1
|
Yang L, Cao G, Zhang S, Zhang W, Sun Y, Zhou J, Zhong T, Yuan Y, Liu T, Liu T, Guo L, Yu Y, Jiang X, Li G, Han J, Zhang T. Contrastive machine learning reveals species -shared and -specific brain functional architecture. Med Image Anal 2025; 101:103431. [PMID: 39689450 DOI: 10.1016/j.media.2024.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/19/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently entangled with each other and with other irrelevant factors. Here we develop a novel contrastive machine learning method, called shared-unique variation autoencoder (SU-VAE), to allow disentanglement of the species-shared and species-specific functional connectome variation between macaque and human brains on large-scale resting-state fMRI datasets. The method was validated by confirming that human-specific features are differentially related to cognitive scores, while features shared with macaque better capture sensorimotor ones. The projection of disentangled connectomes to the cortex revealed a gradient that reflected species divergence. In contrast to macaque, the introduction of human-specific connectomes to the shared ones enhanced network efficiency. We identified genes enriched on 'axon guidance' that could be related to the human-specific connectomes. The code contains the model and analysis can be found in https://github.com/BBBBrain/SU-VAE.
Collapse
Affiliation(s)
- Li Yang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Weihan Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yusong Sun
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Jingchao Zhou
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Tianyang Zhong
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yixuan Yuan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Tao Liu
- School of Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, 30602, USA
| | - Lei Guo
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yongchun Yu
- Institutes of Brain Sciences, FuDan University, Shanghai, 200433, China
| | - Xi Jiang
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Gang Li
- Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Junwei Han
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China.
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China.
| |
Collapse
|
2
|
Czoty PW, Kawas M, Madi K, Barcus R, Kim J, Hudson JP, Galbo-Thomma LK, Yuan H, Daunais JB, Whitlow CT. A role for the insula in establishing social dominance: structural and functional MRI studies in nonhuman primates. Cereb Cortex 2025; 35:bhaf043. [PMID: 40099834 PMCID: PMC11915092 DOI: 10.1093/cercor/bhaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 03/20/2025] Open
Abstract
Awareness of one's position in the social hierarchy is essential for survival. Conversely, poor social cognition is associated with several neuropsychiatric diseases. Although brain regions that mediate understanding of the social hierarchy are poorly understood, recent evidence implicates the insula. Magnetic resonance imaging (MRI) scans were acquired in twelve individually housed male cynomolgus monkeys to determine whether structural and functional characteristics of the insular cortex predicted the social rank that monkeys would attain once they formed stable social hierarchies. Structural MRI revealed that left insular volume was significantly larger in monkeys that would become dominant vs. subordinate. No differences were observed in other areas including amygdala, caudate nucleus, or prefrontal cortex. Volumetric differences were localized to dorsal anterior regions of both left and right insulae. Functional MRI revealed that global correlation, a measure of connectedness to the rest of the brain, was significantly lower in the left insula of monkeys who would become dominant vs. subordinate. Moreover, the fractional amplitude of low-frequency fluctuations, a reflection of spontaneous brain activity, trended lower in bilateral insula in the future dominant monkeys. This prospective study provides evidence for a role of the insula in the establishment and maintenance of social dominance relationships.
Collapse
Affiliation(s)
- Paul W Czoty
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Mohammad Kawas
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
- Department of Physiology & Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Kedar Madi
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Richard Barcus
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Jeremy P Hudson
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Lindsey K Galbo-Thomma
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Hongyu Yuan
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - James B Daunais
- Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, United States
| |
Collapse
|
3
|
Borra E, Gerbella M, Rozzi S, Luppino G. Neural substrate for the engagement of the ventral visual stream in motor control in the macaque monkey. Cereb Cortex 2024; 34:bhae354. [PMID: 39227311 DOI: 10.1093/cercor/bhae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The present study aimed to describe the cortical connectivity of a sector located in the ventral bank of the superior temporal sulcus in the macaque (intermediate area TEa and TEm [TEa/m]), which appears to represent the major source of output of the ventral visual stream outside the temporal lobe. The retrograde tracer wheat germ agglutinin was injected in the intermediate TEa/m in four macaque monkeys. The results showed that 58-78% of labeled cells were located within ventral visual stream areas other than the TE complex. Outside the ventral visual stream, there were connections with the memory-related medial temporal area 36 and the parahippocampal cortex, orbitofrontal areas involved in encoding subjective values of stimuli for action selection, and eye- or hand-movement related parietal (LIP, AIP, and SII), prefrontal (12r, 45A, and 45B) areas, and a hand-related dysgranular insula field. Altogether these data provide a solid substrate for the engagement of the ventral visual stream in large scale cortical networks for skeletomotor or oculomotor control. Accordingly, the role of the ventral visual stream could go beyond pure perceptual processes and could be also finalized to the neural mechanisms underlying the control of voluntary motor behavior.
