang Xu
- Faculty of Education Science, Shanxi Normal University, Taiyuan, China 030013
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China 999078; Faculty of Health Sciences, University of Macau, Macau SAR, China 999078.
| |
Collapse
|
7
|
Hu X, Wang X, Long C, Lei X. Loneliness and brain rhythmic activity in resting state: an exploratory report. Soc Cogn Affect Neurosci 2024; 19:nsae052. [PMID: 39096513 PMCID: PMC11374414 DOI: 10.1093/scan/nsae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2024] [Accepted: 08/02/2024] [Indexed: 08/05/2024] Open
Abstract
Recent studies using resting-state functional magnetic resonance imaging have shown that loneliness is associated with altered blood oxygenation in several brain regions. However, the relationship between loneliness and changes in neuronal rhythm activity in the brain remains unclear. To evaluate brain rhythm, we conducted an exploratory resting-state electroencephalogram (EEG) study of loneliness. We recorded resting-state EEG signals from 139 participants (94 women; mean age = 19.96 years) and analyzed power spectrum density (PSD) and functional connectivity (FC) in both the electrode and source spaces. The PSD analysis revealed significant correlations between loneliness scores and decreased beta-band powers, which may indicate negative emotion, attention, reward, and/or sensorimotor processing. The FC analysis revealed a trend of alpha-band FC associated with individuals' loneliness scores. These findings provide new insights into the neural basis of loneliness, which will facilitate the development of neurobiologically informed interventions for loneliness.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Cognition and Personality of the Ministry of Education, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| | - Xufang Wang
- Key Laboratory of Cognition and Personality of the Ministry of Education, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| | - Changquan Long
- Key Laboratory of Cognition and Personality of the Ministry of Education, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality of the Ministry of Education, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| |
Collapse
|
8
|
Mayeli A, Wang Y, Graur S, Ghane M, Keihani A, Kim A, Janssen S, Huston C, Coffman BA, Ferrarelli F, Phillips ML. Effects of theta burst stimulation on reward processing and decision-making in bipolar disorder: A pilot study. Brain Stimul 2024; 17:163-165. [PMID: 38336341 DOI: 10.1016/j.brs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Affiliation(s)
- Ahmad Mayeli
- University of Pittsburgh, Department of Psychiatry, USA.
| | - Yiming Wang
- University of Pittsburgh, Department of Psychiatry, USA
| | - Simona Graur
- University of Pittsburgh, Department of Psychiatry, USA
| | - Merage Ghane
- University of Pittsburgh, Department of Psychiatry, USA
| | | | - Allison Kim
- University of Pittsburgh, Department of Psychiatry, USA
| | | | - Chloe Huston
- University of Pittsburgh, Department of Psychiatry, USA
| | | | | | | |
Collapse
|
9
|
Gao Y, Panier LYX, Gameroff MJ, Auerbach RP, Posner J, Weissman MM, Kayser J. Feedback negativity and feedback-related P3 in individuals at risk for depression: Comparing surface potentials and current source densities. Psychophysiology 2024; 61:e14444. [PMID: 37740325 DOI: 10.1111/psyp.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Blunted responses to reward feedback have been linked to major depressive disorder (MDD) and depression risk. Using a monetary incentive delay task (win, loss, break-even), we investigated the impact of family risk for depression and lifetime history of MDD and anxiety disorder with 72-channel electroencephalograms (EEG) recorded from 29 high-risk and 32 low-risk individuals (15-58 years, 30 male). Linked-mastoid surface potentials (ERPs) and their corresponding reference-free current source densities (CSDs) were quantified by temporal principal components analysis (PCA). Each PCA solution revealed a midfrontal feedback negativity (FN; peak around 310 ms) and a posterior feedback-P3 (fb-P3; 380 ms) as two distinct reward processing stages. Unbiased permutation tests and multilevel modeling of component scores revealed greater FN to loss than win and neutral for all stratification groups, confirming FN sensitivity to valence. Likewise, all groups had greater fb-P3 to win and loss than neutral, confirming that fb-P3 indexes motivational salience and allocation of attention. By contrast, group effects were subtle, dependent on data transformation (ERP, CSD), and did not confirm reduced FN or fb-P3 for at-risk individuals. Instead, CSD-based fb-P3 was overall reduced in individuals with than without MDD history, whereas ERP-based fb-P3 was greater for high-risk individuals than for low-risk individuals for monetary, but not neutral outcomes. While the present findings do not support blunted reward processing in depression and depression risk, our side-by-side comparison underscores how the EEG reference choice affects the characterization of subtle group differences, strongly advocating the use of reference-free techniques.
