1
|
Xu M, Zhang B, Chen Y, Zhang Q, Tan Z, Li Y, Kong Q, Zhang L, He J, Wang H, Xie W, Gao Y, Chang J. An innovation scalp acupuncture prescription for post-stroke aphasia: A neuroimaging-based validation study. Brain Res Bull 2025; 225:111334. [PMID: 40194668 DOI: 10.1016/j.brainresbull.2025.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/07/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND AND OBJECTIVE The coexistence of speech disorders in stroke patients can negatively impact their quality of life and rehabilitation outcomes. Scalp acupuncture (SA) has shown potential as a non-pharmacological treatment for post-stroke aphasia (PSA). As the location of SA in PSA treatment is controversial, this study aims to utilize neuroimaging techniques for identifying and validation the promising target. METHODS The study was divided into two phases. In phase Ⅰ, three pipelines, including lesion mapping, meta-analysis, and resting-state functional connectivity, were integrated for identifying the potential targets. In phase Ⅱ, Centro-square needling manipulations were then applied to evaluate the SA prescription in patients with PSA. RESULTS The left middle temporal gyrus (MTG) was chosen as one of the promising targets as it had the highest occurrence among the outcomes of three pipelines. It has been discovered that the Centro-square needling technique applied to the left MTG can immediately enhance the reduced functional connectivity (FC) between the left MTG and the middle frontal gyrus caused by diseases. Moreover, it enhances the FC between the left MTG and the superior temporal gyrus, which may constitute the therapeutic mechanism underlying its efficacy in improving the verb understanding scores on the Chinese Rehabilitation Research Center Standard Aphasia Examination scale. CONCLUSIONS In summary, the SA protocol integrating traditional Chinese medicine and neuroimaging may help refine the locations for the treatment of PSA.
Collapse
Affiliation(s)
- Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Hearing and Language Rehabilitation Department, China Rehabilitation Research Center, Beijing, China
| | - Binlong Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhang Chen
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsu Zhang
- Hearing and Language Rehabilitation Department, China Rehabilitation Research Center, Beijing, China
| | - Zhongjian Tan
- Radiological Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanli Li
- Traditional Chinese Medicine Department, China Rehabilitation Research Center, Beijing, China
| | - Qiao Kong
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - LeYi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junyi He
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haifang Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Xie
- Good Clinical Practice Office, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Ying Gao
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Jingling Chang
- Hearing and Language Rehabilitation Department, China Rehabilitation Research Center, Beijing, China.
| |
Collapse
|
2
|
Yeaton JD. The neurobiology of sentence production: A narrative review and meta-analysis. BRAIN AND LANGUAGE 2025; 264:105549. [PMID: 39983635 DOI: 10.1016/j.bandl.2025.105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Although there is a sizeable body of literature on sentence comprehension and processing both in healthy and disordered language users, the literature on sentence production remains much more sparse. Linguistic and computational descriptions of expressive syntactic deficits in aphasia are especially rare. In addition, the neuroimaging and (psycho) linguistic literatures operate largely separately. In this paper, I will first lay out the theoretical lay of the land with regard to psycholinguistic models of sentence production. I will then provide a brief narrative overview and large-scale meta-analysis of the neuroimaging literature as it pertains to syntactic computation, followed by an attempt to integrate the psycholinguistic models with the findings from functional and clinical neuroimaging. Finally, I provide a brief overview of the literature surrounding expressive syntactic deficits and propose a path forward to close some of the existing gaps.
Collapse
|
3
|
Liu S, Fan D, He C, Liu X, Zhang H, Zhang H, Zhang Z, Xie C, Pan P. Neural effect of childhood maltreatment on neurovascular coupling in adolescent depression. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02708-7. [PMID: 40178663 DOI: 10.1007/s00787-025-02708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Childhood maltreatment (CM) is a pivotal risk factor for depression, yet its potential contribution to major depressive disorder (MDD) in adolescents requires further investigation. This study aims to scrutinize the specific impact of CM on neurovascular coupling (NVC) in adolescents with MDD. A cohort of 189 adolescents, comprising 54 MDD with CM, 45 MDD without CM, 33 healthy controls (HC) with CM, and 57 HC without CM, underwent multimodal MRI scans. Cerebral blood flow (CBF) was computed to evaluate vascular responses, while functional connectivity strength (FCS) and amplitude of low-frequency fluctuation (ALFF) were measured to assess neuronal activity. NVC was calculated using whole gray matter CBF-neuronal activity correlation coefficients and regional CBF/neuronal activity ratios. MDD×CM interactions on NVC, CBF, and neuronal activity were analyzed, with further exploration of the associations between these abnormal NVC ratios and CM experience. Support vector machine classifiers were employed to differentiate MDD adolescents. Results revealed a significant MDD×CM interactive effect on CBF-FCS coefficients at whole gray matter level. Regionally, these interactions on NVC ratios primarily occurred in the reward systems, including bilateral anterior cingulate/orbitofrontal cortex, thalamus/mesial temporal lobe, and left occipitotemporal lobe, correlating with CM measurements. Notably, the integration of NVC ratio, CBF, and neuronal activity yielded robust classification performance in distinguishing MDD adolescents. These findings reinforce the importance of reward system for MDD adolescents related to CM, proposing a novel neuroimaging biomarker for early recognition of adolescent depression.
Collapse
Affiliation(s)
- Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haisan Zhang
- Psychology School of Xinxiang Medical University, Xinxiang, Henan, China
- Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongxing Zhang
- Psychology School of Xinxiang Medical University, Xinxiang, Henan, China
- Department of Psychiatry, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Multimodal Brain Imaging, Henan Provincial Mental Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Neuropsychiatric Institute, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, China.
