1
|
Buchanan RA, Wang Y, May JM, Harrison FE. Ascorbate insufficiency disrupts glutamatergic signaling and alters electroencephalogram phenotypes in a mouse model of Alzheimer's disease. Neurobiol Dis 2024; 199:106602. [PMID: 39004234 DOI: 10.1016/j.nbd.2024.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Clinical studies have reported that increased epileptiform and subclinical epileptiform activity can be detected in many patients with an Alzheimer's disease (AD) diagnosis using electroencephalogram (EEG) and this may correlate with poorer cognition. Ascorbate may have a specific role as a neuromodulator in AD as it is released concomitantly with glutamate reuptake following excitatory neurotransmission. Insufficiency may therefore result in an exacerbated excitatory/inhibitory imbalance in neuronal signaling. Using a mouse model of AD that requires dietary ascorbate (Gulo-/-APPswe/PSEN1dE9), EEG was recorded at baseline and during 4 weeks of ascorbate depletion in young (5-month-old) and aged (20-month-old) animals. Data were scored for changes in quantity of spike trains, individual spikes, sleep-wake rhythms, sleep fragmentation, and brainwave power bands during light periods each week. We found an early increase in neuronal spike discharges with age and following ascorbate depletion in AD model mice and not controls, which did not correlate with brain amyloid load. Our data also show more sleep fragmentation with age and with ascorbate depletion. Additionally, changes in brain wave activity were observed within different vigilance states in both young and aged mice, where Gulo-/-APPswe/PSEN1dE9 mice had shifts towards higher frequency bands (alpha, beta, and gamma) and ascorbate depletion resulted in shifts towards lower frequency bands (delta and theta). Microarray data supported ascorbate insufficiency altering glutamatergic transmission through the decreased expression of glutamate related genes, however no changes in protein expression of glutamate reuptake transporters were observed. These data suggest that maintaining optimal brain ascorbate levels may support normal brain electrical activity and sleep patterns, particularly in AD patient populations where disruptions are observed.
Collapse
Affiliation(s)
- Rebecca A Buchanan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Yuhan Wang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James M May
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fiona E Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
2
|
Ikegaya N, Nakamura H, Takayama Y, Miyake Y, Hayashi T, Sonoda M, Sato M, Tateishi K, Suenaga J, Takaishi M, Kitazawa Y, Kunii M, Abe H, Miyazaki T, Arai T, Iwasaki M, Abe T, Yamamoto T. Anti-epileptic drug use and subsequent degenerative dementia occurrence. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70001. [PMID: 39257557 PMCID: PMC11386337 DOI: 10.1002/trc2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION The use of anti-epileptic drugs (AEDs) in degenerative dementia (DD) remains uncertain. We aimed to evaluate the association of early AED administration with subsequent DD occurrence. METHODS Using a large nationwide database, we enrolled patients newly diagnosed with epilepsy from 2014 to 2019 (n = 104,225), and using propensity score matching, we divided them into treatment (those prescribed AEDs in 2014) and control groups. The primary outcome was subsequent DD occurrence in 2019. RESULTS Overall, 4489 pairs of patients (2156 women) were matched. The odds ratio (treatment/control) for DD occurrence was 0.533 (95% confidence interval: 0.459-0.617). The DD proportions significantly differed between the treatment (340/4489 = 0.076) and control (577/4489 = 0.129) groups. DISCUSSION Among patients newly diagnosed with epilepsy, compared to non-use, early AED use was associated with a lower occurrence of subsequent DD. Further investigations into and optimization of early intervention for epilepsy in DD are warranted. Highlights Anti-epileptic drug (AED) use before epilepsy diagnosis was linked with a lower subsequent degenerative dementia (DD) occurrence.Identifying the epileptic phenotype was crucial for justifying early AED use in DD.AED use with an epilepsy diagnosis did not pose an additional risk of DD.The potential contribution of combination drug therapy to the strategy was noted.
Collapse
Affiliation(s)
- Naoki Ikegaya
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Yutaro Takayama
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yohei Miyake
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Takahiro Hayashi
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Masaki Sonoda
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Mitsuru Sato
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kensuke Tateishi
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Jun Suenaga
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Masao Takaishi
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of PsychiatryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yu Kitazawa
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of Neurology and Stroke MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Misako Kunii
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of Neurology and Stroke MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Hiroki Abe
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Tomoyuki Miyazaki
- Department of Core Project Promotion, Center for Promotion of Research and Industry‐Academic CollaborationYokohama City UniversityYokohamaJapan
| | - Tetsuaki Arai
- Department of PsychiatryDivision of Clinical MedicineInstitute of MedicineUniversity of TsukubaTsukubaJapan
| | - Manabu Iwasaki
- School of Data ScienceYokohama City UniversityYokohamaJapan
- The Institute of Statistical Mathematics, Center for Training Professors in StatisticsTachikawaJapan
| | - Takayuki Abe
- School of Data ScienceYokohama City UniversityYokohamaJapan
- Faculty of Data ScienceKyoto Women's UniversityKyotoJapan
| | - Tetsuya Yamamoto
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
3
|
Spoleti E, La Barbera L, Cauzzi E, De Paolis ML, Saba L, Marino R, Sciamanna G, Di Lazzaro V, Keller F, Nobili A, Krashia P, D'Amelio M. Dopamine neuron degeneration in the Ventral Tegmental Area causes hippocampal hyperexcitability in experimental Alzheimer's Disease. Mol Psychiatry 2024; 29:1265-1280. [PMID: 38228889 PMCID: PMC11189820 DOI: 10.1038/s41380-024-02408-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.
