1
|
Zeng T, Tian F, Zhang S, Li X, Tan AP, Larsen B, Gur RC, Gur RE, Moore TM, Satterthwaite TD, Deco G, Holmes AJ, Yeo BTT. Optimizing Biophysical Large-Scale Brain Circuit Models With Deep Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647497. [PMID: 40291740 PMCID: PMC12026898 DOI: 10.1101/2025.04.07.647497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Biophysical modeling provides mechanistic insights into brain function, from single-neuron dynamics to large-scale circuit models bridging macro-scale brain activity with microscale measurements. Biophysical models are governed by biologically meaningful parameters, many of which can be experimentally measured. Some parameters are unknown, and optimizing their values can dramatically improve adherence to experimental data, significantly enhancing biological plausibility. Previous optimization methods - such as exhaustive search, gradient descent, evolutionary strategies and Bayesian optimization - require repeated, computationally expensive numerical integration of biophysical differential equations, limiting scalability to population-level datasets. Here, we introduce DELSSOME (DEep Learning for Surrogate Statistics Optimization in MEan field modeling), a framework that bypasses numerical integration by directly predicting whether model parameters produce realistic brain dynamics. When applied to the widely used feedback inhibition control (FIC) mean field model, DELSSOME achieves a 2000× speedup over Euler integration. By embedding DELSSOME within an evolutionary optimization strategy, trained models generalize to new datasets without additional tuning, enabling a 50× speedup in FIC model estimation while preserving neurobiological insights. The massive acceleration facilitates large-scale mechanistic modeling in population-level neuroscience, unlocking new opportunities for understanding brain function.
Collapse
|
2
|
Khodabandehloo B, Jannatdoust P, Nadjar Araabi B. From Dyadic to Higher-Order Interactions: Enhanced Representation of Homotopic Functional Connectivity Through Control of Intervening Variables. Brain Connect 2025; 15:113-124. [PMID: 40079154 DOI: 10.1089/brain.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Background: The brain's complex functionality emerges from network interactions that go beyond dyadic connections, with higher-order interactions significantly contributing to this complexity. Homotopic functional connectivity (HoFC) is a key neurophysiological characteristic of the human brain, reflecting synchronized activity between corresponding regions in the brain's hemispheres. Materials and Methods: Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, we evaluate dyadic and higher-order interactions of three functional connectivity (FC) parameterizations-bivariate correlation, partial correlation, and tangent space embedding-in their effectiveness at capturing HoFC through the inter-hemispheric analogy test. Results: Higher-order feature vectors are generated through node2vec, a random walk-based node embedding technique applied to FC networks. Our results show that higher-order feature vectors derived from partial correlation most effectively represent HoFC, while tangent space embedding performs best for dyadic interactions. Discussion: These findings validate HoFC and underscore the importance of the FC construction method in capturing intrinsic characteristics of the human brain.
Collapse
Affiliation(s)
- Behdad Khodabandehloo
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Payam Jannatdoust
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Nadjar Araabi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Ruan H, Manrique DR, Winkelmann C, Haun J, Berberich G, Zimmer C, Koch K. Local effective connectivity changes after transcranial direct current stimulation in obsessive-compulsive disorder patients. J Affect Disord 2025; 374:116-127. [PMID: 39805500 DOI: 10.1016/j.jad.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
AIM This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD). METHODS In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA). Cathodal reference electrode was put on the left pre-SMA. The current was set as 2 mA, with a stimulation duration of either 30 s (sham) or 1200 s. Concurrent resting-state functional MRI data were collected following tDCS (or sham) stimulation. We employed regression dynamic causal modelling (rDCM) to extract whole brain effective connectivity (EC) matrices subsequently analyzing these matrices through graph theory approaches to examine changes in brain activity across different network scales. RESULTS We found that tDCS compared to sham caused significant changes in local effective connectivity. Increased recruitment level was detectable in the sensorimotor network (SMN), indicating enhanced intra-network connectivity after active tDCS. Clustering coefficient and local efficiency were also found to be increased in the same area. No significant changes were detectable with regard to global network connectivity. CONCLUSIONS Current findings indicate that single-session tDCS can effectively alter local effective connectivities within the SMN in OCD patients. Given the relevance of the SMN and connected regions for the pathophysiology of OCD we believe that tDCS targeting these areas might constitute an effective intervention to normalize altered network connectivity in the disorder of OCD. LIMITATION We used a single tDCS session, which may not reflect long-term effects.
Collapse
Affiliation(s)
- Hanyang Ruan
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.
| | - Daniela Rodriguez Manrique
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Chelsea Winkelmann
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Julian Haun
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy (WINTR), Windach, Germany
| | - Claus Zimmer
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Zhen Y, Zheng H, Zheng Y, Zheng Z, Yang Y, Tang S. Altered Hemispheric Asymmetry of Functional Hierarchy in Schizophrenia. Brain Sci 2025; 15:313. [PMID: 40149834 PMCID: PMC11940334 DOI: 10.3390/brainsci15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Schizophrenia is a severe psychiatric disorder characterized by deficits in perception and advanced cognitive functions. Prior studies have reported abnormal lateralization in cortical morphology and functional connectivity in schizophrenia. However, it remains unclear whether schizophrenia affects hemispheric asymmetry in the hierarchical organization of functional connectome. METHODS Here, we apply a gradient mapping framework to the hemispheric functional connectome to estimate the first three gradients, which characterize unimodal-to-transmodal, visual-to-somatomotor, and somatomotor/default mode-to-multiple demand hierarchy axes. We then assess between-group differences in intra- and inter-hemispheric asymmetries of these three functional gradients. RESULTS We find that, compared to healthy controls, patients with schizophrenia exhibit significantly altered hemispheric asymmetry in functional gradient across multiple networks, including the dorsal attention, ventral attention, visual, and control networks. Region-level analyses further reveal that patients with schizophrenia show significantly abnormal hemispheric gradient asymmetries in several cortical regions in the dorsal prefrontal gyrus, medial superior frontal gyrus, and somatomotor areas. Lastly, we find that hemispheric asymmetries in functional gradients can differentiate between patients and healthy controls and predict the severity of positive symptoms in schizophrenia. CONCLUSIONS Collectively, these findings suggest that schizophrenia is associated with altered hemispheric asymmetry in functional hierarchy, providing novel perspectives for understanding the atypical brain lateralization in schizophrenia.
Collapse
Affiliation(s)
- Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Tao Y, Schnur TT, Ding JH, Martin R, Rapp B. Longitudinal changes in functional connectivity networks in the first year following stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642404. [PMID: 40161671 PMCID: PMC11952386 DOI: 10.1101/2025.03.10.642404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The functional organization of the brain consists of multiple subsystems, or modules, with dense functional communication within modules (i.e., visual, attention) and relatively sparse but vital communications between them. The two hemispheres also have strong functional communications, which presumably supports hemispheric lateralization and specialization. Subsequent to stroke, the functional organization undergoes neuroplastic changes over time. However, empirical longitudinal studies of human subjects are lacking. Here we analyzed three large-scale, whole-brain resting-state functional MRI connectivity measures: modularity, hemispheric symmetry (based on system segregation), and homotopic connectivity in a group of 17 participants at 1-month, 3- months, and 12-months after a single left-hemisphere stroke. These measures were also compared to a group of 13 age-matched healthy controls. The three measures exhibited different trajectories of change: (1) modularity steadily decreased across the 12-month period and became statistically inferior to control values at 12 months, indicating a less modular organization; (2) hemispheric symmetry values were abnormally low at 1-month and then increased significantly in the first 6 months, leveling off at levels not significantly below control levels by 12 months, suggesting that the two hemispheres diverged initially after the unilateral damage, but improved over time; and (3) homotopic connectivity exhibited a U-shaped function with a significant decrease from 1-6 months and then an increase from 6-12 months, to levels that were not significantly different from controls. The results revealed a complex picture of the dynamic changes the brain undergoes as it responds to abrupt onset damage.