Collapse
Affiliation(s)
- Yifan Gao
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York, USA
| | - Lidia Y X Panier
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York, USA
| | - Marc J Gameroff
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Randy P Auerbach
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Myrna M Weissman
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Jürgen Kayser
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Zhu C, Li J, Wei D, Wu L, Zhang Y, Huang H, Lin W. Intrinsic brain activity differences in perampanel-responsive and non-responsive drug-resistant epilepsy patients: an EEG microstate analysis. Ther Adv Neurol Disord 2024; 17:17562864241227293. [PMID: 38298737 PMCID: PMC10829497 DOI: 10.1177/17562864241227293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Background Drug-resistant epilepsy (DRE) patients exhibit aberrant large-scale brain networks. Perampanel may be a therapeutic option for controlling seizures in these patients. Objective We aim to explore the differences of resting-state electroencephalogram (EEG) microstate in perampanel-responsive and non-responsive DRE patients. Design Retrospective study. Methods Clinical data were collected from DRE patients who received perampanel treatment at the Fujian Medical University Union Hospital from June 2020 to September 2021, with a minimum follow-up of 6 months. Patients were classified into three groups based on the extent of reduction in seizure frequency: non-responsive (seizure reduction <50%), responsive (seizure reduction >50% but not seizure-free), and seizure-free. Resting-state EEG data sets of all participants were subjected to EEG microstate analysis. The study comprehensively compared the mean duration, frequency per second, and temporal coverage of each microstate among the three groups. Results A total of 76 perampanel-treated DRE patients were categorized into three groups based on their response to treatment: non-responsive (n = 20), responsive (n = 36), and seizure-free (n = 20), according to the degree of seizure frequency reduction. The results of EEG microstate analysis revealed no statistically significant distinctions in frequency, duration, and coverage of microstate D in these DRE patients. However, the seizure-free group showed significantly increased duration and coverage of microstate A, frequency and coverage of microstate B, and significantly decreased duration, frequency, and coverage of microstate C when compared with the other groups. Conclusion Microstate A, B, and D is associated with the sensorimotor network, visual network, salience network, and attention network, respectively. This study demonstrates statistically significant differences in the sensorimotor, visual, and salience networks, but not in the attention network, between perampanel-responsive and non-responsive DRE patients.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Juan Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dazhu Wei
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| |
Collapse
|
11
|
Jiang H, Zheng Y. Dissociable neural after-effects of cognitive and physical effort expenditure during reward evaluation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1500-1512. [PMID: 37821754 DOI: 10.3758/s13415-023-01131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
The reward after-effect of effort expenditure refers to the phenomenon that previous effort investment changes the subjective value of rewards when obtained. However, the neural mechanisms underlying the after-effects of effort exertion are still not fully understood. We investigated the modulation of reward after-effects by effort type (cognitive vs. physical) through the lens of neural dynamics. Thirty-two participants performed a physically or cognitively demanding task during an effort phase and then played a simple gambling game during a subsequent reward phase to earn monetary rewards while their electroencephalogram (EEG) was recorded. We found that previous effort expenditure decreased electrocortical activity during feedback evaluation. Importantly, this effort effect occurred in a domain-general manner during the early stage (as indexed by the reward positivity) but in a domain-specific manner during the later and more elaborative stage (as indexed by the P3 and delta oscillation) of reward evaluation. Additionally, effort expenditure enhanced P3 sensitivity to feedback valence regardless of effort type. Our findings suggest that cognitive and physical effort, although bearing some surface resemblance to each other, may have dissociable neural influences on the reward after-effects.