Collapse
Affiliation(s)
- Elena Spoleti
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Emma Cauzzi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Luana Saba
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- UniCamillus International University of Health Sciences, 00131, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128, Rome, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
4
|
Cretin B, Philippi N, Bousiges O, Blanc F. Transient epileptic amnesia: a retrospective cohort study of 127 cases, including CSF amyloid and tau features. J Neurol 2023; 270:2256-2270. [PMID: 36715748 DOI: 10.1007/s00415-023-11576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Transient epileptic amnesia (TEA) is a late-onset epilepsy syndrome encompassing transient iterative amnesias and interictal cognitive impairment, two features that overlap with incipient neurodegenerative dementias. We, therefore, examined the yield of CSF amyloid and tau biomarkers in TEA. METHODS In this retrospective study, 127 TEA patients with unremarkable imaging findings were divided into 2 groups, namely, CSF (n = 71) and no-CSF (n = 56). Both were compared for demographics; medical history; baseline neurological, cognitive, and behavioral features; baseline mesial temporal lobe atrophy; and cognitive follow-up at a median of 13 months. CSF samples were examined for amyloid β-42 peptide as well as phospho-tau and total-tau levels. RESULTS At baseline, the CSF-TEA group had significantly (p < 0.01) more frequent mild parkinsonism (42.9% vs. 20%) and cognitive concerns (31% vs. 10.7%), a more blunted sense of smell (34.3% vs. 9.4%), a lower baseline MMSE score (27 vs. 28.9), a more frequent amnestic mild cognitive impairment profile (69% vs. 42.6%), and more atrophic hippocampal changes. At follow-up, the CSF-TEA group had significantly (p < 0.01) lower MMSE scores (27.8 vs. 28.9). CSF analyses revealed amyloid and/or tau changes in 27 patients (38%), including an Alzheimer's disease (AD) profile in 17 (24%). CONCLUSIONS This study shows a good diagnostic value of CSF sampling in a specific population of TEA with characteristics suggestive of incipient degenerative diseases (i.e., red flags). It argues for TEA being the inaugurating feature in some cases of AD. More broadly, our results suggest an etiological heterogeneity in TEA.
Collapse
Affiliation(s)
- Benjamin Cretin
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, 1 Avenue Molière, 67200, Strasbourg, France.
- Unité de Neuropsychologie, Service de Neurologie et hôpital de jour de Gériatrie, pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto Strasbourg, Strasbourg, France.
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Nathalie Philippi
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, 1 Avenue Molière, 67200, Strasbourg, France
- Unité de Neuropsychologie, Service de Neurologie et hôpital de jour de Gériatrie, pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto Strasbourg, Strasbourg, France
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Bousiges
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, 1 Avenue Molière, 67200, Strasbourg, France
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Strasbourg, France
| | - Frédéric Blanc
- Centre Mémoire, de Ressources et de Recherche d'Alsace (Strasbourg-Colmar), Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, 1 Avenue Molière, 67200, Strasbourg, France
- Unité de Neuropsychologie, Service de Neurologie et hôpital de jour de Gériatrie, pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto Strasbourg, Strasbourg, France
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Yang F, Chen L, Yu Y, Xu T, Chen L, Yang W, Wu Q, Han Y. Alzheimer's disease and epilepsy: An increasingly recognized comorbidity. Front Aging Neurosci 2022; 14:940515. [PMID: 36438002 PMCID: PMC9685172 DOI: 10.3389/fnagi.2022.940515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Both Alzheimer's disease (AD) and epilepsy are common chronic diseases in older people. Seizures and epileptiform discharges are very prevalent in AD and can occur since any stage of AD. Increasing evidence indicates that AD and epilepsy may be comorbid. Several factors may be related to the underlying mechanism of the comorbidity. Identifying seizures in patients with AD is a challenge because seizures are often clinically non-motor and may overlap with some AD symptoms. Not only seizures but also epileptiform discharges may exacerbate the cognitive decline in AD patients, highlighting the importance of early recognition and treatment. This review provides a comprehensive overview of seizures in AD from multiple aspects to provide more insight.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanbing Han
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Purushotham M, Tashrifwala F, Jena R, Vudugula SA, Patil RS, Agrawal A. The Association Between Alzheimer's Disease and Epilepsy: A Narrative Review. Cureus 2022; 14:e30195. [DOI: 10.7759/cureus.30195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
|
7
|
Mechanisms Involved in Epileptogenesis in Alzheimer's Disease and Their Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23084307. [PMID: 35457126 PMCID: PMC9030029 DOI: 10.3390/ijms23084307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and Alzheimer's disease (AD) incidence increases with age. There are reciprocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory-inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anatomopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epileptiform activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD.