Collapse
Affiliation(s)
- Y Tao
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - T T Schnur
- Physical Medicine and Rehabilitation, University of Texas Health Houston, Houston, Texas, USA
| | - J H Ding
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - R Martin
- Psychological Sciences, Rice University, Houston, Texas, USA
| | - B Rapp
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neurology. Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Blauch NM, Plaut DC, Vin R, Behrmann M. Individual variation in the functional lateralization of human ventral temporal cortex: Local competition and long-range coupling. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00488. [PMID: 40078535 PMCID: PMC11894816 DOI: 10.1162/imag_a_00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/14/2025]
Abstract
The ventral temporal cortex (VTC) of the human cerebrum is critically engaged in high-level vision. One intriguing aspect of this region is its functional lateralization, with neural responses to words being stronger in the left hemisphere, and neural responses to faces being stronger in the right hemisphere; such patterns can be summarized with a signed laterality index (LI), positive for leftward laterality. Converging evidence has suggested that word laterality emerges to couple efficiently with left-lateralized frontotemporal language regions, but evidence is more mixed regarding the sources of the right lateralization for face perception. Here, we use individual differences as a tool to test three theories of VTC organization arising from (1) local competition between words and faces driven by long-range coupling between words and language processes, (2) local competition between faces and other categories, and (3) long-range coupling with VTC and temporal areas exhibiting local competition between language and social processing. First, in an in-house functional MRI experiment, we did not obtain a negative correlation in the LIs of word and face selectivity relative to object responses, but did find a positive correlation when using selectivity relative to a fixation baseline, challenging ideas of local competition between words and faces driving rightward face lateralization. We next examined broader local LI interactions with faces using the large-scale Human Connectome Project (HCP) dataset. Face and tool LIs were significantly anti-correlated, while face and body LIs were positively correlated, consistent with the idea that generic local representational competition and cooperation may shape face lateralization. Last, we assessed the role of long-range coupling in the development of VTC lateralization. Within our in-house experiment, substantial positive correlation was evident between VTC text LI and that of several other nodes of a distributed text-processing circuit. In the HCP data, VTC face LI was both negatively correlated with language LI and positively correlated with social processing in different subregions of the posterior temporal lobe (PSL and STSp, respectively). In summary, we find no evidence of local face-word competition in VTC; instead, more generic local interactions shape multiple lateralities within VTC, including face laterality. Moreover, face laterality is also influenced by long-range coupling with social processing in the posterior temporal lobe, where social processing may become right lateralized due to local competition with language.
Collapse
Affiliation(s)
- Nicholas M. Blauch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - David C. Plaut
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Raina Vin
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Neurosciences Graduate Program, Yale University, New Haven, CT, United States
| | - Marlene Behrmann
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Liang X, Cai M, Jing G, Zhang C, Nichols ES, Liu L. Dynamic cycles between brain states during creative storytelling. Neuroimage 2025; 308:121053. [PMID: 39863001 DOI: 10.1016/j.neuroimage.2025.121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 01/27/2025] Open
Abstract
Many theories suggest that creative thinking involves a dynamic transition between different mental states, yet empirical evidence supporting this notion remains scarce. The dual process model proposes that spontaneous thinking and deliberate thinking drive the dwell in and the transitions between different mental states during creative thinking, but there is a debate over whether the two types of thinking operate in parallel or in sequence. To address these gaps, we conducted a functional magnetic resonance imaging (fMRI) study in 41 college students during a creative storytelling task. We then compared the dynamic brain states in creative versus uncreative storytelling to identify key brain states associated with creative thinking. And we further performed correlation analysis between these key brain states with performance of various creative tasks, trying to link the key brain states with different cognitive processes. The results showed that two key brain states are associated with creative thinking, with one involving whole-brain synchronization and the other involving the synchronization of four networks, including the default mode network and the control network. The transition patterns between the key brain states provide tentative evidence for dynamic circulation between different mental states during creative storytelling. Using a deep learning approach, we demonstrate an alternating interaction between spontaneous and deliberate thinking, driving dwelling in and the transitions between different brain states. These findings deepen our understanding of the cognitive and neural mechanisms underlying creative thinking.
Collapse
Affiliation(s)
- Xitong Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Mingnan Cai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Gaohan Jing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Chengming Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Emily Sophia Nichols
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada; Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
8
|
Zheng Y, Yang Y, Zhen Y, Wang X, Liu L, Zheng H, Tang S. Understanding Altered Dynamics in Cocaine Use Disorder Through State Transitions Mediated by Artificial Perturbations. Brain Sci 2025; 15:263. [PMID: 40149783 PMCID: PMC11939957 DOI: 10.3390/brainsci15030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Cocaine use disorder (CUD) poses a worldwide health challenge, with severe consequences for brain function. However, the phase dynamics underlying CUD and the transitions between CUD and health remain poorly understood. Methods: Here, we used resting-state functional magnetic resonance imaging (fMRI) data from 43 CUD patients and 45 healthy controls (HCT). We performed empirical analysis to identify phase-coherence states and compared their probabilities of occurrence between conditions. To further explore the underlying mechanism, we employed computational modeling to replicate the observed state probabilities for each condition. These generated whole-brain models enabled us to simulate external perturbations and identify optimal brain regions mediating transitions between HCT and CUD. Results: We found that CUD was associated with a reduced occurrence probability of the state dominated by the default mode network (DMN). Perturbing the nucleus accumbens, thalamus, and specific regions within the default mode, limbic and frontoparietal networks drives transitions from HCT to CUD, while perturbing the hippocampus and specific regions within the visual, dorsal attention, and DMN facilitates a return from CUD to HCT. Conclusions: This study revealed altered DMN-related dynamics in CUD from the phase perspective and provides potential regions critical for state transitions. The results contribute to understanding the pathogenesis of CUD and the development of therapeutic stimulation strategies.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
9
|
Vallini G, Silvestri E, Volpi T, Lee JJ, Vlassenko AG, Goyal MS, Cecchin D, Corbetta M, Bertoldo A. Individual-level metabolic connectivity from dynamic [ 18F]FDG PET reveals glioma-induced impairments in brain architecture and offers novel insights beyond the SUVR clinical standard. Eur J Nucl Med Mol Imaging 2025; 52:836-850. [PMID: 39472368 DOI: 10.1007/s00259-024-06956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/29/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE This study evaluates the potential of within-individual Metabolic Connectivity (wi-MC), from dynamic [18F]FDG PET data, based on the Euclidean Similarity method. This approach leverages the biological information of the tracer's full temporal dynamics, enabling the direct extraction of individual metabolic connectomes. Specifically, the proposed framework, applied to glioma pathology, seeks to assess sensitivity to metabolic dysfunctions in the whole brain, while simultaneously providing further insights into the pathophysiological mechanisms regulating glioma progression. METHODS We designed an index (Distance from Healthy Group, DfHG) based on the alteration of wi-MC in each patient (n = 44) compared to a healthy reference (from 57 healthy controls), to individually quantify metabolic connectivity abnormalities, resulting in an Impairment Map highlighting significantly compromised areas. We then assessed whether our measure of metabolic network alteration is associated with well-established markers of disease severity (tumor grade and volume, with and without edema). Subsequently, we investigated disruptions in wi-MC homotopic connectivity, assessing both affected and seemingly healthy tissue to deepen the pathology's impact on neural communication. Finally, we compared network impairments with local metabolic alterations determined from SUVR, a validated diagnostic tool in clinical practice. RESULTS Our framework revealed how gliomas cause extensive alterations in the topography of brain networks, even in structurally unaffected regions outside the lesion area, with a significant reduction in connectivity between contralateral homologous regions. High-grade gliomas have a stronger impact on brain networks, and edema plays a mediating role in global metabolic alterations. As compared to the conventional SUVR-based analysis, our approach offers a more holistic view of the disease burden in individual patients, providing interesting additional insights into glioma-related alterations. CONCLUSION Considering our results, individual PET connectivity estimates could hold significant clinical value, potentially allowing the identification of new prognostic factors and personalized treatment in gliomas or other focal pathologies.
