1
|
Yuan J, Wang P, Nie D, Zheng W, Liu K, Feng J, Zhang Y, Wang Y, Gao J, Gao M. Abnormal percent amplitude of fluctuation in patients with lifelong premature ejaculation is associated with neurotransmitter profiles. Brain Imaging Behav 2025; 19:41-49. [PMID: 39453597 DOI: 10.1007/s11682-024-00920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/26/2024]
Abstract
Identifying additional imaging biomarkers of lifelong premature ejaculation (LPE) may provide valuable insights into understanding the underlying neural mechanisms of this disorder. Forty-six LPE patients and thirty-five healthy controls (HCs) were enrolled in this study. The Percent Amplitude of Fluctuation (PerAF) method was used to assess differences in brain function in LPE patients compared to HCs during the resting-state. Receiver operating characteristic (ROC) analysis was used to investigate the potential biomarkers based on the imaging findings. Correlation analysis was then applied to examine the relationships between the neuroimaging findings and clinical symptoms. We also investigated whether PerAF alterations in LPE patients were associated with specific neurotransmitter systems. Compared to HCs, LPE patients showed increased PerAF in the middle cingulate cortex (MCC), supramarginal gyrus, Rolandic operculum, parahippocampus/hippocampus (ParaHIPP/HIPP) as well as insula; and decreased PerAF in the precuneus, inferior temporal cortex plus occipital cortex. The MCC and ParaHIPP/HIPP exhibited higher classification performance on ROC analysis. Positive correlations were found between the Premature Ejaculation Diagnostic Tool score and PerAF in the insula, and the International Index of Erectile Function score and PerAF in the precuneus. Additionally, altered PerAF in LPE patients correlated significantly with the spatial distribution of dopamine, acetylcholine and epinephrine pathways. Our findings indicate that LPE patients have PerAF-related changes in certain brain regions associated with visual, sensory and/or emotional processing, and reveal that the abnormal control of ejaculatory function may be related to the combined dysregulation of neurotransmitter systems in LPE patients.
Collapse
Affiliation(s)
- Jiarui Yuan
- Department of Ultrasound Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pinxiao Wang
- Graduate School of Xi'an Medical University, Xi'an, China
| | - Dingxin Nie
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianyong Feng
- Department of Urology, Xi'an Daxing Hospital Affiliated to Medical College of Yan'an University, Xi'an, 710071, Shaanxi, China
| | - Yuntao Zhang
- Department of Urology, Xi'an Daxing Hospital Affiliated to Medical College of Yan'an University, Xi'an, 710071, Shaanxi, China
| | - Yanzhu Wang
- Department of Urology, Xi'an Daxing Hospital Affiliated to Medical College of Yan'an University, Xi'an, 710071, Shaanxi, China
| | - Junjun Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Ming Gao
- Department of Urology, Xi'an Daxing Hospital Affiliated to Medical College of Yan'an University, Xi'an, 710071, Shaanxi, China.
- Department of Andrology, XiYuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Nance MG, Landsman ZT, Gerling GJ, Puglia MH. Infant neural sensitivity to affective touch is associated with maternal postpartum depression. Infant Behav Dev 2024; 76:101980. [PMID: 39181012 PMCID: PMC11414199 DOI: 10.1016/j.infbeh.2024.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Classic attachment theory emphasizes the sensitivity of the parent to perceive and appropriately respond to the infant's cues. However, parent-child attachment is a dyadic interaction that is also dependent upon the sensitivity of the child to the early caregiving environment. Individual differences in infant sensitivity to parental cues is likely shaped by both the early caregiving environment as well as the infant's neurobiology, such as perceptual sensitivity to social stimuli. Here, we investigated associations between maternal postpartum depression and infant neurological sensitivity to affective touch using brain signal entropy - a metric of the brain's moment-to-moment variability related to signal processing. We recruited two independent samples of infants aged 0-5 months. In Sample 1 (n = 79), we found increased levels of maternal postpartum depression were associated with diminished perceptual sensitivity - i.e. lower entropy - to affective tactile stimulation specifically within the primary somatosensory cortex. In Sample 2 (n = 36), we replicated this finding and showed that this effect was not related to characteristics of the touch administered during the experiment. These results suggest that decreased affective touch early in life - a common consequence of postpartum depression - likely impacts the infant's perceptual sensitivity to affective touch and ultimately the formation of experience-dependent neural networks that support the successful formation of attachment relationships.