Collapse
Affiliation(s)
- Huiping Jiang
- Department of Psychology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Department of Psychology, Dalian Medical University, Dalian, China
| | - Ya Zheng
- Department of Psychology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Zhang Y, Li Q, Rong Y, Hu L, Müller HJ, Wei P. Comparing monetary gain and loss in the monetary incentive delay task: EEG evidence. Psychophysiology 2023; 60:e14383. [PMID: 37427496 DOI: 10.1111/psyp.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
What is more effective to guide behavior: The desire to gain or the fear to lose? Electroencephalography (EEG) studies have yielded inconsistent answers. In a systematic exploration of the valence and magnitude parameters in monetary gain and loss processing, we used time-domain and time-frequency-domain analyses to uncover the underlying neural processes. A group of 24 participants performed a monetary incentive delay (MID) task in which cue-induced anticipation of a high or low magnitude of gain or loss was manipulated trial-wise. Behaviorally, the anticipation of both gain and loss expedited responses, with gain anticipation producing greater facilitation than loss anticipation. Analyses of cue-locked P2 and P3 components revealed the significant valence main effect and valence × magnitude interaction: amplitude differences between high and low incentive magnitudes were larger with gain vs. loss cues. However, the contingent negative variation component was sensitive to incentive magnitude but did not vary with incentive valence. In the feedback phase, the RewP component exhibited reversed patterns for gain and loss trials. Time-frequency analyses revealed a large increase in delta/theta-ERS oscillatory activity in high- vs. low-magnitude conditions and a large decrease of alpha-ERD oscillatory activity in gain vs. loss conditions in the anticipation stage. In the consumption stage, delta/theta-ERS turned out stronger for negative than positive feedback, especially in the gain condition. Overall, our study provides new evidence for the neural oscillatory features of monetary gain and loss processing in the MID task, suggesting that participants invested more attention under gain and high-magnitude conditions vs. loss and low-magnitude conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Qiuhao Li
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Yachao Rong
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Li Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hermann J Müller
- General & Experimental Psychology, Department of Psychology, LMU München, Munich, Germany
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
13
|
Migeot J, Hesse E, Fittipaldi S, Mejía J, Fraile M, García AM, García MDC, Ortega R, Lawlor B, Lopez V, Ibáñez A. Allostatic-interoceptive anticipation of social rejection. Neuroimage 2023; 276:120200. [PMID: 37245560 PMCID: PMC11163516 DOI: 10.1016/j.neuroimage.2023.120200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023] Open
Abstract
Anticipating social stress evokes strong reactions in the organism, including interoceptive modulations. However, evidence for this claim comes from behavioral studies, often with inconsistent results, and relates almost solely to the reactive and recovery phase of social stress exposure. Here, we adopted an allostatic-interoceptive predictive coding framework to study interoceptive and exteroceptive anticipatory brain responses using a social rejection task. We analyzed the heart-evoked potential (HEP) and task-related oscillatory activity of 58 adolescents via scalp EEG, and 385 human intracranial recordings of three patients with intractable epilepsy. We found that anticipatory interoceptive signals increased in the face of unexpected social outcomes, reflected in larger negative HEP modulations. Such signals emerged from key brain allostatic-interoceptive network hubs, as shown by intracranial recordings. Exteroceptive signals were characterized by early activity between 1-15 Hz across conditions, and modulated by the probabilistic anticipation of reward-related outcomes, observed over distributed brain regions. Our findings suggest that the anticipation of a social outcome is characterized by allostatic-interoceptive modulations that prepare the organism for possible rejection. These results inform our understanding of interoceptive processing and constrain neurobiological models of social stress.