Collapse
Affiliation(s)
- Giulia Vallini
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Tommaso Volpi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - John J Lee
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrei G Vlassenko
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Manu S Goyal
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Medicine, Unit of Nuclear Medicine, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy.
- Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
10
|
Pang JC, Robinson PA, Aquino KM, Levi PT, Holmes A, Markicevic M, Shen X, Funck T, Palomero-Gallagher N, Kong R, Yeo BT, Tiego J, Bellgrove MA, Constable RT, Lake E, Breakspear M, Fornito A. Geometric influences on the regional organization of the mammalian brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635820. [PMID: 39975401 PMCID: PMC11838429 DOI: 10.1101/2025.01.30.635820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The mammalian brain is comprised of anatomically and functionally distinct regions. Substantial work over the past century has pursued the generation of ever-more accurate maps of regional boundaries, using either expert judgement or data-driven clustering of functional, connectional, and/or architectonic properties. However, these approaches are often purely descriptive, have limited generalizability, and do not elucidate the underlying generative mechanisms that shape the regional organization of the brain. Here, we develop a novel approach that leverages a simple, hierarchical principle for generating a multiscale parcellation of any brain structure in any mammalian species using only its geometry. We show that this approach yields regions at any resolution scale that are more homogeneous than those defined in nearly all existing benchmark brain parcellations in use today across hundreds of anatomical, functional, cellular, and molecular brain properties measured in humans, macaques, marmosets, and mice. We additionally show how our method can be generalized to previously unstudied mammalian species for which no parcellations exist. Finally, we demonstrate how our approach captures the essence of a simple, hierarchical reaction-diffusion mechanism, in which the geometry of a brain structure shapes the spatial expression of putative patterning molecules linked to the formation of distinct regions through development. Our findings point to a highly conserved and universal influence of geometry on the regional organization of the mammalian brain.
Collapse
Affiliation(s)
- James C. Pang
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Peter A. Robinson
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | | | - Priscila T. Levi
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alexander Holmes
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Thomas Funck
- Center for the Developing Brain, Child Mind Institute, New York, New York, USA
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Human, Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.I Institute for Health, National University of Singapore, Singapore, Singapore
| | - B.T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Human, Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.I Institute for Health, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Jeggan Tiego
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Mark A. Bellgrove
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Evelyn Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alex Fornito
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Mansour L S, Di Biase MA, Yan H, Xue A, Venketasubramanian N, Chong E, Alexander-Bloch A, Chen C, Zhou JH, Yeo BT, Zalesky A. Spectral normative modeling of brain structure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.16.25320639. [PMID: 39974093 PMCID: PMC11838943 DOI: 10.1101/2025.01.16.25320639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Normative modeling in neuroscience aims to characterize interindividual variation in brain phenotypes and thus establish reference ranges, or brain charts, against which individual brains can be compared. Normative models are typically limited to coarse spatial scales due to computational constraints, limiting their spatial specificity. They additionally depend on fixed regions from fixed parcellation atlases, restricting their adaptability to alternative parcellation schemes. To overcome these key limitations, we propose spectral normative modeling (SNM), which leverages brain eigenmodes for efficient spatial reconstruction to generate normative ranges for arbitrary new regions of interest. Benchmarking against conventional counterparts, SNM achieves a 98.3% speedup in computing accurate normative ranges across spatial scales, from millimeters to the whole brain. We demonstrate its utility by elucidating high-resolution individual cortical atrophy patterns and characterizing the heterogeneous nature of neurodegeneration in Alzheimer's disease. SNM lays the groundwork for a new generation of spatially precise brain charts, offering substantial potential to drive advances in individualized precision medicine.
Collapse
Affiliation(s)
- Sina Mansour L
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Systems Neuroscience Lab, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Maria A Di Biase
- Systems Neuroscience Lab, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Stem Cell Disease Modelling Lab, Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Hongwei Yan
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aihuiping Xue
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Narayanaswamy Venketasubramanian
- Raffles Neuroscience Centre, Raffles Hospital, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Eddie Chong
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Aaron Alexander-Bloch
- Brain-Gene Development Laboratory, Lifespan Brain Institute at Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA United States
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA United States
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - B.T. Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Andrew Zalesky
- Systems Neuroscience Lab, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Blauch NM, Plaut DC, Vin R, Behrmann M. Individual variation in the functional lateralization of human ventral temporal cortex: Local competition and long-range coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618268. [PMID: 39464049 PMCID: PMC11507683 DOI: 10.1101/2024.10.15.618268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The ventral temporal cortex (VTC) of the human cerebrum is critically engaged in high-level vision. One intriguing aspect of this region is its functional lateralization, with neural responses to words being stronger in the left hemisphere, and neural responses to faces being stronger in the right hemisphere; such patterns can be summarized with a signed laterality index (LI), positive for leftward laterality. Converging evidence has suggested that word laterality emerges to couple efficiently with left-lateralized frontotemporal language regions, but evidence is more mixed regarding the sources of the right-lateralization for face perception. Here, we use individual differences as a tool to test three theories of VTC organization arising from: 1) local competition between words and faces driven by long-range coupling between words and language processes, 2) local competition between faces and other categories, 3) long-range coupling with VTC and temporal areas exhibiting local competition between language and social processing. First, in an in-house functional MRI experiment, we did not obtain a negative correlation in the LIs of word and face selectivity relative to object responses, but did find a positive correlation when using selectivity relative to a fixation baseline, challenging ideas of local competition between words and faces driving rightward face lateralization. We next examined broader local LI interactions with faces using the large-scale Human Connectome Project (HCP) dataset. Face and tool LIs were significantly anti-correlated, while face and body LIs were positively correlated, consistent with the idea that generic local representational competition and cooperation may shape face lateralization. Last, we assessed the role of long-range coupling in the development of VTC lateralization. Within our in-house experiment, substantial positive correlation was evident between VTC text LI and that of several other nodes of a distributed text-processing circuit. In the HCP data, VTC face LI was both negatively correlated with language LI and positively correlated with social processing in different subregions of the posterior temporal lobe (PSL and STSp, respectively). In summary, we find no evidence of local face-word competition in VTC; instead, more generic local interactions shape multiple lateralities within VTC, including face laterality. Moreover, face laterality is also influenced by long-range coupling with social processing in the posterior temporal lobe, where social processing may become right-lateralized due to local competition with language.