Collapse
Affiliation(s)
| | - Zackary T Landsman
- University of Virginia, Department of Systems and Information Engineering, USA
| | - Gregory J Gerling
- University of Virginia, Department of Systems and Information Engineering, USA
| | | |
Collapse
|
3
|
Shekhar S, Hirvi P, Maria A, Kotilahti K, Tuulari JJ, Karlsson L, Karlsson H, Nissilä I. Maternal prenatal depressive symptoms and child brain responses to affective touch at two years of age. J Affect Disord 2024; 356:177-189. [PMID: 38508459 DOI: 10.1016/j.jad.2024.03.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Touch is an essential form of mother-child interaction, instigating better social bonding and emotional stability. METHODS We used diffuse optical tomography to explore the relationship between total haemoglobin (HbT) responses to affective touch in the child's brain at two years of age and maternal self-reported prenatal depressive symptoms (EPDS). Affective touch was implemented via slow brushing of the child's right forearm at 3 cm/s and non-affective touch via fast brushing at 30 cm/s and HbT responses were recorded on the left hemisphere. RESULTS We discovered a cluster in the postcentral gyrus exhibiting a negative correlation (Pearson's r = -0.84, p = 0.015 corrected for multiple comparisons) between child HbT response to affective touch and EPDS at gestational week 34. Based on region of interest (ROI) analysis, we found negative correlations between child responses to affective touch and maternal prenatal EPDS at gestational week 14 in the precentral gyrus, Rolandic operculum and secondary somatosensory cortex. The responses to non-affective touch did not correlate with EPDS in these regions. LIMITATIONS The number of mother-child dyads was 16. However, by utilising high-density optode arrangements, individualised anatomical models, and video and accelerometry to monitor movement, we were able to minimize methodological sources of variability in the data. CONCLUSIONS The results show that maternal depressive symptoms during pregnancy may be associated with reduced child responses to affective touch in the temporoparietal cortex. Responses to affective touch may be considered as potential biomarkers for psychosocial development in children. Early identification of and intervention in maternal depression may be important already during early pregnancy.
Collapse
Affiliation(s)
- Shashank Shekhar
- Duke University School of Medicine, Department of Neurology, Durham, NC, USA; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Pauliina Hirvi
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland; Aalto University, Department of Mathematics and Systems Analysis, Finland
| | - Ambika Maria
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Kalle Kotilahti
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland
| | - Jetro J Tuulari
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; Turku Collegium for Science, Medicine and Technology, TCSMT, University of Turku, Finland
| | - Linnea Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; University of Turku and Turku University Hospital, Department of Paediatrics and Adolescent Medicine, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Ilkka Nissilä
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland.
| |
Collapse
|
4
|
Hirvi P, Kuutela T, Fang Q, Hannukainen A, Hyvönen N, Nissilä I. Effects of atlas-based anatomy on modelled light transport in the neonatal head. Phys Med Biol 2023; 68:135019. [PMID: 37167982 PMCID: PMC10460200 DOI: 10.1088/1361-6560/acd48c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Objective.Diffuse optical tomography (DOT) provides a relatively convenient method for imaging haemodynamic changes related to neuronal activity on the cerebral cortex. Due to practical challenges in obtaining anatomical images of neonates, an anatomical framework is often created from an age-appropriate atlas model, which is individualized to the subject based on measurements of the head geometry. This work studies the approximation error arising from using an atlas instead of the neonate's own anatomical model.Approach.We consider numerical simulations of frequency-domain (FD) DOT using two approaches, Monte Carlo simulations and diffusion approximation via finite element method, and observe the variation in (1) the logarithm of amplitude and phase shift measurements, and (2) the corresponding inner head sensitivities (Jacobians), due to varying segmented anatomy. Varying segmentations are sampled by registering 165 atlas models from a neonatal database to the head geometry of one individual selected as the reference model. Prior to the registration, we refine the segmentation of the cerebrospinal fluid (CSF) by separating the CSF into two physiologically plausible layers.Main results.In absolute measurements, a considerable change in the grey matter or extracerebral tissue absorption coefficient was found detectable over the anatomical variation. In difference measurements, a small local 10%-increase in brain absorption was clearly detectable in the simulated measurements over the approximation error in the Jacobians, despite the wide range of brain maturation among the registered models.Significance.Individual-level atlas models could potentially be selected within several weeks in gestational age in DOT difference imaging, if an exactly age-appropriate atlas is not available. The approximation error method could potentially be implemented to improve the accuracy of atlas-based imaging. The presented CSF segmentation algorithm could be useful also in other model-based imaging modalities. The computation of FD Jacobians is now available in the widely-used Monte Carlo eXtreme software.