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| | - PingLei Pan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, China.
| |
Collapse
|
4
|
Beber S, Capasso R, Maffei C, Tettamanti M, Miceli G. Distinct neural correlates of morphosyntactic and thematic comprehension processes in aphasia. Brain Commun 2025; 7:fcaf093. [PMID: 40129862 PMCID: PMC11930358 DOI: 10.1093/braincomms/fcaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Functional neuroimaging studies in neurotypical subjects correlate sentence comprehension to a left fronto-temporo-parietal network. Recent voxel-based lesion-symptom mapping (VLSM) studies of aphasia confirm the link between sentence comprehension and a left posterior region including the angular gyrus, the supra-marginal gyrus and the postero-superior division of the temporal lobe but support left pre-frontal involvement inconsistently. However, these studies focus on thematic role assignment without considering morphosyntactic processes. Hence, available VLSM evidence could provide a partial view of the neurofunctional substrate of sentence comprehension. In the present VLSM study, both morphosyntactic and thematic processes were evaluated systematically and in the same sentence types in each participant, to provide a more detailed picture of the sentence comprehension network. Participants (33 patients with post-stroke aphasia and 90 healthy controls) completed a sentence-picture matching task in which active and passive, declarative reversible sentences were paired with morphosyntactic, thematic and lexical-semantic alternatives. Phonological short-term memory tasks were also administered. Aphasic participants were selected from an initial pool of 70 because they scored below norm on thematic foils (n = 18) or on thematic and morphological foils (n = 15), but within the norm on lexical-semantic foils. The neurofunctional correlates of morphosyntactic and thematic processes were starkly distinguishable. Pre-frontal areas including the inferior and middle frontal gyrus were involved directly in processing local morphosyntactic features and only indirectly in thematic processes. When these areas were damaged, morphosyntactic errors always co-occurred with thematic errors, probably because morphosyntactic damage disrupts the assignment of grammatical roles and ultimately that of thematic roles. Morphosyntactic errors were not influenced by word order canonicity. In contrast, selective thematic role reversals were linked to temporal and parietal damage and were significantly influenced by word order, occurring on passive more than on active sentences. An area including the angular and supra-marginal gyrus was critical for processing non-canonical word order. In sentence comprehension, pre-frontal regions are critical for processing local morphosyntactic features (at least in simple declarative sentences). Temporal and parietal regions are critical for thematic processes. Postero-superior temporal areas are involved in retrieving verb argument structure. Parietal areas are critical for assigning morphosyntactically analysed constituents to the appropriate thematic role, thus serving a crucial function in thematic re-analysis. Each area plays a prevailing but not exclusive role in these processes, interacting with other areas in the network and possibly providing both the language-specific and the domain-general resources needed at various stages of sentence comprehension.
Collapse
Affiliation(s)
- Sabrina Beber
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
| | | | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02129, MA, USA
| | - Marco Tettamanti
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
- Brain Associates, Roma 00195, Italy
| |
Collapse
|
5
|
Matchin W, Almeida D, Hickok G, Sprouse J. A Functional Magnetic Resonance Imaging Study of Phrase Structure and Subject Island Violations. J Cogn Neurosci 2025; 37:414-442. [PMID: 39509099 PMCID: PMC11753796 DOI: 10.1162/jocn_a_02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In principle, functional neuroimaging provides uniquely informative data in addressing linguistic questions, because it can indicate distinct processes that are not apparent from behavioral data alone. This could involve adjudicating the source of unacceptability via the different patterns of elicited brain responses to different ungrammatical sentence types. However, it is difficult to interpret brain activations to syntactic violations. Such responses could reflect processes that have nothing intrinsically related to linguistic representations, such as domain-general executive function abilities. To facilitate the potential use of functional neuroimaging methods to identify the source of different syntactic violations, we conducted a functional magnetic resonance imaging experiment to identify the brain activation maps associated with two distinct syntactic violation types: phrase structure (created by inverting the order of two adjacent words within a sentence) and subject islands (created by extracting a wh-phrase out of an embedded subject). The comparison of these violations to control sentences surprisingly showed no indication of a generalized violation response, with almost completely divergent activation patterns. Phrase structure violations seemingly activated regions previously implicated in verbal working memory and structural complexity in sentence processing, whereas the subject islands appeared to activate regions previously implicated in conceptual-semantic processing, broadly defined. We review our findings in the context of previous research on syntactic and semantic violations using ERPs. Although our results suggest potentially distinct underlying mechanisms underlying phrase structure and subject island violations, our results are tentative and suggest important methodological considerations for future research in this area.
Collapse
|
6
|
Casilio M, Kasdan AV, Bryan K, Shibata K, Schneck SM, Levy DF, Entrup JL, Onuscheck C, de Riesthal M, Wilson SM. Four dimensions of naturalistic language production in aphasia after stroke. Brain 2025; 148:291-312. [PMID: 38889230 PMCID: PMC11706289 DOI: 10.1093/brain/awae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
There is a rich tradition of research on the neuroanatomical correlates of spoken language production in aphasia using constrained tasks (e.g. picture naming), which offer controlled insights into the distinct processes that govern speech and language (i.e. lexical-semantic access, morphosyntactic construction, phonological encoding, speech motor programming/execution). Yet these tasks do not necessarily reflect everyday language use. In contrast, naturalistic language production (also referred to as 'connected speech' or 'discourse') more closely approximates typical processing demands, requiring the dynamic integration of all aspects of speech and language. The brain bases of naturalistic language production remain relatively unknown, however, in part because of the difficulty in deriving features that are salient, quantifiable and interpretable relative to both speech-language processes and the extant literature. The present cross-sectional observational study seeks to address these challenges by leveraging a validated and comprehensive auditory-perceptual measurement system that yields four explanatory dimensions of performance-Paraphasia (misselection of words and sounds), Logopenia (paucity of words), Agrammatism (grammatical omissions) and Motor speech (impaired speech motor programming/execution). We used this system to characterize naturalistic language production in a large and representative sample of individuals with acute post-stroke aphasia (n = 118). Scores on each of the four dimensions were correlated with lesion metrics, and multivariate associations among the dimensions and brain regions were then explored. Our findings revealed distinct yet overlapping neuroanatomical correlates throughout the left-hemisphere language network. Paraphasia and logopenia were associated primarily with posterior regions, spanning both dorsal and ventral streams, which are critical for lexical-semantic access and phonological encoding. In contrast, agrammatism and motor speech were associated primarily with anterior regions of the dorsal stream that are involved in morphosyntactic construction and speech motor planning/execution, respectively. Collectively, we view these results as constituting a brain-behaviour model of naturalistic language production in aphasia, aligning with both historical and contemporary accounts of the neurobiology of spoken language production.