Collapse
Affiliation(s)
- Joaquín Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Eugenia Hesse
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California, San Francisco, United States and Trinity College Dublin, Ireland
| | - Jhonny Mejía
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Matías Fraile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California, San Francisco, United States and Trinity College Dublin, Ireland; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Rodrigo Ortega
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Brian Lawlor
- Global Brain Health Institute, University of California, San Francisco, United States and Trinity College Dublin, Ireland
| | - Vladimir Lopez
- Escuela de Psicología, Facultad de Ciencias Sociales y Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Global Brain Health Institute, University of California, San Francisco, United States and Trinity College Dublin, Ireland; Predictive Brain Health Modelling Group, Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
14
|
Beckenstrom AC, Coloma PM, Dawson GR, Finlayson AK, Malik A, Post A, Steiner MA, Potenza MN. Use of experimental medicine approaches for the development of novel psychiatric treatments based on orexin receptor modulation. Neurosci Biobehav Rev 2023; 147:105107. [PMID: 36828161 PMCID: PMC10165155 DOI: 10.1016/j.neubiorev.2023.105107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Despite progress in understanding the pathological mechanisms underlying psychiatric disorders, translation from animal models into clinical use remains a significant bottleneck. Preclinical studies have implicated the orexin neuropeptide system as a potential target for psychiatric disorders through its role in regulating emotional, cognitive, and behavioral processes. Clinical studies are investigating orexin modulation in addiction and mood disorders. Here we review performance-outcome measures (POMs) arising from experimental medicine research methods which may show promise as markers of efficacy of orexin receptor modulators in humans. POMs provide objective measures of brain function, complementing patient-reported or clinician-observed symptom evaluation, and aid the translation from preclinical to clinical research. Significant challenges include the development, validation, and operationalization of these measures. We suggest that collaborative networks comprising clinical practitioners, academics, individuals working in the pharmaceutical industry, drug regulators, patients, patient advocacy groups, and other relevant stakeholders may provide infrastructure to facilitate validation of experimental medicine approaches in translational research and in the implementation of these approaches in real-world clinical practice.
Collapse
Affiliation(s)
- Amy C Beckenstrom
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK.
| | - Preciosa M Coloma
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Switzerland
| | - Gerard R Dawson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Ailidh K Finlayson
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK; Department of Psychology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asad Malik
- P1vital Ltd, Manor House, Howbery Business Park, Wallingford OX10 8BA, UK
| | - Anke Post
- Corlieve Therapeutics, Swiss Innovation Park, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | | | - Marc N Potenza
- Departments of Psychiatry and Neuroscience and the Child Study Center, Yale School of Medicine, 1 Church Street, Room 726, New Haven, CT 06510, USA; Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; The Wu Tsai Institute, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Liu Y, Zhang Y, Jiang Z, Kong W, Zou L. Exploring Neural Mechanisms of Reward Processing Using Coupled Matrix Tensor Factorization: A Simultaneous EEG-fMRI Investigation. Brain Sci 2023; 13:485. [PMID: 36979295 PMCID: PMC10046863 DOI: 10.3390/brainsci13030485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND It is crucial to understand the neural feedback mechanisms and the cognitive decision-making of the brain during the processing of rewards. Here, we report the first attempt for a simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) study in a gambling task by utilizing tensor decomposition. METHODS First, the single-subject EEG data are represented as a third-order spectrogram tensor to extract frequency features. Next, the EEG and fMRI data are jointly decomposed into a superposition of multiple sources characterized by space-time-frequency profiles using coupled matrix tensor factorization (CMTF). Finally, graph-structured clustering is used to select the most appropriate model according to four quantitative indices. RESULTS The results clearly show that not only are the regions of interest (ROIs) found in other literature activated, but also the olfactory cortex and fusiform gyrus which are usually ignored. It is found that regions including the orbitofrontal cortex and insula are activated for both winning and losing stimuli. Meanwhile, regions such as the superior orbital frontal gyrus and anterior cingulate cortex are activated upon winning stimuli, whereas the inferior frontal gyrus, cingulate cortex, and medial superior frontal gyrus are activated upon losing stimuli. CONCLUSION This work sheds light on the reward-processing progress, provides a deeper understanding of brain function, and opens a new avenue in the investigation of neurovascular coupling via CMTF.