Collapse
|
8
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
9
|
Wilcox JM, Consoli DC, Tienda AA, Dixit S, Buchanan RA, May JM, Nobis WP, Harrison FE. Altered synaptic glutamate homeostasis contributes to cognitive decline in young APP/PSEN1 mice. Neurobiol Dis 2021; 158:105486. [PMID: 34450329 PMCID: PMC8457528 DOI: 10.1016/j.nbd.2021.105486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Non-convulsive epileptiform activity is a common and under-studied comorbidity of Alzheimer’s disease that may significantly contribute to onset of clinical symptoms independently of other neuropathological features such as β-amyloid deposition. We used repeated treatment with low dose kainic acid (KA) to trigger subthreshold epileptiform activity in young (less than 6 months) wild-type (WT) and APP/PSEN1 mice to test the role of disruption to the glutamatergic system in epileptiform activity changes and the development of memory deficits. Short-term repeated low-dose KA (five daily treatments with 5 mg/kg, IP) impaired long-term potentiation in hippocampus of APP/PSEN1 but not WT mice. Long-term repeated low-dose KA (fourteen weeks of bi-weekly treatment with 7.5–10 mg/kg) led to high mortality in APP/PSEN1 mice. KA treatment also impaired memory retention in the APP/PSEN1 mice in a Morris water maze task under cognitively challenging reversal learning conditions where the platform was moved to a new location. Four weeks of bi-weekly treatment with 5 mg/kg KA also increased abnormal spike activity in APP/PSEN1 and not WT mice but did not impact sleep/wake behavioral states. These findings suggest that hyperexcitability in Alzheimer’s disease may indeed be an early contributor to cognitive decline that is independent of heavy β-amyloid-plaque load, which is absent in APP/PSEN1 mice under 6 months of age.
Collapse
Affiliation(s)
- J M Wilcox
- Program in Neuroscience, Vanderbilt University, Nashville, TN, United States of America; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - D C Consoli
- Program in Neuroscience, Vanderbilt University, Nashville, TN, United States of America
| | - A A Tienda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - S Dixit
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - R A Buchanan
- Program in Neuroscience, Vanderbilt University, Nashville, TN, United States of America
| | - J M May
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - W P Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - F E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
10
|
Cretin B, Bousiges O, Hautecloque G, Philippi N, Blanc F, Dibitonto L, Martin-Hunyadi C, Sellal F. CSF in Epileptic Prodromal Alzheimer's Disease: No Diagnostic Contribution but a Pathophysiological One. Front Neurol 2021; 12:623777. [PMID: 34413819 PMCID: PMC8369500 DOI: 10.3389/fneur.2021.623777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: To study whether cerebrospinal fluid (CSF) analysis may serve as a diagnostic test for the screening of epilepsy in sporadic prodromal Alzheimer's disease (AD). Methods: A total of 29 patients with epileptic prodromal sporadic AD patients (epADs) were included and were retrospectively compared with 38 non-epileptic prodromal AD patients (nepADs) for demographics, clinical features, Mini-Mental Status Examination (MMSE) results, CSF biomarkers, and electro-radiological features. Results: Our study did not show any significant differences in CSF biomarkers regarding neurodegeneration, albumin levels, and inflammation between epADs and nepADs. The epADs were significantly older at diagnosis (p = 0.001), more hypertensive (p = 0.01), and displayed larger white matter hyperintensities on brain magnetic resonance imaging (MRI; p = 0.05). There was a significant correlation between the CSF Aβ-42 and Aβ-40 levels with interictal epileptiform discharges and delta slowing on EEGs recordings, respectively (p = 0.03). Conclusions: Our study suggests that CSF may not serve as a surrogate marker of epilepsy in prodromal AD and cannot circumvent the operator-dependent and time-consuming interpretation of EEG recordings. In humans, AD-related epileptogenesis appears to involve the Aβ peptides but likely also additional non-amyloid factors such as small-vessel disease (i.e., white matter hyperintensities).