Collapse
Affiliation(s)
- Marianne Casilio
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna V Kasdan
- Vanderbilt University Medical Center, Brain Institute, Nashville, TN 37232, USA
| | - Katherine Bryan
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kiiya Shibata
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah M Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian L Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin Onuscheck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
7
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams, respectively. Brain Commun 2024; 6:fcae449. [PMID: 39713237 PMCID: PMC11660927 DOI: 10.1093/braincomms/fcae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioural testing in two groups of individuals with chronic post-stroke aphasia. We employed a rhyme judgement task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgement, isolating the effect of working memory load (103 individuals). We assessed non-canonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgement performance as a covariate for working memory load (78 individuals). Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Zeinab K Mollasaraei
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Language Science, University of California Irvine, Irvine, CA 92697, USA
| | - Dirk den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Li R, Wang Y, Li H, Liu J, Liu S. Differences in motor network reorganization between patients with good and poor upper extremity impairment outcomes after stroke. Brain Imaging Behav 2024; 18:1549-1559. [PMID: 39373958 DOI: 10.1007/s11682-024-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 10/08/2024]
Abstract
Changes in cortical excitability after stroke are closely associated with motor function recovery. This study aimed to clarify the motor network reorganization mechanisms corresponding to the different clinical outcomes of upper limb motor impairment in patients with subacute stroke. Motor function was assessed before rehabilitation (pre), after rehabilitation (post), and at the 1-year follow-up (follow-up) using the Fugl-Meyer assessment upper extremity scale. Further, resting-state functional magnetic resonance imaging (fMRI) data were collected in both pre- and post-conditions. Twenty patients with stroke were categorized into good and poor outcome groups based on motor impairments at the 1-year follow-up. Functional connections between motor-related regions of interest and the rest of the brain were subsequently calculated. Finally, the correlation between motor network reorganization and behavioral improvement at the 1-year follow-up was analyzed. The good outcome group exhibited a positive precondition motor function and continuous improvement, whereas the poor outcome group showed a weak precondition motor function and insignificant improvement. Contralesional hemisphere-related connections were found to be higher in the good outcome group pre-conditioning, with both groups showing minimal change post-conditioning, while no relationship with motor impairment was found. Long interhemispheric connections were decreased and increased in the good and poor outcome groups respectively, and were negatively correlated with motor impairment. Different motor network reorganizations during the subacute phase can influence the varying motor outcomes in the affected upper limb after stroke. These findings may serve as the theoretical basis for future neuromodulatory research.
Collapse
Affiliation(s)
- Ran Li
- Department of Rehabilitation Center, Fu Xing Hospital, Capital Medical University, 20#, Fu Xing Men Wai Street, Beijing, 100038, China
| | - Yong Wang
- Department of Rehabilitation Center, Fu Xing Hospital, Capital Medical University, 20#, Fu Xing Men Wai Street, Beijing, 100038, China.
| | - Haimei Li
- Department of Rehabilitation Center, Fu Xing Hospital, Capital Medical University, 20#, Fu Xing Men Wai Street, Beijing, 100038, China
| | - Jie Liu
- Department of Rehabilitation Center, Fu Xing Hospital, Capital Medical University, 20#, Fu Xing Men Wai Street, Beijing, 100038, China
| | - Sujuan Liu
- Department of Rehabilitation Center, Fu Xing Hospital, Capital Medical University, 20#, Fu Xing Men Wai Street, Beijing, 100038, China
| |
Collapse
|
9
|
Biondo N, Ivanova MV, Pracar AL, Baldo J, Dronkers NF. Mapping sentence comprehension and syntactic complexity: evidence from 131 stroke survivors. Brain Commun 2024; 6:fcae379. [PMID: 39554380 PMCID: PMC11565230 DOI: 10.1093/braincomms/fcae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
Understanding and interpreting how words are organized in a sentence to convey distinct meanings is a cornerstone of human communication. The neural underpinnings of this ability, known as syntactic comprehension, are far from agreed upon in current neurocognitive models of language comprehension. Traditionally, left frontal regions (e.g. left posterior inferior frontal gyrus) were considered critical, while more recently, left temporal regions (most prominently, left posterior middle temporal gyrus) have been identified as more indispensable to syntactic comprehension. Syntactic processing has been investigated by using different types of non-canonical sentences i.e. those that do not follow prototypical word order and are considered more syntactically complex. However, non-canonical sentences can be complex for different linguistic reasons, and thus, their comprehension might rely on different neural underpinnings. In this cross-sectional study, we explored the neural correlates of syntactic comprehension by investigating the roles of left hemisphere brain regions and white matter pathways in processing sentences with different levels of syntactic complexity. Participants were assessed at a single point in time using structural MRI and behavioural tests. Employing lesion-symptom mapping and indirect structural disconnection mapping in a cohort of 131 left hemisphere stroke survivors, our analysis revealed the following left temporal regions and underlying white matter pathways as crucial for general sentence comprehension: the left mid-posterior superior temporal gyrus, middle temporal gyrus and superior temporal sulcus and the inferior longitudinal fasciculus, the inferior fronto-occipital fasciculus, the middle longitudinal fasciculus, the uncinate fasciculus and the tracts crossing the most posterior part of the corpus callosum. We further found significant involvement of different white matter tracts connecting the left temporal and frontal lobes for different sentence types. Spared connections between the left temporal and frontal regions were critical for the comprehension of non-canonical sentences requiring long-distance retrieval (spared superior longitudinal fasciculus for both subject and object extraction and spared arcuate fasciculus for object extraction) but not for comprehension of non-canonical passive sentences and canonical declarative sentences. Our results challenge traditional language models that emphasize the primary role of the left frontal regions, such as Broca's area, in basic sentence structure comprehension. Our findings suggest a gradient of syntactic complexity, rather than a clear-cut dichotomy between canonical and non-canonical sentence structures. Our findings contribute to a more nuanced understanding of the neural architecture of language comprehension and highlight potential directions for future research.