Collapse
Affiliation(s)
- Yuchao Liu
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Yin Zhang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyi Jiang
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Wanzeng Kong
- College of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou 310018, China
| | - Ling Zou
- School of Computer and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
16
|
Forester G, Schaefer LM, Dodd DR, Johnson JS. The potential application of event-related potentials to enhance research on reward processes in eating disorders. Int J Eat Disord 2022; 55:1484-1495. [PMID: 36214253 PMCID: PMC9633412 DOI: 10.1002/eat.23821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Reward-related processes have been posited as key mechanisms underlying the onset and persistence of eating disorders, prompting a growing body of research in this area. Existing studies have primarily utilized self-report, behavioral, and functional magnetic resonance imaging measures to interrogate reward among individuals with eating disorders. However, limitations inherent in each of these methods (e.g., poor temporal resolution) may obscure distinct neurocognitive reward processes, potentially contributing to underdeveloped models of reward dysfunction within eating disorders. The temporal precision of event-related potentials (ERPs), derived from electroencephalography, may thus offer a powerful complementary tool for elucidating the neurocognitive underpinnings of reward. Indeed, a considerable amount of research in other domains of psychopathology (e.g., depression, substance use disorders), as well as studies investigating food reward among non-clinical samples, highlights the utility of ERPs for probing reward processes. However, no study to date has utilized ERPs to directly examine reward functioning in eating disorders. METHODS In this paper, we review evidence underscoring the clinical utility of ERP measures of reward, as well as a variety of reward-related tasks that can be used to elicit specific ERP components with demonstrated relevance to reward processing. We then consider the ways in which these tasks/components may be used to help answer a variety of open questions within the eating disorders literature on reward. RESULTS/DISCUSSION Given the promise of ERP measures of reward to the field of eating disorders, we ultimately hope to spur and guide research in this currently neglected area. PUBLIC SIGNIFICANCE Abnormalities in reward functioning appear to contribute to eating disorders. Event-related potentials (ERPs) offer temporally precise measures of neurocognitive reward processing and thus may be important tools for understanding the relationship between reward and disordered eating. However, research in this area is currently lacking. This paper attempts to facilitate the use of ERPs to study reward among individuals with eating disorders by reviewing the relevant theories and methods.