Collapse
Affiliation(s)
- Benjamin Cretin
- Unité de Neuropsychologie, Service de Neurologie et Hôpital de jour de Gériatrie, pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre Mémoire, de Ressources et de Recherche d'Alsace, Strasbourg-Colmar, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto, Strasbourg, France.,Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Bousiges
- Centre Mémoire, de Ressources et de Recherche d'Alsace, Strasbourg-Colmar, France.,University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Strasbourg, France
| | | | - Nathalie Philippi
- Unité de Neuropsychologie, Service de Neurologie et Hôpital de jour de Gériatrie, pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre Mémoire, de Ressources et de Recherche d'Alsace, Strasbourg-Colmar, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto, Strasbourg, France.,Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frederic Blanc
- Unité de Neuropsychologie, Service de Neurologie et Hôpital de jour de Gériatrie, pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre Mémoire, de Ressources et de Recherche d'Alsace, Strasbourg-Colmar, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS/Neurocrypto, Strasbourg, France.,Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laure Dibitonto
- Unité de Neuropsychologie, Service de Neurologie et Hôpital de jour de Gériatrie, pôle de Gériatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre Mémoire, de Ressources et de Recherche d'Alsace, Strasbourg-Colmar, France.,Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - François Sellal
- Centre Mémoire, de Ressources et de Recherche d'Alsace, Strasbourg-Colmar, France.,Service de Neurologie, Hospices Civils de Colmar, Colmar, France.,Unité INSERM U-1118, Faculté de Médecine de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Sleep disorders and late-onset epilepsy of unknown origin: Understanding new trajectories to brain amyloidopathy. Mech Ageing Dev 2021; 194:111434. [PMID: 33444630 DOI: 10.1016/j.mad.2021.111434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
The intertwining between epilepsy, sleep disorders and beta amyloid pathology has been progressively highlighted, as early identification and stratification of patients at high risk of cognitive decline is the need of the hour. Modification of the sleep-wake activity, such as sleep impairment or excessive daytime sleepiness, can critically affect cerebral beta amyloid levels. Both mice models and human studies have demonstrated a substantial increase in the burden of beta amyloid pathology after sleep-deprivation, with potential negative effects partially restored by sleep recovery. The accumulation of beta amyloid has been shown to be an early event in the course of Alzheimer's disease dementia. Beta amyloid accumulation has been linked to epileptic seizures epileptic seizures, with beta amyloid being itself pro-epileptogenic in mice models already at oligomeric stage, well before plaque deposition. Further supporting a potential relationship between beta amyloid and epilepsy: i) seizures happen in 1 out of oofut 10 patients with Alzheimer's disease in the prodromal stage, ii) epileptic activity accelerates cognitive decline in Alzheimer's disease, iii) people with late-onset epilepsy present a critically high risk of developing dementia. In this Review we highlight the role of beta amyloid as a potential shared mechanisms between sleep disorders, late-onset epilepsy, and cognitive decline.
Collapse
|
12
|
|
13
|
Mondragón-Rodríguez S, Salgado-Burgos H, Peña-Ortega F. Circuitry and Synaptic Dysfunction in Alzheimer's Disease: A New Tau Hypothesis. Neural Plast 2020; 2020:2960343. [PMID: 32952546 PMCID: PMC7481966 DOI: 10.1155/2020/2960343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
For more than five decades, the field of Alzheimer's disease (AD) has focused on two main hypotheses positing amyloid-beta (Aβ) and Tau phosphorylation (pTau) as key pathogenic mediators. In line with these canonical hypotheses, several groups around the world have shown that the synaptotoxicity in AD depends mainly on the increase in pTau levels. Confronting this leading hypothesis, a few years ago, we reported that the increase in phosphorylation levels of dendritic Tau, at its microtubule domain (MD), acts as a neuroprotective mechanism that prevents N-methyl-D-aspartate receptor (NMDAr) overexcitation, which allowed us to propose that Tau protein phosphorylated near MD sites is involved in neuroprotection, rather than in neurodegeneration. Further supporting this alternative role of pTau, we have recently shown that early increases in pTau close to MD sites prevent hippocampal circuit overexcitation in a transgenic AD mouse model. Here, we will synthesize this new evidence that confronts the leading Tau-based AD hypothesis and discuss the role of pTau modulating neural circuits and network connectivity. Additionally, we will briefly address the role of brain circuit alterations as a potential biomarker for detecting the prodromal AD stage.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- CONACYT National Council for Science and Technology, México, Mexico
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| | - Humberto Salgado-Burgos
- UADY Neurosciences Department, Autonomous University of Yucatán, 97000 Mérida, Yucatán, Mexico
| | - Fernando Peña-Ortega
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
14
|
Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain Res Bull 2020; 160:107-120. [DOI: 10.1016/j.brainresbull.2020.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
|
15
|
Prediction of Cognitive Decline in Temporal Lobe Epilepsy and Mild Cognitive Impairment by EEG, MRI, and Neuropsychology. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2020; 2020:8915961. [PMID: 32549888 PMCID: PMC7256687 DOI: 10.1155/2020/8915961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Cognitive decline is a severe concern of patients with mild cognitive impairment. Also, in patients with temporal lobe epilepsy, memory problems are a frequently encountered problem with potential progression. On the background of a unifying hypothesis for cognitive decline, we merged knowledge from dementia and epilepsy research in order to identify biomarkers with a high predictive value for cognitive decline across and beyond these groups that can be fed into intelligent systems. We prospectively assessed patients with temporal lobe epilepsy (N = 9), mild cognitive impairment (N = 19), and subjective cognitive complaints (N = 4) and healthy controls (N = 18). All had structural cerebral MRI, EEG at rest and during declarative verbal memory performance, and a neuropsychological assessment which was repeated after 18 months. Cognitive decline was defined as significant change on neuropsychological subscales. We extracted volumetric and shape features from MRI and brain network measures from EEG and fed these features alongside a baseline testing in neuropsychology into a machine learning framework with feature subset selection and 5-fold cross validation. Out of 50 patients, 27 had a decline over time in executive functions, 23 in visual-verbal memory, 23 in divided attention, and 7 patients had an increase in depression scores. The best sensitivity/specificity for decline was 72%/82% for executive functions based on a feature combination from MRI volumetry and EEG partial coherence during recall of memories; 95%/74% for visual-verbal memory by combination of MRI-wavelet features and neuropsychology; 84%/76% for divided attention by combination of MRI-wavelet features and neuropsychology; and 81%/90% for increase of depression by combination of EEG partial directed coherence factor at rest and neuropsychology. Combining information from EEG, MRI, and neuropsychology in order to predict neuropsychological changes in a heterogeneous population could create a more general model of cognitive performance decline.
