1
|
Sanchez AMA, Roberts MJ, Temel Y, Janssen MLF. Invasive neurophysiological recordings in human basal ganglia. What have we learned about non-motor behaviour? Eur J Neurosci 2024; 60:6145-6159. [PMID: 39419545 DOI: 10.1111/ejn.16579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Research into the function of deep brain structures has benefited greatly from microelectrode recordings in animals. This has helped to unravel physiological processes in the healthy and malfunctioning brain. Translation to the human is necessary for improving basic understanding of subcortical structures and their implications in diseases. The use of microelectrode recordings as a standard component of deep brain stimulation surgery offers the most viable route for studying the electrophysiology of single cells and local neuronal populations in important deep structures of the human brain. Most of the studies in the basal ganglia have targeted the motor loop and movement disorder pathophysiology. In recent years, however, research has diversified to include limbic and cognitive processes. This review aims to provide an overview of advances in neuroscience made using intraoperative and post-operative recordings with a focus on non-motor activity in the basal ganglia.
Collapse
Affiliation(s)
- Ana Maria Alzate Sanchez
- Mental Health and Neuroscience Research Institute, Faculty of Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mark J Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Yasin Temel
- Mental Health and Neuroscience Research Institute, Faculty of Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Mental Health and Neuroscience Research Institute, Faculty of Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Neurophysiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
2
|
Holewijn RA, Wiggerts Y, Bot M, Verbaan D, de Bie RM, Schuurman R, van den Munckhof P. Surgical Complications in Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease: Experience in 800 Patients. Stereotact Funct Neurosurg 2024; 102:275-283. [PMID: 38934196 PMCID: PMC11457978 DOI: 10.1159/000539483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION We present our surgical complications resulting in neurological deficit or additional surgery during 25 years of DBS of the subthalamic nucleus (STN) for Parkinson's disease (PD). METHODS We conducted a retrospective chart review of all PD patients that received STN DBS in our DBS center between 1998 and 2023. Outcomes were complications resulting in neurological deficit or additional surgery. Potential risk factors (number of microelectrode recording tracks, age, anesthesia method, hypertension, and sex) for symptomatic intracerebral hemorrhage (ICH) were analyzed. Furthermore, lead fixation techniques were compared. RESULTS Eight hundred PD patients (507 men, 293 women) received unilateral (n = 11) or bilateral (n = 789) implantation of STN electrodes. Neurological deficit due to ICH, edema, delirium, or infarction was seen in 8.4% of the patients (7.4% transient, 1.0% permanent). Twenty-two patients (2.8%) had a symptomatic ICH following STN DBS, for which we did not find any risk factors, and five had permanent sequelae due to ICH (0.6%). Of all patients, 18.4% required additional surgery; the proportion was reduced from 27% in the first 300 cases to 13% in the last 500 cases (p < 0.001). The infection rate was 3.5%, which decreased from 5.3% in the first 300 cases to 2.2% in the last 500 cases. The use of a lead anchoring device led to significantly less lead migrations than miniplate fixation. CONCLUSION STN DBS leads to permanent neurological deficit in a small number of patients (1.0%), but a substantial proportion needs some additional surgical procedure after the first DBS system implantation. The risk of revision surgery was reduced over time but remained significant. These findings need to be discussed with the patient in the preoperative informed consent process in addition to the expected health benefit.