Collapse
Affiliation(s)
| | - Lauren M. Schaefer
- Center for Biobehavioral Research, Sanford Research
- Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences
| | | | - Jeffrey S. Johnson
- Center for Biobehavioral Research, Sanford Research
- Department of Psychology, North Dakota State University
| |
Collapse
|
17
|
Jonas S, Müller M, Rossetti AO, Rüegg S, Alvarez V, Schindler K, Zubler F. Diagnostic and prognostic EEG analysis of critically ill patients: A deep learning study. Neuroimage Clin 2022; 36:103167. [PMID: 36049354 PMCID: PMC9441331 DOI: 10.1016/j.nicl.2022.103167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Visual interpretation of electroencephalography (EEG) is time consuming, may lack objectivity, and is restricted to features detectable by a human. Computer-based approaches, especially deep learning, could potentially overcome these limitations. However, most deep learning studies focus on a specific question or a single pathology. Here we explore the potential of deep learning for EEG-based diagnostic and prognostic assessment of patients with acute consciousness impairment (ACI) of various etiologies. EEGs from 358 adults from a randomized controlled trial (CERTA, NCT03129438) were retrospectively analyzed. A convolutional neural network was used to predict the clinical outcome (based either on survival or on best cerebral performance category) and to determine the etiology (four diagnostic categories). The largest probability output served as marker for the confidence of the network in its prediction ("certainty factor"); we also systematically compared the predictions with raw EEG data, and used a visualization algorithm (Grad-CAM) to highlight discriminative patterns. When all patients were considered, the area under the receiver operating characteristic curve (AUC) was 0.721 for predicting survival and 0.703 for predicting the outcome based on best CPC; for patients with certainty factor ≥ 60 % the AUCs increased to 0.776 and 0.755 respectively; and for certainty factor ≥ 75 % to 0.852 and 0.879. The accuracy for predicting the etiology was 54.5 %; the accuracy increased to 67.7 %, 70.3 % and 84.1 % for patients with certainty factor of 50 %, 60 % and 75 % respectively. Visual analysis showed that the network learnt EEG patterns typically recognized by human experts, and suggested new criteria. This work demonstrates for the first time the potential of deep learning-based EEG analysis in critically ill patients with various etiologies of ACI. Certainty factor and post-hoc correlation of input data with prediction help to better characterize the method and pave the route for future implementations in clinical routine.
Collapse
Affiliation(s)
- Stefan Jonas
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Müller
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrea O. Rossetti
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Vincent Alvarez
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,Department of Neurology, Hôpital du Valais, Sion, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Frédéric Zubler
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Corresponding author at: Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital, Bern University Hospital, Freiburgstrasse 10, 3010 Bern, Switzerland.
| |
Collapse
|
18
|
Rong Y, Chen N, Dong J, Li Q, Yue X, Hu L, Wei P. Expectations of immediate and delayed reward differentially affect cognitive task performance. Neuroimage 2022; 262:119582. [PMID: 35995376 DOI: 10.1016/j.neuroimage.2022.119582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022] Open
Abstract
The current study used a modified Monetary Incentive Delay task to examine the neural mechanisms underlying anticipating and receiving an immediate or delayed reward and examined the influence of pursuing these rewards on cognitive task performance. A pre-cue indicating the potential of gaining a monetary reward (immediate-, delayed-, vs. no-reward) was followed by a target stimulus requiring a fast and accurate response. Then, response-contingent feedback was presented indicating whether or not the participant would receive the corresponding reward. Linear mixed-effect models revealed the fastest behavioural responses and the strongest neural activity, as reflected in event-related-potentials and event-related-spectral-perturbation responses, for immediate reward, followed by delayed reward, with the slowest behavioural responses and the weakest neural activities observed in the no-reward condition. Expectations related to the cue-P3 component and the cue-delta activities predicted behavioural performance, especially in the immediate reward condition. Moreover, exploratory analyses revealed that depression moderated the relationship between target-locked neural activity and behavioural performance in the delayed reward condition, with lower neural activity being related to worse behavioural performance amongst participants scoring high on depression. These results indicate that differential value representations formed through delay discounting directly affect neural responses in reward processing and directly influence the effort invested in the current task, which is reflected by behavioural responses and is in agreement with the expected value of control theory.