Collapse
Affiliation(s)
- Nicholas M Blauch
- Program in Neural Computation, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
- Department of Psychology, Harvard University
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
| | - Raina Vin
- Department of Psychology, Carnegie Mellon University
- Neurosciences Graduate Program, Yale University
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University
- Neuroscience Institute, Carnegie Mellon University
- Department of Opthamology, University of Pittsburgh
| |
Collapse
|
13
|
Li J, He J, Ren H, Li Z, Ma X, Yuan L, Ouyang L, Li C, He Y, Tang J, Chen X. Inter- and intra-hemispheric lateralization alterations in auditory verbal hallucinations of Schizophrenia: insights from resting-state functional connectivity. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-024-01955-0. [PMID: 39751656 DOI: 10.1007/s00406-024-01955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Auditory verbal hallucinations (AVHs) in schizophrenia are hypothesized to involve alterations in hemispheric lateralization, but the specific neural mechanisms remain unclear. This study investigated functional intra- and inter-hemispheric connectivity to identify lateralization patterns unique to AVHs. Resting-state fMRI data were collected from 60 schizophrenia patients with persistent AVHs (p-AVH group), 39 patients without AVHs (n-AVH group), and 59 healthy controls (HC group). Using a homotopic atlas, we quantified lateralization indices of functional segregation and integration across 200 homotopic ROI pairs. Segregation was defined as the degree of preferential intra-hemispheric communication within each hemisphere versus inter-hemispheric communication. Integration was used to assess the extent of inter-hemispheric communication between the two hemispheres. Our findings revealed a significant rightward lateralization of segregation in two lateral prefrontal cortex homotopic pairs in the p-AVH group. Additionally, we observed a leftward lateralization of integration in an inferior parietal lobule homotopic pair within the temporoparietal junction region, specifically in the p-AVH group. Importantly, the lateralization index of segregation in the prefrontal cortex was negatively correlated with AVH severity, indicating that greater rightward lateralization is associated with more severe AVHs. These lateralization changes were absent when comparing the n-AVH group to HC group, suggesting they are unique to AVHs in schizophrenia. Our results underscore the pivotal role of altered hemispheric lateralization of functional segregation and integration in the etiology of AVHs, providing new insights into the neural mechanisms underlying these symptoms.
Collapse
Affiliation(s)
- Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Jingqi He
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghong Ren
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Taian, Shandong, China
| | - Zongchang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Xiaoqian Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Ying He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 310016, Hunan, China.
| |
Collapse
|
14
|
Nettekoven C, Diedrichsen J. Cerebellar asymmetries. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:369-378. [PMID: 40074407 DOI: 10.1016/b978-0-443-15646-5.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The cerebellum is a subcortical structure tucked underneath the cerebrum that contains the majority of neurons in the brain, despite its small size. While it has received less attention in the study of brain asymmetries than the cerebrum, structural asymmetries in the cerebellum have been found in cerebellar volume that mirror cerebral asymmetries. Larger cerebellar structures have been reported on the right compared to the left, either for the whole cerebellar hemisphere or the anterior part of the cerebellum, with the latter accompanied by a left increase in the posterior cerebellum. Cerebellar asymmetries are considered evolutionary recent and have been observed prenatally and in early development. Both asymmetries in anterior-posterior divisions and specific lobules have been linked to handedness and cognitive abilities, in particular language. Functional lateralization in the cerebellum varies across motor and cognitive functions, with language activation predominantly localized in the right hemisphere, contralateral to cerebral activation. Meanwhile, working memory and executive functions are not lateralized to one hemisphere. New neuroimaging methods and resources, including a symmetric functional atlas of the cerebellum that enables precision mapping, open novel avenues for exploring cerebellar asymmetries and answering questions about the developmental timeline, relationships to behavior, and clinical relevance.
Collapse
Affiliation(s)
- Caroline Nettekoven
- Western Institute for Neuroscience, Western University, London, ON, Canada; Department of Computer Science, Western University, London, ON, Canada.
| | - Jörn Diedrichsen
- Western Institute for Neuroscience, Western University, London, ON, Canada; Department of Computer Science, Western University, London, ON, Canada; Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada
| |
Collapse
|
15
|
An L, Zhang C, Wulan N, Zhang S, Chen P, Ji F, Ng KK, Chen C, Zhou JH, Yeo BTT. DeepResBat: Deep residual batch harmonization accounting for covariate distribution differences. Med Image Anal 2025; 99:103354. [PMID: 39368279 DOI: 10.1016/j.media.2024.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Pooling MRI data from multiple datasets requires harmonization to reduce undesired inter-site variabilities, while preserving effects of biological variables (or covariates). The popular harmonization approach ComBat uses a mixed effect regression framework that explicitly accounts for covariate distribution differences across datasets. There is also significant interest in developing harmonization approaches based on deep neural networks (DNNs), such as conditional variational autoencoder (cVAE). However, current DNN approaches do not explicitly account for covariate distribution differences across datasets. Here, we provide mathematical results, suggesting that not accounting for covariates can lead to suboptimal harmonization. We propose two DNN-based covariate-aware harmonization approaches: covariate VAE (coVAE) and DeepResBat. The coVAE approach is a natural extension of cVAE by concatenating covariates and site information with site- and covariate-invariant latent representations. DeepResBat adopts a residual framework inspired by ComBat. DeepResBat first removes the effects of covariates with nonlinear regression trees, followed by eliminating site differences with cVAE. Finally, covariate effects are added back to the harmonized residuals. Using three datasets from three continents with a total of 2787 participants and 10,085 anatomical T1 scans, we find that DeepResBat and coVAE outperformed ComBat, CovBat and cVAE in terms of removing dataset differences, while enhancing biological effects of interest. However, coVAE hallucinates spurious associations between anatomical MRI and covariates even when no association exists. Future studies proposing DNN-based harmonization approaches should be aware of this false positive pitfall. Overall, our results suggest that DeepResBat is an effective deep learning alternative to ComBat. Code for DeepResBat can be found here: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/harmonization/An2024_DeepResBat.
Collapse
Affiliation(s)
- Lijun An
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Chen Zhang
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Naren Wulan
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Shaoshi Zhang
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Pansheng Chen
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Fang Ji
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
16
|
Ben Messaoud R, Le Du V, Bousfiha C, Corsi MC, Gonzalez-Astudillo J, Kaufmann BC, Venot T, Couvy-Duchesne B, Migliaccio L, Rosso C, Bartolomeo P, Chavez M, De Vico Fallani F. Low-dimensional controllability of brain networks. PLoS Comput Biol 2025; 21:e1012691. [PMID: 39775065 PMCID: PMC11706394 DOI: 10.1371/journal.pcbi.1012691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Identifying the driver nodes of a network has crucial implications in biological systems from unveiling causal interactions to informing effective intervention strategies. Despite recent advances in network control theory, results remain inaccurate as the number of drivers becomes too small compared to the network size, thus limiting the concrete usability in many real-life applications. To overcome this issue, we introduced a framework that integrates principles from spectral graph theory and output controllability to project the network state into a smaller topological space formed by the Laplacian network structure. Through extensive simulations on synthetic and real networks, we showed that a relatively low number of projected components can significantly improve the control accuracy. By introducing a new low-dimensional controllability metric we experimentally validated our method on N = 6134 human connectomes obtained from the UK-biobank cohort. Results revealed previously unappreciated influential brain regions, enabled to draw directed maps between differently specialized cerebral systems, and yielded new insights into hemispheric lateralization. Taken together, our results offered a theoretically grounded solution to deal with network controllability and provided insights into the causal interactions of the human brain.