Collapse
Affiliation(s)
- Nicoletta Biondo
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
- Basque Center on Cognition, Brain, and Language, Donostia 20009, Spain
| | - Maria V Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexis L Pracar
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juliana Baldo
- Veteran Affairs Northern California Health Care System, Martinez, CA 94553, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neurology, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Matchin W, Almeida D, Hickok G, Sprouse J. An fMRI study of phrase structure and subject island violations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592579. [PMID: 38746262 PMCID: PMC11092748 DOI: 10.1101/2024.05.05.592579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In principle, functional neuroimaging provides uniquely informative data in addressing linguistic questions, because it can indicate distinct processes that are not apparent from behavioral data alone. This could involve adjudicating the source of unacceptability via the different patterns of elicited brain responses to different ungrammatical sentence types. However, it is difficult to interpret brain activations to syntactic violations. Such responses could reflect processes that have nothing intrinsically related to linguistic representations, such as domain-general executive function abilities. In order to facilitate the potential use of functional neuroimaging methods to identify the source of different syntactic violations, we conducted an fMRI experiment to identify the brain activation maps associated with two distinct syntactic violation types: phrase structure (created by inverting the order of two adjacent words within a sentence) and subject islands (created by extracting a wh-phrase out of an embedded subject). The comparison of these violations to control sentences surprisingly showed no indication of a generalized violation response, with almost completely divergent activation patterns. Phrase structure violations seemingly activated regions previously implicated in verbal working memory and structural complexity in sentence processing, whereas the subject islands appeared to activate regions previously implicated in conceptual-semantic processing, broadly defined. We review our findings in the context of previous research on syntactic and semantic violations using event-related potentials. Although our results suggest potentially distinct underlying mechanisms underlying phrase structure and subject island violations, our results are tentative and suggest important methodological considerations for future research in this area.
Collapse
Affiliation(s)
- William Matchin
- Dept. of Communication Sciences and Disorders, University of South Carolina
| | - Diogo Almeida
- Program in Psychology, New York University Abu Dhabi
| | - Gregory Hickok
- Dept. of Cognitive Sciences and Dept. of Language Science, University of California, Irvine
| | - Jon Sprouse
- Program in Psychology, New York University Abu Dhabi
| |
Collapse
|
11
|
Seghier ML. Symptomatology after damage to the angular gyrus through the lenses of modern lesion-symptom mapping. Cortex 2024; 179:77-90. [PMID: 39153389 DOI: 10.1016/j.cortex.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Brain-behavior relationships are complex. For instance, one might know a brain region's function(s) but still be unable to accurately predict deficit type or severity after damage to that region. Here, I discuss the case of damage to the angular gyrus (AG) that can cause left-right confusion, finger agnosia, attention deficit, and lexical agraphia, as well as impairment in sentence processing, episodic memory, number processing, and gesture imitation. Some of these symptoms are grouped under AG syndrome or Gerstmann's syndrome, though its exact underlying neuronal systems remain elusive. This review applies recent frameworks of brain-behavior modes and principles from modern lesion-symptom mapping to explain symptomatology after AG damage. It highlights four major issues for future studies: (1) functionally heterogeneous symptoms after AG damage need to be considered in terms of the degree of damage to (i) different subdivisions of the AG, (ii) different AG connectivity profiles that disconnect AG from distant regions, and (iii) lesion extent into neighboring regions damaged by the same infarct. (2) To explain why similar symptoms can also be observed after damage to other regions, AG damage needs to be studied in terms of the networks of regions that AG functions with, and other independent networks that might subsume the same functions. (3) To explain inter-patient variability on AG symptomatology, the degree of recovery-related brain reorganisation needs to account for time post-stroke, demographics, therapy input, and pre-stroke differences in functional anatomy. (4) A better integration of the results from lesion and functional neuroimaging investigations of AG function is required, with only the latter so far considering AG function in terms of a hub within the default mode network. Overall, this review discusses why it is so difficult to fully characterize the AG syndrome from lesion data, and how this might be addressed with modern lesion-symptom mapping.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Biondi M, Marino M, Mantini D, Spironelli C. Unveiling altered connectivity between cognitive networks and cerebellum in schizophrenia. Schizophr Res 2024; 271:47-58. [PMID: 39013344 DOI: 10.1016/j.schres.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Cognitive functioning is a crucial aspect in schizophrenia (SZ), and when altered it has devastating effects on patients' quality of life and treatment outcomes. Several studies suggested that they could result from altered communication between the cortex and cerebellum. However, the neural correlates underlying these impairments have not been identified. In this study, we investigated resting state functional connectivity (rsFC) in SZ patients, by considering the interactions between cortical networks supporting cognition and cerebellum. In addition, we investigated the relationship between SZ patients' rsFC and their symptoms. We used fMRI data from 74 SZ patients and 74 matched healthy controls (HC) downloaded from the publicly available database SchizConnect. We implemented a seed-based connectivity approach to identify altered functional connections between specific cortical networks and cerebellum. We considered ten commonly studied resting state networks, whose functioning encompasses specific cognitive functions, and the cerebellum, whose involvement in supporting cognition has been recently identified. We then explored the relationship between altered rsFC values and Positive and Negative Syndrome Scale (PANSS) scores. The SZ group showed increased connectivity values compared with HC group for cortical networks involved in attentive processes, which were also linked to PANSS items describing attention and language-related processing. We also showed decreased connectivity between cerebellar regions, and increased connectivity between them and attentive networks, suggesting the contribution of cerebellum to attentive and affective deficits. In conclusion, our findings highlighted the link between negative symptoms in SZ and altered connectivity within the cerebellum and between the same and cortical networks supporting cognition.
Collapse
Affiliation(s)
| | - Marco Marino
- Department of General Psychology, University of Padova, Italy; Movement Control and Neuroplasticity Research Group, KU, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU, Leuven, Belgium.
| | - Chiara Spironelli
- Padova Neuroscience Center, University of Padova, Italy; Department of General Psychology, University of Padova, Italy
| |
Collapse
|
13
|
Beber S, Bontempi G, Miceli G, Tettamanti M. The Neurofunctional Correlates of Morphosyntactic and Thematic Impairments in Aphasia: A Systematic Review and Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09648-0. [PMID: 39214956 DOI: 10.1007/s11065-024-09648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Lesion-symptom studies in persons with aphasia showed that left temporoparietal damage, but surprisingly not prefrontal damage, correlates with impaired ability to process thematic roles in the comprehension of semantically reversible sentences (The child is hugged by the mother). This result has led to challenge the time-honored view that left prefrontal regions are critical for sentence comprehension. However, most studies focused on thematic role assignment and failed to consider morphosyntactic processes that are also critical for sentence processing. We reviewed and meta-analyzed lesion-symptom studies on the neurofunctional correlates of thematic role assignment and morphosyntactic processing in comprehension and production in persons with aphasia. Following the PRISMA checklist, we selected 43 papers for the review and 27 for the meta-analysis, identifying a set of potential bias risks. Both the review and the meta-analysis confirmed the correlation between thematic role processing and temporoparietal regions but also clearly showed the involvement of prefrontal regions in sentence processing. Exploratory meta-analyses suggested that both thematic role and morphosyntactic processing correlate with left prefrontal and temporoparietal regions, that morphosyntactic processing correlates with prefrontal structures more than with temporoparietal regions, and that thematic role assignment displays the opposite trend. We discuss current limitations in the literature and propose a set of recommendations for clarifying unresolved issues.