Collapse
|
16
|
Brunetti V, D'Atri A, Della Marca G, Vollono C, Marra C, Vita MG, Scarpelli S, De Gennaro L, Rossini PM. Subclinical epileptiform activity during sleep in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2020; 131:1011-1018. [PMID: 32193162 DOI: 10.1016/j.clinph.2020.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
|
17
|
Valton L, Benaiteau M, Denuelle M, Rulquin F, Hachon Le Camus C, Hein C, Viguier A, Curot J. Etiological assessment of status epilepticus. Rev Neurol (Paris) 2020; 176:408-426. [PMID: 32331701 DOI: 10.1016/j.neurol.2019.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Status epilepticus (SE) is a potentially serious condition that can affect vital and functional prognosis and requires urgent treatment. Etiology is a determining factor in the patient's functional outcome and in almost half of all cases justifies specific treatment to stop progression. Therefore, identifying and addressing the cause of SE is a key priority in SE management. However, the etiology can be difficult to identify among acute and remote causes, which can also be multiple and interrelated. The most common etiologies are the discontinuation of antiepileptic medication in patients with a prior history of epilepsy, and acute brain aggression in cases of new onset SE (cerebrovascular pathologies are the most common). The list of remaining possible etiologies includes heterogeneous pathological contexts. Refractory SE and especially New-Onset Refractory Status Epilepticus (NORSE) lead to an extension of the etiological assessment in the search for encephalitis of autoimmune or infectious origin in adults and in children, as well as a genetic pathology in children in particular. This is an overview of current knowledge of SE etiologies and a pragmatic approach for carrying out an etiological assessment based on the following steps: - Which etiological orientation is identified according to the field and clinical presentation?; - Which etiologies to look for in an inaugural SE?; - Which first-line assessment should be carried out? The place of the biological, EEG and imaging assessment is discussed; - Which etiologies to look for in case of refractory SE?
Collapse
Affiliation(s)
- L Valton
- Explorations Neurophysiologiques, Département de Neurologie, Hôpital Pierre-Paul-Riquet, Purpan, CHU de Toulouse, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul-Sabatier Toulouse, Toulouse, France; CerCo, UMR 5549, Centre National de la Recherche Scientifique, Toulouse Mind and Brain Institute, Toulouse, France.
| | - M Benaiteau
- Unité Cognition, Épilepsie, Mouvements Anormaux, Département de Neurologie, Hôpital Pierre-Paul-Riquet, Purpan, CHU de Toulouse, Toulouse, France
| | - M Denuelle
- Explorations Neurophysiologiques, Département de Neurologie, Hôpital Pierre-Paul-Riquet, Purpan, CHU de Toulouse, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul-Sabatier Toulouse, Toulouse, France; CerCo, UMR 5549, Centre National de la Recherche Scientifique, Toulouse Mind and Brain Institute, Toulouse, France
| | - F Rulquin
- Post-Urgence Neurologique, Département de Neurologie, Hôpital Pierre-Paul-Riquet, Purpan, CHU de Toulouse, Toulouse, France
| | - C Hachon Le Camus
- Neuropédiatrie, Hôpital des Enfants, Purpan, CHU de Toulouse, Toulouse, France
| | - C Hein
- Neurogériatrie, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - A Viguier
- Soins Intensifs Neurovasculaires, Département de Neurologie, Hôpital Pierre-Paul-Riquet, Purpan, CHU de Toulouse, Toulouse, France
| | - J Curot
- Explorations Neurophysiologiques, Département de Neurologie, Hôpital Pierre-Paul-Riquet, Purpan, CHU de Toulouse, Toulouse, France; Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul-Sabatier Toulouse, Toulouse, France; CerCo, UMR 5549, Centre National de la Recherche Scientifique, Toulouse Mind and Brain Institute, Toulouse, France
| |
Collapse
|
18
|
Kanyo R, Leighton PLA, Neil GJ, Locskai LF, Allison WT. Amyloid-β precursor protein mutant zebrafish exhibit seizure susceptibility that depends on prion protein. Exp Neurol 2020; 328:113283. [PMID: 32165257 DOI: 10.1016/j.expneurol.2020.113283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022]
Abstract
It has been proposed that Amyloid β Precursor Protein (APP) might act as a rheostat controlling neuronal excitability, but mechanisms have remained untested. APP and its catabolite Aβ are known to impact upon synapse function and dysfunction via their interaction with the prion protein (PrPC), suggesting a candidate pathway. Here we test if PrPC is required for this APP function in vivo, perhaps via modulating mGluR5 ion channels. We engineered zebrafish to lack homologs of PrPC and APP, allowing us to assess their purported genetic and physiological interactions in CNS development. We generated four appa null alleles as well as prp1-/-;appa-/- double mutants (engineering of prp1 mutant alleles is described elsewhere). Unexpectedly, appa-/- and compound prp1-/-;appa-/- mutants are viable and lacked overt phenotypes (except being slightly smaller than wildtype fish at some developmental stages). Zebrafish prp1-/- mutants were substantially more sensitive to appa knockdown than wildtype fish, and both zebrafish prp1 and mammalian Prnp mRNA were significantly able to partially rescue this effect. Further, appa-/- mutants exhibited increased seizures upon exposure to low doses of convulsant. The mechanism of this seizure susceptibility requires prp1 insomuch that seizures were significantly dampened to wildtype levels in prp1-/-;appa-/- mutants. Inhibiting mGluR5 channels, which may be downstream of PrPC, increased seizure intensity only in prp1-/- mutants, and this seizure mechanism required intact appa. Taken together, these results support an intriguing genetic interaction between prp1 and appa with their shared roles impacting upon neuron hyperexcitability, thus complementing and extending past works detailing their biochemical interaction(s).