Collapse
Affiliation(s)
- Remy Ben Messaoud
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Vincent Le Du
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Camile Bousfiha
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Constance Corsi
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Juliana Gonzalez-Astudillo
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Brigitte Charlotte Kaufmann
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Tristan Venot
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Baptiste Couvy-Duchesne
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Lara Migliaccio
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Centre of Excellence of Neurodegenerative Disease, Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Rosso
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Urgences Cérébro-Vasculaires, DMU Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Paolo Bartolomeo
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Fabrizio De Vico Fallani
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
17
|
Xia H, Li T, Hou Y, Liu Z, Chen A. Age-related decline in cognitive flexibility and inadequate preparation: evidence from task-state network analysis. GeroScience 2024; 46:5939-5953. [PMID: 38514520 PMCID: PMC11493936 DOI: 10.1007/s11357-024-01135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Behavioral evidence showed decreased cognitive flexibility in older adults. However, task-based network mechanisms of cognitive flexibility in aging (CFA) remain unclear. Here, we provided the first task-state network evidence that CFA was associated with inadequate preparation for switching trials by revealing age-related changes in functional integration. We examined functional integration in a letter-number switch task that distinguished between the cue and target stages. Both young and older adults showed decreased functional integration from the cue stage to the target stage, indicating that control-related processes were executed as the task progressed. However, compared to young adults, older adults showed less cue-to-target reduction in functional integration, which was primarily driven by higher network integration in the target stage. Moreover, less cue-to-target reductions were correlated with age-related decreases in task performance in the switch task. To sum up, compared to young adults, older adults pre-executed less control-related processes in the cue stage and more control-related processes in the target stage. Therefore, the decline in cognitive flexibility in older adults was associated with inadequate preparation for the impending demands of cognitive switching. This study offered novel insights into network mechanisms underlying CFA. Furthermore, we highlighted that training the function of brain networks, in conjunction with providing more preparation time for older adults, may be beneficial to their cognitive flexibility.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Li
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yongqing Hou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zijin Liu
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
18
|
Nie W, Zeng W, Yang J, Wang L, Shi Y. A three-classification model for identifying migraine with right-to-left shunt using lateralization of functional connectivity and brain network topology: a resting-state fMRI study. Front Neurosci 2024; 18:1488193. [PMID: 39600655 PMCID: PMC11588730 DOI: 10.3389/fnins.2024.1488193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Right-to-left shunting has been significantly associated with migraine, although the neural mechanisms remain complex and not fully elucidated. The aim of this study was to investigate the variability of brain asymmetry in individuals with migraine with right-to-left shunting, migraine without right-to-left shunting and normal controls using resting-state fMRI technology and to construct a three-classification model. Methods Firstly, asymmetries in functional connectivity and brain network topology were quantified to laterality indices. Secondly, the laterality indices were employed to construct a three-classification model using decision tree and random forest algorithms. Ultimately, through a feature score analysis, the key brain regions that contributed significantly to the classification were extracted, and the associations between these brain regions and clinical features were investigated. Results Our experimental results showed that the initial classification accuracy reached 0.8961. Subsequently, validation using an independent sample set resulted in a classification accuracy of 0.8874. Further, after expanding the samples by the segmentation strategy, the classification accuracies were improved to 0.9103 and 0.9099. Additionally, the third sample set yielded a classification accuracy of 0.8745. Finally, 9 pivotal brain regions were identified and distributed in the default network, the control network, the visual network, the limbic network, the somatomotor network and the salience/ventral attention network. Discussion The results revealed distinct lateralization features in the brains of the three groups, which were closely linked to migraine and right-to-left shunting symptoms and could serve as potential imaging biomarkers for clinical diagnosis. Our findings enhanced our understanding of migraine and right-to-left shunting mechanisms and offered insights into assisting clinical diagnosis.
Collapse
Affiliation(s)
- Weifang Nie
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Lei Wang
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| | - Yuhu Shi
- Lab of Digital Image and Intelligent Computation, Shanghai Maritime University, Shanghai, China
| |
Collapse
|
19
|
Nishimaki K, Onda K, Ikuta K, Chotiyanonta J, Uchida Y, Mori S, Iyatomi H, Oishi K, Alzheimer's Disease Neuroimaging Initiative, Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing. OpenMAP-T1: A Rapid Deep-Learning Approach to Parcellate 280 Anatomical Regions to Cover the Whole Brain. Hum Brain Mapp 2024; 45:e70063. [PMID: 39523990 PMCID: PMC11551626 DOI: 10.1002/hbm.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This study introduces OpenMAP-T1, a deep-learning-based method for rapid and accurate whole-brain parcellation in T1- weighted brain MRI, which aims to overcome the limitations of conventional normalization-to-atlas-based approaches and multi-atlas label-fusion (MALF) techniques. Brain image parcellation is a fundamental process in neuroscientific and clinical research, enabling a detailed analysis of specific cerebral regions. Normalization-to-atlas-based methods have been employed for this task, but they face limitations due to variations in brain morphology, especially in pathological conditions. The MALF techniques improved the accuracy of the image parcellation and robustness to variations in brain morphology, but at the cost of high computational demand that requires a lengthy processing time. OpenMAP-T1 integrates several convolutional neural network models across six phases: preprocessing; cropping; skull-stripping; parcellation; hemisphere segmentation; and final merging. This process involves standardizing MRI images, isolating the brain tissue, and parcellating it into 280 anatomical structures that cover the whole brain, including detailed gray and white matter structures, while simplifying the parcellation processes and incorporating robust training to handle various scan types and conditions. The OpenMAP-T1 was validated on the Johns Hopkins University atlas library and eight available open resources, including real-world clinical images, and the demonstration of robustness across different datasets with variations in scanner types, magnetic field strengths, and image processing techniques, such as defacing. Compared with existing methods, OpenMAP-T1 significantly reduced the processing time per image from several hours to less than 90 s without compromising accuracy. It was particularly effective in handling images with intensity inhomogeneity and varying head positions, conditions commonly seen in clinical settings. The adaptability of OpenMAP-T1 to a wide range of MRI datasets and its robustness to various scan conditions highlight its potential as a versatile tool in neuroimaging.
Collapse
Affiliation(s)
- Kei Nishimaki
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kumpei Ikuta
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yuto Uchida
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hitoshi Iyatomi
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | |
Collapse
|
20
|
Fan Y, White SR. Review of weighted exponential random graph models frameworks applied to neuroimaging. Stat Med 2024; 43:3881-3898. [PMID: 38932498 DOI: 10.1002/sim.10162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Neuro-imaging data can often be represented as statistical networks, especially for functional magnetic resonance imaging (fMRI) data, where brain regions are defined as nodes and the functional interactions between those regions are taken as edges. Such networks are commonly divided into classes depending on the type of edges, namely binary or weighted. A binary network means edges can either be present or absent. Whereas the edges of a weighted network are associated with weight values, and fMRI networks belong to weighted networks. Statistical methods are often adopted to analyse such networks, among which, the exponential random graph model (ERGM) is an important network analysis approach. Typically ERGMs are applied to binary networks, and weighted networks often need to be binarised by arbitrarily selecting a threshold value to define the presence of the edges, which can lead to non-robustness and loss of valuable edge weight information representing the strength of fMRI interaction in fMRI networks. While it is therefore important to gain deeper insight in adopting ERGM on weighted networks, there only exists a few different ERGM frameworks for weighted networks; some of these are not directly implementable on fMRI networks based on their original proposal. We systematically review, implement, analyse and compare five such frameworks via a simulation study and provide guidelines on each modelling framework as well as conclude the suitability of them on fMRI networks based on a range of criteria. We concluded that Multi-Layered ERGM is currently the most suitable framework.