Collapse
Affiliation(s)
- Sabrina Beber
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy.
| | - Giorgia Bontempi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, TN, 38122, Italy
| | | |
Collapse
|
14
|
Fahey D, Fridriksson J, Hickok G, Matchin W. Lesion-symptom Mapping of Acceptability Judgments in Chronic Poststroke Aphasia Reveals the Neurobiological Underpinnings of Receptive Syntax. J Cogn Neurosci 2024; 36:1141-1155. [PMID: 38437175 PMCID: PMC11095916 DOI: 10.1162/jocn_a_02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Disagreements persist regarding the neural basis of syntactic processing, which has been linked both to inferior frontal and posterior temporal regions of the brain. One focal point of the debate concerns the role of inferior frontal areas in receptive syntactic ability, which is mostly assessed using sentence comprehension involving complex syntactic structures, a task that is potentially confounded with working memory. Syntactic acceptability judgments may provide a better measure of receptive syntax by reducing the need to use high working memory load and complex sentences and by enabling assessment of various types of syntactic violations. We therefore tested the perception of grammatical violations by people with poststroke aphasia (n = 25), along with matched controls (n = 16), using English sentences involving errors in word order, agreement, or subcategorization. Lesion data were also collected. Control participants performed near ceiling in accuracy with higher discriminability of agreement and subcategorization violations than word order; aphasia participants were less able to discriminate violations, but, on average, paralleled control participants discriminability of types of violations. Lesion-symptom mapping showed a correlation between discriminability and posterior temporal regions, but not inferior frontal regions. We argue that these results diverge from models holding that frontal areas are amodal core regions in syntactic structure building and favor models that posit a core hierarchical system in posterior temporal regions.
Collapse
|
15
|
Matchin W, Mollasaraei ZK, Bonilha L, Rorden C, Hickok G, den Ouden D, Fridriksson J. Verbal working memory and syntactic comprehension segregate into the dorsal and ventral streams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592577. [PMID: 38746328 PMCID: PMC11092776 DOI: 10.1101/2024.05.05.592577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Syntactic processing and verbal working memory are both essential components to sentence comprehension. Nonetheless, the separability of these systems in the brain remains unclear. To address this issue, we performed causal-inference analyses based on lesion and connectome network mapping using MRI and behavioral testing in 103 individuals with chronic post-stroke aphasia. We employed a rhyme judgment task with heavy working memory load without articulatory confounds, controlling for the overall ability to match auditory words to pictures and to perform a metalinguistic rhyme judgment, isolating the effect of working memory load. We assessed noncanonical sentence comprehension, isolating syntactic processing by incorporating residual rhyme judgment performance as a covariate for working memory load. Voxel-based lesion analyses and structural connectome-based lesion symptom mapping controlling for total lesion volume were performed, with permutation testing to correct for multiple comparisons (4,000 permutations). We observed that effects of working memory load localized to dorsal stream damage: posterior temporal-parietal lesions and frontal-parietal white matter disconnections. These effects were differentiated from syntactic comprehension deficits, which were primarily associated with ventral stream damage: lesions to temporal lobe and temporal-parietal white matter disconnections, particularly when incorporating the residual measure of working memory load as a covariate. Our results support the conclusion that working memory and syntactic processing are associated with distinct brain networks, largely loading onto dorsal and ventral streams, respectively.
Collapse
|
16
|
Arvidsson C, Torubarova E, Pereira A, Uddén J. Conversational production and comprehension: fMRI-evidence reminiscent of but deviant from the classical Broca-Wernicke model. Cereb Cortex 2024; 34:bhae073. [PMID: 38501383 PMCID: PMC10949358 DOI: 10.1093/cercor/bhae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
A key question in research on the neurobiology of language is to which extent the language production and comprehension systems share neural infrastructure, but this question has not been addressed in the context of conversation. We utilized a public fMRI dataset where 24 participants engaged in unscripted conversations with a confederate outside the scanner, via an audio-video link. We provide evidence indicating that the two systems share neural infrastructure in the left-lateralized perisylvian language network, but diverge regarding the level of activation in regions within the network. Activity in the left inferior frontal gyrus was stronger in production compared to comprehension, while comprehension showed stronger recruitment of the left anterior middle temporal gyrus and superior temporal sulcus, compared to production. Although our results are reminiscent of the classical Broca-Wernicke model, the anterior (rather than posterior) temporal activation is a notable difference from that model. This is one of the findings that may be a consequence of the conversational setting, another being that conversational production activated what we interpret as higher-level socio-pragmatic processes. In conclusion, we present evidence for partial overlap and functional asymmetry of the neural infrastructure of production and comprehension, in the above-mentioned frontal vs temporal regions during conversation.
Collapse
Affiliation(s)
- Caroline Arvidsson
- Department of Linguistics, Stockholm University, Universitetsvägen 10 C, 114 18 Stockholm, Sweden
| | - Ekaterina Torubarova
- Division of Speech, Music, and Hearing, KTH Royal Institute of Technology, Lindstedtsvägen 24, 114 28 Stockholm, Sweden
| | - André Pereira
- Division of Speech, Music, and Hearing, KTH Royal Institute of Technology, Lindstedtsvägen 24, 114 28 Stockholm, Sweden
| | - Julia Uddén
- Department of Linguistics, Stockholm University, Universitetsvägen 10 C, 114 18 Stockholm, Sweden
- Department of Psychology, Stockholm University, Albanovägen 12, 114 19 Stockholm, Sweden
| |
Collapse
|
17
|
Lorca-Puls DL, Gajardo-Vidal A, Mandelli ML, Illán-Gala I, Ezzes Z, Wauters LD, Battistella G, Bogley R, Ratnasiri B, Licata AE, Battista P, García AM, Tee BL, Lukic S, Boxer AL, Rosen HJ, Seeley WW, Grinberg LT, Spina S, Miller BL, Miller ZA, Henry ML, Dronkers NF, Gorno-Tempini ML. Neural basis of speech and grammar symptoms in non-fluent variant primary progressive aphasia spectrum. Brain 2024; 147:607-626. [PMID: 37769652 PMCID: PMC10834255 DOI: 10.1093/brain/awad327] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.