Collapse
Affiliation(s)
- Richard Kanyo
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Gavin J Neil
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Laszlo F Locskai
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
19
|
Dumurgier J, Tzourio C. Epidemiology of neurological diseases in older adults. Rev Neurol (Paris) 2020; 176:642-648. [PMID: 32145981 DOI: 10.1016/j.neurol.2020.01.356] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Neurological diseases refer to the diseases that target the nervous system (brain, spine or nerves). They are the second leading cause of death, and the first cause of severe long-term disability in the world. The prevalence of most neurological diseases increases sharply with age, and age also modulates the impact of risk factors, clinical presentation and the natural course of these diseases. Longitudinal population-based studies provide useful insights for a better understanding of the specificities of neurological diseases in older adults by assessment of a wide range of risk factors. Rapid population aging, especially in low-income countries, presents challenges in terms of health and social care. A multidisciplinary approach is necessary to find solutions to tackle the burden of neurological diseases in older adults.
Collapse
Affiliation(s)
- J Dumurgier
- Cognitive Neurology Center, Saint-Louis - Lariboisière - Fernand-Widal Hospital, AP-HP, université de Paris, Paris, France; Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, université de Paris, Paris, France.
| | - C Tzourio
- Bordeaux Population Health Research Center, UMR1219, université de Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Hofer C, Kwitt R, Höller Y, Trinka E, Uhl A. An empirical assessment of appearance descriptors applied to MRI for automated diagnosis of TLE and MCI. Comput Biol Med 2019; 117:103592. [PMID: 32072961 DOI: 10.1016/j.compbiomed.2019.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Differential diagnosis of mild cognitive impairment MCI and temporal lobe epilepsy TLE is a debated issue, specifically because these conditions may coincide in the elderly population. We evaluate automated differential diagnosis based on characteristics derived from structural brain MRI of different brain regions. METHODS In 22 healthy controls, 19 patients with MCI, and 17 patients with TLE we used scale invariant feature transform (SIFT), local binary patterns (LBP), and wavelet-based features and investigate their predictive performance for MCI and TLE. RESULTS The classification based on SIFT features resulted in an accuracy of 81% of MCI vs. TLE and reasonable generalizability. Local binary patterns yielded satisfactory diagnostic performance with up to 94.74% sensitivity and 88.24% specificity in the right Thalamus for the distinction of MCI vs. TLE, but with limited generalizable. Wavelet features yielded similar results as LPB with 94.74% sensitivity and 82.35% specificity but generalize better. SIGNIFICANCE Features beyond volume analysis are a valid approach when applied to specific regions of the brain. Most significant information could be extracted from the thalamus, frontal gyri, and temporal regions, among others. These results suggest that analysis of changes of the central nervous system should not be limited to the most typical regions of interest such as the hippocampus and parahippocampal areas. Region-independent approaches can add considerable information for diagnosis. We emphasize the need to characterize generalizability in future studies, as our results demonstrate that not doing so can lead to overestimation of classification results. LIMITATIONS The data used within this study allows for separation of MCI and TLE subjects using a simple age threshold. While we present a strong indication that the presented method is age-invariant and therefore agnostic to this situation, new data would be needed for a rigorous empirical assessment of this findings.
Collapse
Affiliation(s)
- Christoph Hofer
- Department of Computer Science, University of Salzburg, Austria.
| | - Roland Kwitt
- Department of Computer Science, University of Salzburg, Austria.