Collapse
Affiliation(s)
- Yefeng Fan
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Simon R White
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Ling Q, Liu A, Li Y, McKeown MJ, Chen X. fMRI-based spatio-temporal parcellations of the human brain. Curr Opin Neurol 2024; 37:369-380. [PMID: 38804205 DOI: 10.1097/wco.0000000000001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Human brain parcellation based on functional magnetic resonance imaging (fMRI) plays an essential role in neuroscience research. By segmenting vast and intricate fMRI data into functionally similar units, researchers can better decipher the brain's structure in both healthy and diseased states. This article reviews current methodologies and ideas in this field, while also outlining the obstacles and directions for future research. RECENT FINDINGS Traditional brain parcellation techniques, which often rely on cytoarchitectonic criteria, overlook the functional and temporal information accessible through fMRI. The adoption of machine learning techniques, notably deep learning, offers the potential to harness both spatial and temporal information for more nuanced brain segmentation. However, the search for a one-size-fits-all solution to brain segmentation is impractical, with the choice between group-level or individual-level models and the intended downstream analysis influencing the optimal parcellation strategy. Additionally, evaluating these models is complicated by our incomplete understanding of brain function and the absence of a definitive "ground truth". SUMMARY While recent methodological advancements have significantly enhanced our grasp of the brain's spatial and temporal dynamics, challenges persist in advancing fMRI-based spatio-temporal representations. Future efforts will likely focus on refining model evaluation and selection as well as developing methods that offer clear interpretability for clinical usage, thereby facilitating further breakthroughs in our comprehension of the brain.
Collapse
Affiliation(s)
- Qinrui Ling
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Aiping Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Li
- Institute of Dataspace, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Martin J McKeown
- Department of Medicine, University of British Columbia, Vancouver, Vancouver V6T2B5, Canada
| | - Xun Chen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
22
|
Chopra S, Cocuzza CV, Lawhead C, Ricard JA, Labache L, Patrick LM, Kumar P, Rubenstein A, Moses J, Chen L, Blankenbaker C, Gillis B, Germine LT, Harpaz-Rote I, Yeo BTT, Baker JT, Holmes AJ. The Transdiagnostic Connectome Project: a richly phenotyped open dataset for advancing the study of brain-behavior relationships in psychiatry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309054. [PMID: 38946958 PMCID: PMC11213088 DOI: 10.1101/2024.06.18.24309054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An important aim in psychiatry is the establishment of valid and reliable associations linking profiles of brain functioning to clinically relevant symptoms and behaviors across patient populations. To advance progress in this area, we introduce an open dataset containing behavioral and neuroimaging data from 241 individuals aged 18 to 70, comprising 148 individuals meeting diagnostic criteria for a broad range of psychiatric illnesses and a healthy comparison group of 93 individuals. These data include high-resolution anatomical scans, multiple resting-state, and task-based functional MRI runs. Additionally, participants completed over 50 psychological and cognitive assessments. Here, we detail available behavioral data as well as raw and processed MRI derivatives. Associations between data processing and quality metrics, such as head motion, are reported. Processed data exhibit classic task activation effects and canonical functional network organization. Overall, we provide a comprehensive and analysis-ready transdiagnostic dataset, which we hope will accelerate the identification of illness-relevant features of brain functioning, enabling future discoveries in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Sidhant Chopra
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- 3. Orygen, Center for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Carrisa V. Cocuzza
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Connor Lawhead
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 4. Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Jocelyn A. Ricard
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 5. Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Loïc Labache
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Lauren M. Patrick
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 6. Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- 7. Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Poornima Kumar
- 8. Department of Psychiatry, Harvard Medical School, Boston, USA
- 9. Centre for Depression, Anxiety and Stress Research, McLean Hospital, Boston, USA
| | | | - Julia Moses
- 1. Department of Psychology, Yale University, New Haven, CT, USA
| | - Lia Chen
- 10. Department of Psychology, Cornell University, Ithaca, NY, USA
| | | | - Bryce Gillis
- 11. Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
- 12. Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Laura T. Germine
- 11. Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
- 12. Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Ilan Harpaz-Rote
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 13. Department of Psychiatry, Yale University, New Haven, USA
- 14. Wu Tsai Institute, Yale University, New Haven, USA
| | - BT Thomas Yeo
- 15. Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- 16. Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- 17. N.1 Institute for Health National University of Singapore, Singapore, Singapore
- 18. Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- 19. Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- 20. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Justin T. Baker
- 11. Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
- 12. Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Avram J. Holmes
- 1. Department of Psychology, Yale University, New Haven, CT, USA
- 2. Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
23
|
Zhang S, Larsen B, Sydnor VJ, Zeng T, An L, Yan X, Kong R, Kong X, Gur RC, Gur RE, Moore TM, Wolf DH, Holmes AJ, Xie Y, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Deco G, Satterthwaite TD, Yeo BTT. In vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth. Proc Natl Acad Sci U S A 2024; 121:e2318641121. [PMID: 38814872 PMCID: PMC11161789 DOI: 10.1073/pnas.2318641121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/04/2024] [Indexed: 06/01/2024] Open
Abstract
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Collapse
Affiliation(s)
- Shaoshi Zhang
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Pediatrics, University of Minnesota, Minneapolis, MN55455
| | - Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - Tianchu Zeng
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Lijun An
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Xiaoxuan Yan
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Ru Kong
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
- ByteDance, Singapore048583, Singapore
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ07103
- Wu Tsai Institute, Yale University, New Haven, CT06520
| | - Yapei Xie
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Marielle V. Fortier
- Department of Diagnostic and Interventional Imaging, Kandang Kerbau Women’s and Children’s Hospital, Singapore229899, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119074, Singapore
| | - Peter Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland1142, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228, Singapore
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QCH3A1A1, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Barcelona08002, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Barcelona08010, Spain
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hopstial, Charlestown, MA02129
| |
Collapse
|
24
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
25
|
Ruff CF, Juarez Anaya F, Dienel SJ, Rakymzhan A, Altamirano-Espinoza A, Couey JJ, Fukuda M, Watson AM, Su A, Fish KN, Rubio ME, Hooks BM, Ross SE, Vazquez AL. Long-range inhibitory neurons mediate cortical neurovascular coupling. Cell Rep 2024; 43:113970. [PMID: 38512868 PMCID: PMC11168451 DOI: 10.1016/j.celrep.2024.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.
Collapse
Affiliation(s)
- Catherine F Ruff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adiya Rakymzhan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jonathan J Couey
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan M Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aihua Su
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria E Rubio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Wang G, Jiang N, Ma Y, Suo D, Liu T, Funahashi S, Yan T. Using a deep generation network reveals neuroanatomical specificity in hemispheres. PATTERNS (NEW YORK, N.Y.) 2024; 5:100930. [PMID: 38645770 PMCID: PMC11026975 DOI: 10.1016/j.patter.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 04/23/2024]
Abstract
Asymmetry is an important property of brain organization, but its nature is still poorly understood. Capturing the neuroanatomical components specific to each hemisphere facilitates the understanding of the establishment of brain asymmetry. Since deep generative networks (DGNs) have powerful inference and recovery capabilities, we use one hemisphere to predict the opposite hemisphere by training the DGNs, which automatically fit the built-in dependencies between the left and right hemispheres. After training, the reconstructed images approximate the homologous components in the hemisphere. We use the difference between the actual and reconstructed hemispheres to measure hemisphere-specific components due to asymmetric expression of environmental and genetic factors. The results show that our model is biologically plausible and that our proposed metric of hemispheric specialization is reliable, representing a wide range of individual variation. Together, this work provides promising tools for exploring brain asymmetry and new insights into self-supervised DGNs for representing the brain.