Collapse
Affiliation(s)
- Diego L Lorca-Puls
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Sección de Neurología, Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Concepción, 4070105, Chile
| | - Andrea Gajardo-Vidal
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Centro de Investigación en Complejidad Social (CICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, 7590943, Chile
- Dirección de Investigación y Doctorados, Vicerrectoría de Investigación y Doctorados, Universidad del Desarrollo, Concepción, 4070001, Chile
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28029, Spain
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Zoe Ezzes
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Lisa D Wauters
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78712-0114, USA
| | - Giovanni Battistella
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Rian Bogley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Buddhika Ratnasiri
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Abigail E Licata
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Petronilla Battista
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Laboratory of Neuropsychology, Istituti Clinici Scientifici Maugeri IRCCS, Bari, 70124, Italy
| | - Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Buenos Aires, B1644BID, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, 9160000, Chile
| | - Boon Lead Tee
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Sladjana Lukic
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Communication Sciences and Disorders, Ruth S. Ammon College of Education and Health Sciences, Adelphi University, Garden City, NY 11530-0701, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA 94143, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| | - Maya L Henry
- Department of Speech, Language and Hearing Sciences, University of Texas, Austin, TX 78712-0114, USA
- Department of Neurology, Dell Medical School, University of Texas, Austin, TX 78712, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Department of Neurology, University of California, Davis, CA 95817, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, SanFrancisco, CA 94158, USA
| |
Collapse
|
18
|
Jiang Y, Gong G. Common and distinct patterns underlying different linguistic tasks: multivariate disconnectome symptom mapping in poststroke patients. Cereb Cortex 2024; 34:bhae008. [PMID: 38265297 DOI: 10.1093/cercor/bhae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/25/2024] Open
Abstract
Numerous studies have been devoted to neural mechanisms of a variety of linguistic tasks (e.g. speech comprehension and production). To date, however, whether and how the neural patterns underlying different linguistic tasks are similar or differ remains elusive. In this study, we compared the neural patterns underlying 3 linguistic tasks mainly concerning speech comprehension and production. To address this, multivariate regression approaches with lesion/disconnection symptom mapping were applied to data from 216 stroke patients with damage to the left hemisphere. The results showed that lesion/disconnection patterns could predict both poststroke scores of speech comprehension and production tasks; these patterns exhibited shared regions on the temporal pole of the left hemisphere as well as unique regions contributing to the prediction for each domain. Lower scores in speech comprehension tasks were associated with lesions/abnormalities in the superior temporal gyrus and middle temporal gyrus, while lower scores in speech production tasks were associated with lesions/abnormalities in the left inferior parietal lobe and frontal lobe. These results suggested an important role of the ventral and dorsal stream pathways in speech comprehension and production (i.e. supporting the dual stream model) and highlighted the applicability of the novel multivariate disconnectome-based symptom mapping in cognitive neuroscience research.
Collapse
Affiliation(s)
- Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
19
|
van der Burght CL, Friederici AD, Maran M, Papitto G, Pyatigorskaya E, Schroën JAM, Trettenbrein PC, Zaccarella E. Cleaning up the Brickyard: How Theory and Methodology Shape Experiments in Cognitive Neuroscience of Language. J Cogn Neurosci 2023; 35:2067-2088. [PMID: 37713672 DOI: 10.1162/jocn_a_02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The capacity for language is a defining property of our species, yet despite decades of research, evidence on its neural basis is still mixed and a generalized consensus is difficult to achieve. We suggest that this is partly caused by researchers defining "language" in different ways, with focus on a wide range of phenomena, properties, and levels of investigation. Accordingly, there is very little agreement among cognitive neuroscientists of language on the operationalization of fundamental concepts to be investigated in neuroscientific experiments. Here, we review chains of derivation in the cognitive neuroscience of language, focusing on how the hypothesis under consideration is defined by a combination of theoretical and methodological assumptions. We first attempt to disentangle the complex relationship between linguistics, psychology, and neuroscience in the field. Next, we focus on how conclusions that can be drawn from any experiment are inherently constrained by auxiliary assumptions, both theoretical and methodological, on which the validity of conclusions drawn rests. These issues are discussed in the context of classical experimental manipulations as well as study designs that employ novel approaches such as naturalistic stimuli and computational modeling. We conclude by proposing that a highly interdisciplinary field such as the cognitive neuroscience of language requires researchers to form explicit statements concerning the theoretical definitions, methodological choices, and other constraining factors involved in their work.
Collapse
Affiliation(s)
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matteo Maran
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Giorgio Papitto
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Elena Pyatigorskaya
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Joëlle A M Schroën
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
| | - Patrick C Trettenbrein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany
- University of Göttingen, Göttingen, Germany
| | - Emiliano Zaccarella
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
20
|
Schroën JAM, Gunter TC, Numssen O, Kroczek LOH, Hartwigsen G, Friederici AD. Causal evidence for a coordinated temporal interplay within the language network. Proc Natl Acad Sci U S A 2023; 120:e2306279120. [PMID: 37963247 PMCID: PMC10666120 DOI: 10.1073/pnas.2306279120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Recent neurobiological models on language suggest that auditory sentence comprehension is supported by a coordinated temporal interplay within a left-dominant brain network, including the posterior inferior frontal gyrus (pIFG), posterior superior temporal gyrus and sulcus (pSTG/STS), and angular gyrus (AG). Here, we probed the timing and causal relevance of the interplay between these regions by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). Our TMS-EEG experiments reveal region- and time-specific causal evidence for a bidirectional information flow from left pSTG/STS to left pIFG and back during auditory sentence processing. Adapting a condition-and-perturb approach, our findings further suggest that the left pSTG/STS can be supported by the left AG in a state-dependent manner.