Collapse
Affiliation(s)
- Elena Borra
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Marzio Gerbella
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Rozzi
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Giuseppe Luppino
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| |
Collapse
|
4
|
Wang L, Yang B, Zheng W, Liang T, Chen X, Chen Q, Du J, Lu J, Li B, Chen N. Alterations in cortical thickness and volumes of subcortical structures in pediatric patients with complete spinal cord injury. CNS Neurosci Ther 2024; 30:e14810. [PMID: 38887969 PMCID: PMC11183907 DOI: 10.1111/cns.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Weimin Zheng
- Department of Radiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Tengfei Liang
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Qian Chen
- Department of Radiology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Baowei Li
- Department of Medical ImagingAffiliated Hospital of Hebei Engineering UniversityHandanChina
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
5
|
Charbonneau JA, Santistevan AC, Raven EP, Bennett JL, Russ BE, Bliss-Moreau E. Evolutionarily conserved neural responses to affective touch in monkeys transcend consciousness and change with age. Proc Natl Acad Sci U S A 2024; 121:e2322157121. [PMID: 38648473 PMCID: PMC11067024 DOI: 10.1073/pnas.2322157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.
Collapse
Affiliation(s)
- Joey A. Charbonneau
- Neuroscience Graduate Program, University of California, Davis, CA95616
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
| | - Anthony C. Santistevan
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| | - Erika P. Raven
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY10016
| | - Jeffrey L. Bennett
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
- Department of Psychiatry and Behavioral Sciences, University of California, Davis School of Medicine, Sacramento, CA95817
- The Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Sacramento, CA95817
| | - Brian E. Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY10962
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Psychiatry, New York University Langone, New York, NY10016
| | - Eliza Bliss-Moreau
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, CA95616
- Department of Psychology, University of California, Davis, CA95616
| |
Collapse
|
6
|
Sypré L, Sharma S, Mantini D, Nelissen K. Intrinsic functional clustering of the macaque insular cortex. Front Integr Neurosci 2024; 17:1272529. [PMID: 38250745 PMCID: PMC10797002 DOI: 10.3389/fnint.2023.1272529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The functional organization of the primate insula has been studied using a variety of techniques focussing on regional differences in either architecture, connectivity, or function. These complementary methods offered insights into the complex organization of the insula and proposed distinct parcellation schemes at varying levels of detail and complexity. The advent of imaging techniques that allow non-invasive assessment of structural and functional connectivity, has popularized data-driven connectivity-based parcellation methods to investigate the organization of the human insula. Yet, it remains unclear if the subdivisions derived from these data-driven clustering methods reflect meaningful descriptions of the functional specialization of the insula. In this study, we employed hierarchical clustering to examine the cluster parcellations of the macaque insula. As our aim was exploratory, we examined parcellations consisting of two up to ten clusters. Three different cluster validation methods (fingerprinting, silhouette, elbow) converged on a four-cluster solution as the most optimal representation of our data. Examining functional response properties of these clusters, in addition to their brain-wide functional connectivity suggested a functional specialization related to processing gustatory, somato-motor, vestibular and social visual cues. However, a more detailed functional differentiation aligning with previous functional investigations of insula subfields became evident at higher cluster numbers beyond the proposed optimal four clusters. Overall, our findings demonstrate that resting-state-based hierarchical clustering can provide a meaningful description of the insula's functional organization at some level of detail. Nonetheless, cluster parcellations derived from this method are best combined with data obtained through other modalities, to provide a more comprehensive and detailed account of the insula's complex functional organization.
Collapse
Affiliation(s)
- Lotte Sypré
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Dante Mantini
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Movement Control & Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|