Collapse
Affiliation(s)
- Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
27
|
Zhang S, Larsen B, Sydnor VJ, Zeng T, An L, Yan X, Kong R, Kong X, Gur RC, Gur RE, Moore TM, Wolf DH, Holmes AJ, Xie Y, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Deco G, Satterthwaite TD, Yeo BT. In-vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546023. [PMID: 38586012 PMCID: PMC10996460 DOI: 10.1101/2023.06.22.546023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Collapse
Affiliation(s)
- Shaoshi Zhang
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianchu Zeng
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Lijun An
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Xiaoxuan Yan
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
- ByteDance, Singapore
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Yapei Xie
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter Gluckman
- UK Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Barcelona, Spain
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - B.T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hopstial, Charlestown, MA, USA
| |
Collapse
|
28
|
Yoo S, Jang Y, Hong SJ, Park H, Valk SL, Bernhardt BC, Park BY. Whole-brain structural connectome asymmetry in autism. Neuroimage 2024; 288:120534. [PMID: 38340881 DOI: 10.1016/j.neuroimage.2024.120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings.
Collapse
Affiliation(s)
- Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Artificial Intelligence Convergence Research Center, Inha University, Incheon, Republic of Korea
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sofie L Valk
- Forschungszentrum Julich, Germany; Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Data Science, Inha University, Incheon, Republic of Korea; Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
29
|
Luo J, Qin P, Bi Q, Wu K, Gong G. Individual variability in functional connectivity of human auditory cortex. Cereb Cortex 2024; 34:bhae007. [PMID: 38282455 DOI: 10.1093/cercor/bhae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Individual variability in functional connectivity underlies individual differences in cognition and behaviors, yet its association with functional specialization in the auditory cortex remains elusive. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, this study was designed to investigate the spatial distribution of auditory cortex individual variability in its whole-brain functional network architecture. An inherent hierarchical axis of the variability was discerned, which radiates from the medial to lateral orientation, with the left auditory cortex demonstrating more pronounced variations than the right. This variability exhibited a significant correlation with the variations in structural and functional metrics in the auditory cortex. Four auditory cortex subregions, which were identified from a clustering analysis based on this variability, exhibited unique connectional fingerprints and cognitive maps, with certain subregions showing specificity to speech perception functional activation. Moreover, the lateralization of the connectional fingerprint exhibited a U-shaped trajectory across the subregions. These findings emphasize the role of individual variability in functional connectivity in understanding cortical functional organization, as well as in revealing its association with functional specialization from the activation, connectome, and cognition perspectives.
Collapse
Affiliation(s)
- Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
| | - Ke Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
30
|
Liu Y, Li J, Wisnowski JL, Leahy RM. Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574423. [PMID: 38260447 PMCID: PMC10802375 DOI: 10.1101/2024.01.05.574423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cortical parcellation has long been a cornerstone in the field of neuroscience, enabling the cerebral cortex to be partitioned into distinct, non-overlapping regions that facilitate the interpretation and comparison of complex neuroscientific data. In recent years, these parcellations have frequently been based on the use of resting-state fMRI (rsfMRI) data. In parallel, methods such as independent components analysis have long been used to identify large-scale functional networks with significant spatial overlap between networks. Despite the fact that both forms of decomposition make use of the same spontaneous brain activity measured with rsfMRI, a gap persists in establishing a clear relationship between disjoint cortical parcellations and brain-wide networks. To address this, we introduce a novel parcellation framework that integrates NASCAR, a three-dimensional tensor decomposition method that identifies a series of functional brain networks, with state-of-the-art graph representation learning to produce cortical parcellations that represent near-homogeneous functional regions that are consistent with these brain networks. Further, through the use of the tensor decomposition, we avoid the limitations of traditional approaches that assume statistical independence or orthogonality in defining the underlying networks. Our findings demonstrate that these parcellations are comparable or superior to established atlases in terms of homogeneity of the functional connectivity across parcels, task contrast alignment, and architectonic map alignment. Our methodological pipeline is highly automated, allowing for rapid adaptation to new datasets and the generation of custom parcellations in just minutes, a significant advancement over methods that require extensive manual input. We describe this integrated approach, which we refer to as Untamed, as a tool for use in the fields of cognitive and clinical neuroscientific research. Parcellations created from the Human Connectome Project dataset using Untamed, along with the code to generate atlases with custom parcel numbers, are publicly available at https://untamed-atlas.github.io.
Collapse
Affiliation(s)
- Yijun Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica L. Wisnowski
- Radiology and Pediatrics, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard M. Leahy
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Hao Z, Xia X, Pan Y, Bai Y, Wang Y, Peng B, Dou W. Uncovering Brain Network Insights for Prognosis in Disorders of Consciousness: EEG Source Space Analysis and Brain Dynamics. IEEE Trans Neural Syst Rehabil Eng 2024; 32:144-153. [PMID: 38145522 DOI: 10.1109/tnsre.2023.3346947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Accurate prognostic prediction in patients with disorders of consciousness (DOC) is a core clinical concern and a formidable challenge in neuroscience. Resting-state EEG has shown promise in identifying electrophysiological prognostic markers and may be easily deployed at the bedside. However, the lack of brain dynamic modeling and the spatial mixture of signals in scalp EEG have constrained our exploration of biomarkers and comprehension of the mechanisms underlying consciousness recovery. Here, we introduce EEG source space analysis and brain dynamics to investigate the brain networks of patients with DOC (n = 178) with different outcomes (six-month follow-up), followed by graph theory and high-order topological analysis to explore the relationship between network structure and prognosis, and finally assess the importance of features. We show that a positive prognosis is associated with large-scale lower levels of low-frequency hypersynchrony. Moreover, we provide evidence that this pattern is driven not by all brain states but only by specific states. Analyses reveal that the positive prognosis is attributed to the network retaining lower segregation, higher integration, and stronger stability compared to the negative prognosis. Furthermore, our results highlight the importance of brain networks derived from brain dynamics in prognosis. The prognosis models based on clinical and neural features can achieve acceptable and even excellent performance under different outcome definitions (AUC = 0.714-0.893). Overall, our study offers new perspectives for the identification of prognostic biomarkers and provides avenues for profound insights into the mechanisms underlying consciousness improvement or recovery.
Collapse
|
32
|
Zhang Y, Han X, Ge X, Xu T, Wang Y, Mu J, Liu F. Modular brain network in volitional eyes closing: enhanced integration with a marked impact on hubs. Cereb Cortex 2024; 34:bhad464. [PMID: 38044477 DOI: 10.1093/cercor/bhad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Volitional eyes closing would shift brain's information processing modes from the "exteroceptive" to "interoceptive" state. This transition induced by the eyes closing is underpinned by a large-scale reconfiguration of brain network, which is still not fully comprehended. Here, we investigated the eyes-closing-relevant network reconfiguration by examining the functional integration among intrinsic modules. Our investigation utilized a publicly available dataset with 48 subjects being scanned in both eyes closed and eyes open conditions. It was found that the modular integration was significantly enhanced during the eyes closing, including lower modularity index, higher participation coefficient, less provincial hubs, and more connector hubs. Moreover, the eyes-closing-enhanced integration was particularly noticeable in the hubs of network, mainly located in the default-mode network. Finally, the hub-dominant modular enhancement was positively correlated to the eyes-closing-reduced entropy of BOLD signal, suggesting a close connection to the diminished consciousness of individuals. Collectively, our findings strongly suggested that the enhanced modular integration with substantially reorganized hubs characterized the large-scale cortical underpinning of the volitional eyes closing.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xiao Han
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xuelian Ge
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Tianyong Xu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yanjie Wang
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jiali Mu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Fan Liu
- Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
33
|
Gajwani M, Oldham S, Pang JC, Arnatkevičiūtė A, Tiego J, Bellgrove MA, Fornito A. Can hubs of the human connectome be identified consistently with diffusion MRI? Netw Neurosci 2023; 7:1326-1350. [PMID: 38144690 PMCID: PMC10631793 DOI: 10.1162/netn_a_00324] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/17/2023] [Indexed: 12/26/2023] Open
Abstract
Recent years have seen a surge in the use of diffusion MRI to map connectomes in humans, paralleled by a similar increase in processing and analysis choices. Yet these different steps and their effects are rarely compared systematically. Here, in a healthy young adult population (n = 294), we characterized the impact of a range of analysis pipelines on one widely studied property of the human connectome: its degree distribution. We evaluated the effects of 40 pipelines (comparing common choices of parcellation, streamline seeding, tractography algorithm, and streamline propagation constraint) and 44 group-representative connectome reconstruction schemes on highly connected hub regions. We found that hub location is highly variable between pipelines. The choice of parcellation has a major influence on hub architecture, and hub connectivity is highly correlated with regional surface area in most of the assessed pipelines (ρ > 0.70 in 69% of the pipelines), particularly when using weighted networks. Overall, our results demonstrate the need for prudent decision-making when processing diffusion MRI data, and for carefully considering how different processing choices can influence connectome organization.