Collapse
Affiliation(s)
- Joëlle A. M. Schroën
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Thomas C. Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Ole Numssen
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Leon O. H. Kroczek
- Department of Psychology, Clinical Psychology and Psychotherapy, Universität Regensburg, Regensburg93053, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
- Cognitive and Biological Psychology, Wilhelm Wundt Institute for Psychology, Leipzig04109, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
21
|
Matchin W, den Ouden DB, Basilakos A, Stark BC, Fridriksson J, Hickok G. Grammatical Parallelism in Aphasia: A Lesion-Symptom Mapping Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:550-574. [PMID: 37946730 PMCID: PMC10631800 DOI: 10.1162/nol_a_00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
Sentence structure, or syntax, is potentially a uniquely creative aspect of the human mind. Neuropsychological experiments in the 1970s suggested parallel syntactic production and comprehension deficits in agrammatic Broca's aphasia, thought to result from damage to syntactic mechanisms in Broca's area in the left frontal lobe. This hypothesis was sometimes termed overarching agrammatism, converging with developments in linguistic theory concerning central syntactic mechanisms supporting language production and comprehension. However, the evidence supporting an association among receptive syntactic deficits, expressive agrammatism, and damage to frontal cortex is equivocal. In addition, the relationship among a distinct grammatical production deficit in aphasia, paragrammatism, and receptive syntax has not been assessed. We used lesion-symptom mapping in three partially overlapping groups of left-hemisphere stroke patients to investigate these issues: grammatical production deficits in a primary group of 53 subjects and syntactic comprehension in larger sample sizes (N = 130, 218) that overlapped with the primary group. Paragrammatic production deficits were significantly associated with multiple analyses of syntactic comprehension, particularly when incorporating lesion volume as a covariate, but agrammatic production deficits were not. The lesion correlates of impaired performance of syntactic comprehension were significantly associated with damage to temporal lobe regions, which were also implicated in paragrammatism, but not with the inferior and middle frontal regions implicated in expressive agrammatism. Our results provide strong evidence against the overarching agrammatism hypothesis. By contrast, our results suggest the possibility of an alternative grammatical parallelism hypothesis rooted in paragrammatism and a central syntactic system in the posterior temporal lobe.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Brielle Caserta Stark
- Department of Speech, Language and Hearing Sciences, Program for Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Yuan B, Xie H, Wang Z, Xu Y, Zhang H, Liu J, Chen L, Li C, Tan S, Lin Z, Hu X, Gu T, Lu J, Liu D, Wu J. The domain-separation language network dynamics in resting state support its flexible functional segregation and integration during language and speech processing. Neuroimage 2023; 274:120132. [PMID: 37105337 DOI: 10.1016/j.neuroimage.2023.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Modern linguistic theories and network science propose that language and speech processing are organized into hierarchical, segregated large-scale subnetworks, with a core of dorsal (phonological) stream and ventral (semantic) stream. The two streams are asymmetrically recruited in receptive and expressive language or speech tasks, which showed flexible functional segregation and integration. We hypothesized that the functional segregation of the two streams was supported by the underlying network segregation. A dynamic conditional correlation approach was employed to construct framewise time-varying language networks and k-means clustering was employed to investigate the temporal-reoccurring patterns. We found that the framewise language network dynamics in resting state were robustly clustered into four states, which dynamically reconfigured following a domain-separation manner. Spatially, the hub distributions of the first three states highly resembled the neurobiology of speech perception and lexical-phonological processing, speech production, and semantic processing, respectively. The fourth state was characterized by the weakest functional connectivity and was regarded as a baseline state. Temporally, the first three states appeared exclusively in limited time bins (∼15%), and most of the time (> 55%), state 4 was dominant. Machine learning-based dFC-linguistics prediction analyses showed that dFCs of the four states significantly predicted individual linguistic performance. These findings suggest a domain-separation manner of language network dynamics in resting state, which forms a dynamic "meta-network" framework to support flexible functional segregation and integration during language and speech processing.
Collapse
Affiliation(s)
- Binke Yuan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| | - Hui Xie
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Zhihao Wang
- CNRS - Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38123, Italy
| | - Hanqing Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jiaxuan Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lifeng Chen
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Chaoqun Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Shiyao Tan
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zonghui Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xin Hu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Tianyi Gu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
23
|
Murphy E. ROSE: A Neurocomputational Architecture for Syntax. ARXIV 2023:arXiv:2303.08877v1. [PMID: 36994166 PMCID: PMC10055479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A comprehensive model of natural language processing in the brain must accommodate four components: representations, operations, structures and encoding. It further requires a principled account of how these different components mechanistically, and causally, relate to each another. While previous models have isolated regions of interest for structure-building and lexical access, and have utilized specific neural recording measures to expose possible signatures of syntax, many gaps remain with respect to bridging distinct scales of analysis that map onto these four components. By expanding existing accounts of how neural oscillations can index various linguistic processes, this article proposes a neurocomputational architecture for syntax, termed the ROSE model (Representation, Operation, Structure, Encoding). Under ROSE, the basic data structures of syntax are atomic features, types of mental representations (R), and are coded at the single-unit and ensemble level. Elementary computations (O) that transform these units into manipulable objects accessible to subsequent structure-building levels are coded via high frequency broadband γ activity. Low frequency synchronization and cross-frequency coupling code for recursive categorial inferences (S). Distinct forms of low frequency coupling and phase-amplitude coupling (δ-θ coupling via pSTS-IFG; θ-γ coupling via IFG to conceptual hubs in lateral and ventral temporal cortex) then encode these structures onto distinct workspaces (E). Causally connecting R to O is spike-phase/LFP coupling; connecting O to S is phase-amplitude coupling; connecting S to E is a system of frontotemporal traveling oscillations; connecting E back to lower levels is low-frequency phase resetting of spike-LFP coupling. This compositional neural code has important implications for algorithmic accounts, since it makes concrete predictions for the appropriate level of study for psycholinguistic parsing models. ROSE is reliant on neurophysiologically plausible mechanisms, is supported at all four levels by a range of recent empirical research, and provides an anatomically precise and falsifiable grounding for the basic property of natural language syntax: hierarchical, recursive structure-building.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, UTHealth, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UTHealth, Houston, TX, USA