Collapse
Affiliation(s)
- Pauliina Hirvi
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Topi Kuutela
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Qianqian Fang
- Northeastern University, Department of
Bioengineering, 360 Huntington Ave, Boston, MA 02115, United States of
America
| | - Antti Hannukainen
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Nuutti Hyvönen
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Ilkka Nissilä
- Aalto University, Department of
Neuroscience and Biomedical Engineering, PO Box 12200, FI-00076 AALTO,
Finland
| |
Collapse
|
5
|
McParlin Z, Cerritelli F, Manzotti A, Friston KJ, Esteves JE. Therapeutic touch and therapeutic alliance in pediatric care and neonatology: An active inference framework. Front Pediatr 2023; 11:961075. [PMID: 36923275 PMCID: PMC10009260 DOI: 10.3389/fped.2023.961075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Therapeutic affective touch has been recognized as essential for survival, nurturing supportive interpersonal interactions, accelerating recovery-including reducing hospitalisations, and promoting overall health and building robust therapeutic alliances. Through the lens of active inference, we present an integrative model, combining therapeutic touch and communication, to achieve biobehavioural synchrony. This model speaks to how the brain develops a generative model required for recovery, developing successful therapeutic alliances, and regulating allostasis within paediatric manual therapy. We apply active inference to explain the neurophysiological and behavioural mechanisms that underwrite the development and maintenance of synchronous relationships through touch. This paper foregrounds the crucial role of therapeutic touch in developing a solid therapeutic alliance, the clinical effectiveness of paediatric care, and triadic synchrony between health care practitioner, caregiver, and infant in a variety of clinical situations. We start by providing a brief overview of the significance and clinical role of touch in the development of social interactions in infants; facilitating a positive therapeutic alliance and restoring homeostasis through touch to allow a more efficient process of allostatic regulation. Moreover, we explain the role of CT tactile afferents in achieving positive clinical outcomes and updating prior beliefs. We then discuss how touch is implemented in treatment sessions to promote cooperative interactions in the clinic and facilitate theory of mind. This underwrites biobehavioural synchrony, epistemic trust, empathy, and the resolution of uncertainty. The ensuing framework is underpinned by a critical application of the active inference framework to the fields of pediatrics and neonatology.
Collapse
Affiliation(s)
- Zoe McParlin
- Foundation COME Collaboration, Clinical-Based Human Research Department, Pescara, Italy
| | - Francesco Cerritelli
- Division of Neonatology, “V. Buzzi” Children's Hospital, ASST-FBF-Sacco, Milan, Italy
| | - Andrea Manzotti
- Foundation COME Collaboration, Clinical-Based Human Research Department, Pescara, Italy
- Division of Neonatology, “V. Buzzi” Children's Hospital, ASST-FBF-Sacco, Milan, Italy
- Research Department, SOMA, Istituto Osteopatia Milano, Milan, Italy
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, Queen Square, London, United Kingdom
| | - Jorge E Esteves
- Foundation COME Collaboration, Clinical-Based Human Research Department, Pescara, Italy
- Malta ICOM Educational, Malta, Finland
- Research Department, University College of Osteopathy, Research Department, London, United Kingdom
| |
Collapse
|