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.
| | - Eugen Trinka
- Spinal Cord Injury & Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria.
| | - Andreas Uhl
- Department of Computer Science, University of Salzburg, Austria.
| |
Collapse
|
21
|
Baker J, Libretto T, Henley W, Zeman A. A Longitudinal Study of Epileptic Seizures in Alzheimer's Disease. Front Neurol 2019; 10:1266. [PMID: 31866927 PMCID: PMC6904279 DOI: 10.3389/fneur.2019.01266] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalence of epileptic seizures is increased in patients in the clinical stages of Alzheimer's disease (AD) when compared to age-matched cognitively normal populations. In previously reported work from the Presentation of Epileptic Seizures in Dementia (PrESIDe) study, we identified a clinical suspicion of epilepsy in between 12.75 and 28.43% of patients with AD recruited from a memory clinic. EEGs were not performed in this study. Patients with epilepsy performed similarly to patients without epilepsy on cognitive testing at the time of recruitment but were more impaired on two measures of everyday functioning [Cambridge Behavioral Inventory—Revised and Clinical Dementia Rating (CBI-R and CDR)]. On repeated testing in this 12-month follow-up study, patients in whom a suspicion of epilepsy was identified performed significantly worse on cognitive function testing (p = 0.028) in addition to maintaining a difference on the informant questionnaires (CBI-R p < 0.001, CDR p = 0.020). These findings suggest that seizures in this population could be a marker of a more rapid decline and worse prognosis.
Collapse
Affiliation(s)
- John Baker
- Cognitive and Behavioral Neurology, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Tina Libretto
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - William Henley
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Adam Zeman
- Cognitive and Behavioral Neurology, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
22
|
Horvath A, Kiss M, Szucs A, Kamondi A. Precuneus-Dominant Degeneration of Parietal Lobe Is at Risk of Epilepsy in Mild Alzheimer's Disease. Front Neurol 2019; 10:878. [PMID: 31507508 PMCID: PMC6713905 DOI: 10.3389/fneur.2019.00878] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/29/2019] [Indexed: 02/02/2023] Open
Abstract
Introduction: Alzheimer's disease (AD) is the leading cause of cognitive decline. Epilepsy is a frequent comorbid condition of AD. While previous studies analyzed the risk factors of AD-related epileptic seizures, we still lack biomarkers of epilepsy in mild AD cases. Purpose: The aim of our study was to analyze the correlations between neuropsychology, cortical thickness, and brain volumetric measurements in mild Alzheimer patients with concomitant epileptic seizures. Materials and methods: We selected mild AD patients from our database to examine them with structural magnetic resonance imaging, 24 h electroencephalography, and detailed neuropsychology. We made the diagnosis of epilepsy based on epileptology data including neurophysiology. We retrospectively analyzed the neuropsychology pattern, clinical and epidemiologic features, cortical thickness, and volumetric values of mild AD patients with and without overt clinical seizures using covariance weighted general linear model. Results: We found epileptic seizures in 26% of mild AD patients. Patients with seizures performed worse in visuo-spatial scores than patients without (p = 0.003). Patients with seizures had smaller parietal thickness (p = 0.018), being associated to reduced thickness of left (p = 0.007), and right precunei (p = 0.005). The visuo-spatial performance positively and strongly correlated with the thickness of the parietal lobe (r = 0.67; p = 0.002) and with the volume of the precuneus (r = 0.612; p = 0.005). Conclusion: Epileptic seizures are common even in mild AD. We found that a prominent deficit in visuo-spatial skills is a red flag for epileptic seizures in the initial phase of AD, indicating the early involvement of parietal lobe in the neurodegenerative process. Because our findings suggest that the degeneration of precuneus is a sensitive marker of seizures associated to mild AD, clinicians need to pay special attention to the pattern of atrophy shown by structural MRI. Our results confirm previous data suggesting that epileptic seizures might be associated to a faster progressing type of AD with the early degeneration of posterior cortical areas.
Collapse
Affiliation(s)
- Andras Horvath
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary.,Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Mate Kiss
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Anna Szucs
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Anita Kamondi
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary.,Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Powell G, Ziso B, Larner AJ. The overlap between epilepsy and Alzheimer's disease and the consequences for treatment. Expert Rev Neurother 2019; 19:653-661. [PMID: 31238746 DOI: 10.1080/14737175.2019.1629289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Alzheimer's disease may be associated with both clinical and subclinical epileptic seizure activity. Once regarded as an epiphenomenon, epileptiform activity may, in fact, be an integral part of the Alzheimer's phenotype, and may be not only a symptomatic therapeutic target but also a possible mechanism to retard or prevent disease progression. Areas covered: The authors review clinical research articles with a focus on the semiology, epidemiology, and treatment of seizures in Alzheimer's disease, and also look at some experimental animal model studies which have informed clinical thinking on seizure aetiopathogenesis. The evidence base for treatment decisions is sparse. A brief overview of the clinical assessment of Alzheimer's disease patients considering relevant differential diagnoses and diagnostic pitfalls is presented. Expert opinion: Studies of epileptic seizures in Alzheimer's disease have become more frequent over the last 5-10 years. Understanding of seizure semiology, epidemiology, and possible pathogenesis has increased. However, the optimal management of seizures in this context remains unknown, largely due to the paucity of studies sufficient to examine this question. Clearly, such studies will be required, not only to inform clinicians about symptomatic control of seizures in Alzheimer's disease but also to investigate whether this might impact on disease progression.