| |
Collapse
|
24
|
Ren W, Jia C, Zhou Y, Zhao J, Wang B, Yu W, Li S, Hu Y, Zhang H. A precise language network revealed by the independent component-based lesion mapping in post-stroke aphasia. Front Neurol 2022; 13:981653. [PMID: 36247758 PMCID: PMC9561861 DOI: 10.3389/fneur.2022.981653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Brain lesion mapping studies have provided the strongest evidence regarding the neural basis of cognition. However, it remained a problem to identify symptom-specific brain networks accounting for observed clinical and neuroanatomical heterogeneity. Independent component analysis (ICA) is a statistical method that decomposes mixed signals into multiple independent components. We aimed to solve this issue by proposing an independent component-based lesion mapping (ICLM) method to identify the language network in patients with moderate to severe post-stroke aphasia. Lesions were first extracted from 49 patients with post-stroke aphasia as masks applied to fMRI data in a cohort of healthy participants to calculate the functional connectivity (FC) within the masks and non-mask brain voxels. ICA was further performed on a reformatted FC matrix to extract multiple independent networks. Specifically, we found that one of the lesion-related independent components (ICs) highly resembled classical language networks. Moreover, the damaged level within the language-related lesioned network is strongly associated with language deficits, including aphasia quotient, naming, and auditory comprehension scores. In comparison, none of the other two traditional lesion mapping methods found any regions responsible for language dysfunction. The language-related lesioned network extracted with the ICLM method showed high specificity in detecting aphasia symptoms compared with the performance of resting ICs and classical language networks. In total, we detected a precise language network in patients with aphasia and proved its efficiency in the relationship with language symptoms. In general, our ICLM could successfully identify multiple lesion-related networks from complicated brain diseases, and be used as an effective tool to study brain-behavior relationships and provide potential biomarkers of particular clinical behavioral deficits.
Collapse
Affiliation(s)
- Weijing Ren
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Chunying Jia
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ying Zhou
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jingdu Zhao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Bo Wang
- Department of Hearing and Language Rehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Weiyong Yu
- Department of Radiology, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Shiyi Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yiru Hu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, China
- *Correspondence: Hao Zhang
| |
Collapse
|
25
|
Integrity of the Left Arcuate Fasciculus Segments Significantly Affects Language Performance in Individuals with Acute/Subacute Post-Stroke Aphasia: A Cross-Sectional Diffusion Tensor Imaging Study. Brain Sci 2022; 12:brainsci12070907. [PMID: 35884714 PMCID: PMC9313217 DOI: 10.3390/brainsci12070907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate the correlation between the left arcuate fasciculus (AF) segments and acute/subacute post-stroke aphasia (PSA). Methods: Twenty-six patients underwent language assessment and MRI scanning. The integrity of the AF based on a three-segment model was evaluated using diffusion tensor imaging. All patients were classified into three groups according to the reconstruction of the left AF: completely reconstructed (group A, 8 cases), non-reconstructed (group B, 6 cases), and partially reconstructed (group C, 12 cases). The correlations and intergroup differences in language performance and diffusion indices were comprehensively estimated. Results: A correlation analyses showed that the lesion load of the language areas and diffusion indices on the left AF posterior and long segments was significantly related to some language subsets, respectively. When controlled lesion load was variable, significant correlations between diffusion indices on the posterior and long segments and comprehension, repetition, naming, and aphasia quotient were retained. Multiple comparison tests revealed intergroup differences in diffusion indices on the left AF posterior and long segments, as well as these language subsets. No significant correlation was found between the anterior segment and language performance. Conclusions: The integrity of the left AF segments, particularly the posterior segment, is crucial for the residual comprehension and repetition abilities in individuals with acute/subacute PSA, and lesion load in cortical language areas is an important factor that should be taken into account when illustrating the contributions of damage to special fiber tracts to language impairments.
Collapse
|
26
|
Rolls ET, Deco G, Huang CC, Feng J. The human language effective connectome. Neuroimage 2022; 258:119352. [PMID: 35659999 DOI: 10.1016/j.neuroimage.2022.119352] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 01/07/2023] Open
Abstract
To advance understanding of brain networks involved in language, the effective connectivity between 26 cortical regions implicated in language by a community analysis and 360 cortical regions was measured in 171 humans from the Human Connectome Project, and complemented with functional connectivity and diffusion tractography, all using the HCP multimodal parcellation atlas. A (semantic) network (Group 1) involving inferior cortical regions of the superior temporal sulcus cortex (STS) with the adjacent inferior temporal visual cortex TE1a and temporal pole TG, and the connected parietal PGi region, has effective connectivity with inferior temporal visual cortex (TE) regions; with parietal PFm which also has visual connectivity; with posterior cingulate cortex memory-related regions; with the frontal pole, orbitofrontal cortex, and medial prefrontal cortex; with the dorsolateral prefrontal cortex; and with 44 and 45 for output regions. It is proposed that this system can build in its temporal lobe (STS and TG) and parietal parts (PGi and PGs) semantic representations of objects incorporating especially their visual and reward properties. Another (semantic) network (Group 3) involving superior regions of the superior temporal sulcus cortex and more superior temporal lobe regions including STGa, auditory A5, TPOJ1, the STV and the Peri-Sylvian Language area (PSL) has effective connectivity with auditory areas (A1, A4, A5, Pbelt); with relatively early visual areas involved in motion, e.g., MT and MST, and faces/words (FFC); with somatosensory regions (frontal opercular FOP, insula and parietal PF); with other TPOJ regions; and with the inferior frontal gyrus regions (IFJa and IFSp). It is proposed that this system builds semantic representations specialising in auditory and related facial motion information useful in theory of mind and somatosensory / body image information, with outputs directed not only to regions 44 and 45, but also to premotor 55b and midcingulate premotor cortex. Both semantic networks (Groups 1 and 3) have access to the hippocampal episodic memory system via parahippocampal TF. A third largely frontal network (Group 2) (44, 45, 47l; 55b; the Superior Frontal Language region SFL; and including temporal pole TGv) receives effective connectivity from the two semantic systems, and is implicated in syntax and speech output.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China.
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|