Collapse
Affiliation(s)
- Yachao Rong
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Ningxuan Chen
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Jiarui Dong
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Qi Li
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Xiaodong Yue
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Li Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
19
|
Opitz L, Wagner F, Rogenz J, Maas J, Schmidt A, Brodoehl S, Klingner CM. Still Wanting to Win: Reward System Stability in Healthy Aging. Front Aging Neurosci 2022; 14:863580. [PMID: 35707701 PMCID: PMC9190761 DOI: 10.3389/fnagi.2022.863580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Healthy aging is accompanied by multi-faceted changes. Especially within the brain, healthy aging exerts substantial impetus on core parts of cognitive and motivational networks. Rewards comprise basic needs, such as food, sleep, and social contact. Thus, a functionally intact reward system remains indispensable for elderly people to cope with everyday life and adapt to their changing environment. Research shows that reward system function is better preserved in the elderly than most cognitive functions. To investigate the compensatory mechanisms providing reward system stability in aging, we employed a well-established reward paradigm (Monetary Incentive Delay Task) in groups of young and old participants while undergoing EEG measurement. As a new approach, we applied EEG connectivity analyses to assess cortical reward-related network connectivity. At the behavioral level, our results confirm that the function of the reward system is preserved in old age. The mechanisms identified for maintaining reward system function in old age do not fit into previously described models of cognitive aging. Overall, older adults exhibit lower reward-related connectivity modulation, higher reliance on posterior and right-lateralized brain areas than younger adults, and connectivity modulation in the opposite direction than younger adults, with usually greater connectivity during non-reward compared to reward conditions. We believe that the reward system has unique compensatory mechanisms distinct from other cognitive functions, probably due to its etymologically very early origin. In summary, this study provides important new insights into cortical reward network connectivity in healthy aging.
Collapse
Affiliation(s)
- Laura Opitz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Franziska Wagner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
- Clinician Scientist Program OrganAge, Jena University Hospital, Jena, Germany
- *Correspondence: Franziska Wagner,
| | - Jenny Rogenz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Johanna Maas
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Alexander Schmidt
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
20
|
Baker E, Veytsman E, Choy T, Blacher J, Stavropoulos KKM. Investigating Changes in Reward-Related Neural Correlates After PEERS Intervention in Adolescents With ASD: Preliminary Evidence of a "Precision Medicine" Approach. Front Psychiatry 2021; 12:742280. [PMID: 34803765 PMCID: PMC8595219 DOI: 10.3389/fpsyt.2021.742280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 01/16/2023] Open
Abstract
Background: The Social Motivation Hypothesis proposes that individuals with autism spectrum disorder (ASD) experience social interactions as less rewarding than their neurotypical (TD) peers, which may lead to reduced social initiation. Existing studies of the brain's reward system in individuals with ASD report varied findings for anticipation of and response to social rewards. Given discrepant findings, the anticipation of and response to social rewards should be further evaluated, particularly in the context of intervention outcome. We hypothesized that individual characteristics may help predict neural changes from pre- to post-intervention. Methods: Thirteen adolescents with ASD received the Program for the Education and Enrichment of Relational Skills (PEERS) intervention for 16 weeks; reward-related EEG was collected before and after intervention. Fourteen TD adolescents were tested at two timepoints but did not receive intervention. Event-related potentials were calculated to measure anticipation of (stimulus-preceding negativity; SPN) and response to (reward-related positivity; RewP) social and non-social rewards. Additionally, measures of social responsiveness, social skills, and intervention-engagement were collected. Group differences were analyzed as well as individual differences using prediction models. Result: Parent-reported social responsiveness and social skills improved in adolescents with ASD after participation in PEERS. ASD adolescents displayed marginally decreased anticipation of social rewards at post-intervention compared to pre-intervention. Regression models demonstrated that older adolescents and those with lower parent-reported social motivation prior to participation in PEERS displayed marginally increased social reward anticipation (more robust SPN) from pre- to post-intervention. Participants who displayed more parent-reported social motivation before intervention and were more actively engaged in the PEERS intervention evidenced increased social reward processing (more robust RewP) from pre- to post-intervention. Conclusion: Findings suggest that there may be differences in saliency between wanting/anticipating social rewards vs. liking/responding to social rewards in individuals with ASD. Our findings support the hypothesis that identification of individual differences may predict which adolescents are poised to benefit the most from particular interventions. As such, reported findings set the stage for the advancement of "precision medicine." This investigation is a critical step forward in our ability to understand and predict individual response to interventions in individuals with ASD.
Collapse
Affiliation(s)
- Elizabeth Baker
- School of Education, University of California, Riverside, Riverside, CA, United States
| | | | | | | | | |
Collapse
|