Collapse
Affiliation(s)
- Mehul Gajwani
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Stuart Oldham
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - James C. Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Aurina Arnatkevičiūtė
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Jeggan Tiego
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Mark A. Bellgrove
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria, Australia
| |
Collapse
|
34
|
Peterson M, Braga RM, Floris DL, Nielsen JA. Evidence for a Compensatory Relationship between Left- and Right-Lateralized Brain Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570817. [PMID: 38106130 PMCID: PMC10723397 DOI: 10.1101/2023.12.08.570817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of Investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dorothea L. Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jared A. Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
35
|
Rastegarnia S, St-Laurent M, DuPre E, Pinsard B, Bellec P. Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset. Neuroimage 2023; 283:120395. [PMID: 37832707 DOI: 10.1016/j.neuroimage.2023.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Brain decoding aims to infer cognitive states from patterns of brain activity. Substantial inter-individual variations in functional brain organization challenge accurate decoding performed at the group level. In this paper, we tested whether accurate brain decoding models can be trained entirely at the individual level. We trained several classifiers on a dense individual functional magnetic resonance imaging (fMRI) dataset for which six participants completed the entire Human Connectome Project (HCP) task battery >13 times over ten separate fMRI sessions. We evaluated nine decoding methods, from Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP) to Graph Convolutional Neural Networks (GCN). All decoders were trained to classify single fMRI volumes into 21 experimental conditions simultaneously, using ∼7 h of fMRI data per participant. The best prediction accuracies were achieved with GCN and MLP models, whose performance (57-67 % accuracy) approached state-of-the-art accuracy (76 %) with models trained at the group level on >1 K hours of data from the original HCP sample. Our SVM model also performed very well (54-62 % accuracy). Feature importance maps derived from MLP -our best-performing model- revealed informative features in regions relevant to particular cognitive domains, notably in the motor cortex. We also observed that inter-subject classification achieved substantially lower accuracy than subject-specific models, indicating that our decoders learned individual-specific features. This work demonstrates that densely-sampled neuroimaging datasets can be used to train accurate brain decoding models at the individual level. We expect this work to become a useful benchmark for techniques that improve model generalization across multiple subjects and acquisition conditions.
Collapse
Affiliation(s)
- Shima Rastegarnia
- Université de Montréal, Montréal, QC, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.
| | - Marie St-Laurent
- Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | | | - Basile Pinsard
- Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Pierre Bellec
- Université de Montréal, Montréal, QC, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| |
Collapse
|
36
|
Hao Z, Zhai X, Peng B, Cheng D, Zhang Y, Pan Y, Dou W. CAMBA framework: Unveiling the brain asymmetry alterations and longitudinal changes after stroke using resting-state EEG. Neuroimage 2023; 282:120405. [PMID: 37820859 DOI: 10.1016/j.neuroimage.2023.120405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Hemispheric asymmetry or lateralization is a fundamental principle of brain organization. However, it is poorly understood to what extent the brain asymmetries across different levels of functional organizations are evident in health or altered in brain diseases. Here, we propose a framework that integrates three degrees of brain interactions (isolated nodes, node-node, and edge-edge) into a unified analysis pipeline to capture the sliding window-based asymmetry dynamics at both the node and hemisphere levels. We apply this framework to resting-state EEG in healthy and stroke populations and investigate the stroke-induced abnormal alterations in brain asymmetries and longitudinal asymmetry changes during poststroke rehabilitation. We observe that the mean asymmetry in patients was abnormally enhanced across different frequency bands and levels of brain interactions, with these abnormal patterns strongly associated with the side of the stroke lesion. Compared to healthy controls, patients displayed significant alterations in asymmetry fluctuations, disrupting and reconfiguring the balance of inter-hemispheric integration and segregation. Additionally, analyses reveal that specific abnormal asymmetry metrics in patients tend to move towards those observed in healthy controls after short-term brain-computer interface rehabilitation. Furthermore, preliminary evidence suggests that baseline clinical and asymmetry features can predict poststroke improvements in the Fugl-Meyer assessment of the lower extremity (mean absolute error of about 2). Overall, these findings advance our understanding of hemispheric asymmetry. Our framework offers new insights into the mechanisms underlying brain alterations and recovery after a brain lesion, may help identify prognostic biomarkers, and can be easily extended to different functional modalities.
Collapse
Affiliation(s)
- Zexuan Hao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoxue Zhai
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Bo Peng
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Dandan Cheng
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yanlin Zhang
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yu Pan
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China.
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
37
|
Molloy MF, Osher DE. A personalized cortical atlas for functional regions of interest. J Neurophysiol 2023; 130:1067-1080. [PMID: 37727907 PMCID: PMC10994647 DOI: 10.1152/jn.00108.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Advances in functional MRI (fMRI) allow mapping an individual's brain function in vivo. Task fMRI can localize domain-specific regions of cognitive processing or functional regions of interest (fROIs) within an individual. Moreover, data from resting state (no task) fMRI can be used to define an individual's connectome, which can characterize that individual's functional organization via connectivity-based parcellations. However, can connectivity-based parcellations alone predict an individual's fROIs? Here, we describe an approach to compute individualized rs-fROIs (i.e., regions that correspond to given fROI constructed using only resting state data) for motor control, working memory, high-level vision, and language comprehension. The rs-fROIs were computed and validated using a large sample of young adults (n = 1,018) with resting state and task fMRI from the Human Connectome Project. First, resting state parcellations were defined across a sequence of resolutions from broadscale to fine-grained networks in a training group of 500 individuals. Second, 21 rs-fROIs were defined from the training group by identifying the rs network that most closely matched task-defined fROIs across all individuals. Third, the selectivity of rs-fROIs was investigated in a training set of the remaining 518 individuals. All computed rs-fROIs were indeed selective for their preferred category. Critically, the rs-fROIs had higher selectivity than probabilistic atlas parcels for nearly all fROIs. In conclusion, we present a potential approach to define selective fROIs on an individual-level circumventing the need for multiple task-based localizers.NEW & NOTEWORTHY We compute individualized resting state parcels that identify an individual's own functional regions of interest (fROIs) for high-level vision, language comprehension, motor control, and working memory, using only their functional connectome. This approach demonstrates a rapid and powerful alternative for finding a large set of fROIs in an individual, using only their unique connectivity pattern, which does not require the costly acquisition of multiple fMRI localizer tasks.
Collapse
Affiliation(s)
- M. Fiona Molloy
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States
| | - David E. Osher
- Department of Psychology, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
38
|
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, Valk SL. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity. PLoS Biol 2023; 21:e3002365. [PMID: 37943873 PMCID: PMC10684102 DOI: 10.1371/journal.pbio.3002365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.
Collapse
Affiliation(s)
- Amin Saberi
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Meike D. Hettwer
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|