Collapse
Affiliation(s)
- Graham Powell
- a Mersey Regional Epilepsy Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| | - Besa Ziso
- a Mersey Regional Epilepsy Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| | - A J Larner
- b Cognitive Function Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| |
Collapse
|
24
|
Hirokawa Y, Fujimoto A, Ichikawa N, Sato K, Tanaka T, Enoki H, Otsuki Y, Okanishi T. Temporal Lobe Cavernous Malformation Caused Epileptic Amnesic Episodes and Mild Cognitive Impairment. Front Neurol 2019; 10:620. [PMID: 31249550 PMCID: PMC6582224 DOI: 10.3389/fneur.2019.00620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Neuropathological features in Alzheimer's disease (AD) are amyloid β (Aβ) deposits and neurofibrillary changes. AD is characterized by memory impairment and cognitive dysfunction, with some reports associating these impairments with hyperexcitability caused by Aβ in the medial temporal lobe. Epileptic seizures are known to be common in AD. We encountered a 65-year-old patient with cavernous malformation (CM) in the right temporal lobe who exhibited epileptic amnesia (EA) and AD-like symptoms. Scalp electroencephalography (EEG), including long-term video-EEG, showed no interictal discharges, but intraoperative subdural electrode (SE) recording from the right parahippocampal area showed frequent epileptiform discharges. Neuropathologically, senile plaques were found in the surrounding normal cortex of the CM. Postoperatively, the patient has remained free of EA and AD-like symptoms since total removal of the CM. This is the first surgical case report to confirm temporal lobe hyperexcitability associated with EA and AD-like symptoms.
Collapse
Affiliation(s)
- Yusuke Hirokawa
- Department of Neurosurgery, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Ayataka Fujimoto
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Naoki Ichikawa
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Keishiro Sato
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Tokutaro Tanaka
- Department of Neurosurgery, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Hideo Enoki
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Tohru Okanishi
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| |
Collapse
|
25
|
Asadollahi M, Atazadeh M, Noroozian M. Seizure in Alzheimer's Disease: An Underestimated Phenomenon. Am J Alzheimers Dis Other Demen 2019; 34:81-88. [PMID: 30595042 PMCID: PMC10852457 DOI: 10.1177/1533317518813551] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is considered as a potential risk factor for the development of seizure due to neurodegeneration and imbalance between stimulatory and inhibitory circuits in the brain. Seizure could occur in any point during the course of AD, and its presentation varies from fluctuation in cognitive domains to more typical seizures. The clinical diagnosis of seizure in patients with dementia may be challenging due to difficulty in history taking and clinical assessment. No paraclinic methods other than electroencephalogram (EEG) could provide arguments for the diagnosis of AD-related seizures (neither imaging modalities nor cerebrospinal fluid biomarkers). Standard 30-minute EEG may not be sufficiently sensitive to detect epileptiform discharges. In the present study, we aim to review different aspects of seizure in AD, including seizure prevalence, risk factors, underlying mechanisms, electroencephalographic findings, clinical presentations, impact of seizures on AD, and treatment options.
Collapse
|
26
|
Cretin B. Pharmacotherapeutic strategies for treating epilepsy in patients with Alzheimer’s disease. Expert Opin Pharmacother 2018; 19:1201-1209. [DOI: 10.1080/14656566.2018.1496237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Benjamin Cretin
- Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Centre Mémoire, de Ressources et de Recherche d’Alsace (Strasbourg-Colmar), Strasbourg, France
- ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, team IMIS/Neurocrypto, Strasbourg, France
- Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Sarrouilhe D, Dejean C, Mesnil M. Connexin43- and Pannexin-Based Channels in Neuroinflammation and Cerebral Neuropathies. Front Mol Neurosci 2017; 10:320. [PMID: 29066951 PMCID: PMC5641369 DOI: 10.3389/fnmol.2017.00320] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Connexins (Cx) are largely represented in the central nervous system (CNS) with 11 Cx isoforms forming intercellular channels. Moreover, in the CNS, Cx43 can form hemichannels (HCs) at non-junctional membrane as does the related channel-forming Pannexin1 (Panx1) and Panx2. Opening of Panx1 channels and Cx43 HCs appears to be involved in inflammation and has been documented in various CNS pathologies. Over recent years, evidence has accumulated supporting a link between inflammation and cerebral neuropathies (migraine, Alzheimer’s disease (AD), Parkinson’s disease (PD), major depressive disorder, autism spectrum disorder (ASD), epilepsy, schizophrenia, bipolar disorder). Involvement of Panx channels and Cx43 HCs has been also proposed in pathophysiology of neurological diseases and psychiatric disorders. Other studies showed that following inflammatory injury of the CNS, Panx1 activators are released and prolonged opening of Panx1 channels triggers neuronal death. In neuropsychiatric diseases, comorbidities are frequently present and can aggravate the symptoms and make therapeutic management more complex. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving inflammatory pathways and Panx1 channels or Cx43 HCs. Thus, anti-inflammatory therapy opens perspectives of targets for new treatments and could have real potential in controlling a cerebral neuropathy and some of its comorbidities. The purpose of this mini review is to provide information of our knowledge on the link between Cx43- and Panx-based channels, inflammation and cerebral neuropathies.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Marc Mesnil
- STIM Laboratory, ERL 7368-CNRS, Université de Poitiers, Pôle Biologie Santé, Poitiers, France
| |
Collapse
|