Collapse
Affiliation(s)
- Rozemarije A. Holewijn
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yarit Wiggerts
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Verbaan
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob M.A. de Bie
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Kähkölä J, Puhto T, Katisko J, Lahtinen M. Recommendations for the Prevention and Management of Deep Brain Stimulation Infections Based on 26-Year Single-Center Experience. Stereotact Funct Neurosurg 2024; 102:240-247. [PMID: 38934170 DOI: 10.1159/000539188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Infections related to deep brain stimulation (DBS) can lead to discontinuation of the treatment and increased morbidity. Various measures of reducing infection rates have been proposed in the literature, but scientific consensus is lacking. The aim of this study was to report a 26-year single center experience of DBS infections and provide recommendations for the prevention and management of them. METHODS The retrospective analysis consisted of 978 DBS surgeries performed at Oulu University Hospital (OUH) from 1997 to 2022. This included 342 primary or reimplantations of DBS electrodes and 559 primary or reimplantations of implantable pulse generator (IPG). Infections within approximately 1 year after the surgery without secondary cause were considered surgical-site infections (SSIs). χ2 test was used to compare infection rates before and after 2013, when the systematic implementation of infection prevention measures was started. RESULTS A total of 35 DBS implants were found to be infected. The number of SSIs was 30, of which 29 were originally operated in OUH leading to a center-specific infection rate of 3.1%. Of the SSIs, 17.2% occurred after IPG replacement. Staphylococcus aureus was found in 75.0% of cultures and 32.1% were mixed infections. The treatment of SSIs included aggressive surgical revision combined with cefuroxime and vancomycin antibiotics, as most patients in the initial conservative treatment group eventually required surgical revision. A statistically significant difference in infection rates before and after the implementation of preventative measures was not observed (risk ratio 2.20, 95% confidence interval 0.94-5.75, p = 0.051), despite over two-fold difference in the incidence of SSIs. CONCLUSION Our findings show that the rates of surgical infections are low in modern DBS, but due to their serious consequences, preventative measures should be implemented. We highlight that mixed infections should be accounted for in the antibiotic selection. Furthermore, our treatment recommendation includes aggressive surgical revision combined with antibiotic treatment.
Collapse
Affiliation(s)
- Johannes Kähkölä
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Teija Puhto
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Infectious Diseases, Oulu University Hospital, Oulu, Finland
| | - Jani Katisko
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Maija Lahtinen
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Neurocenter, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
Whitestone J, Salih A, Goswami T. Investigation of a Deep Brain Stimulator (DBS) System. Bioengineering (Basel) 2023; 10:1160. [PMID: 37892890 PMCID: PMC10604713 DOI: 10.3390/bioengineering10101160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
A deep brain stimulator (DBS) device is a surgically implanted system that delivers electrical impulses to specific targets in the brain to treat abnormal movement disorders. A DBS is like a cardiac pacemaker, but instead of sending electrical signals to the heart, it sends them to the brain instead. When DBS leads and extension wires are exposed in the biological environment, this can adversely affect impedance and battery life, resulting in poor clinical outcomes. A posthumously extracted DBS device was evaluated using visual inspection and optical microscopy as well as electrical and mechanical tests to quantify the damage leading to its impairment. The implantable pulse generator (IPG) leads, a component of the DBS, contained cracks, delamination, exfoliations, and breakage. Some aspects of in vivo damage were observed in localized areas discussed in this paper. The duration of the time in months that the DBS was in vivo was estimated based on multiple regression analyses of mechanical property testing from prior research of pacemaker extensions. The test results of three DBS extensions, when applied to the regressions, were used to estimate the in vivo duration in months. This estimation approach may provide insight into how long the leads can function effectively before experiencing mechanical failure. Measurements of the extension coils demonstrated distortion and stretching, demonstrating the changes that may occur in vivo. These changes can alter the impedance and potentially reduce the effectiveness of the clinical treatment provided by the DBS system. Ultimately, as both DBSs and pacemakers use the same insulation and lead materials, the focus of this paper is to develop a proof of concept demonstrating that the mechanical properties measured from pacemaker extensions and leads extracted posthumously of known duration, measured in months while in vivo, can be used to predict the duration of DBS leads of unknown lifespan. The goal is to explore the validity of the proposed model using multiple regression of mechanical properties.
Collapse
Affiliation(s)
- Jennifer Whitestone
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
| | - Anmar Salih
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
| | - Tarun Goswami
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
- Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Miami Valley Hospital, Dayton, OH 45409, USA
| |
Collapse
|
5
|
Evans AR, Grossen AA, Prather KY, Conner AK. Subsuperficial Pectoralis Fascial Placement of Implantable Pulse Generators in Deep Brain Stimulation Surgery: Technical Note. NEUROSURGERY PRACTICE 2023; 4:e00032. [PMID: 39958375 PMCID: PMC11809948 DOI: 10.1227/neuprac.0000000000000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND IMPORTANCE The second stage of deep brain stimulation requires the placement of an implantable pulse generator (IPG). Although the current placement technique achieves acceptable outcomes, device erosion has been reported. We describe a simple surgical option aimed at increasing device longevity by placing the hardware under the superficial pectoralis fascia. CLINICAL PRESENTATION We describe and illustrate the technique of placing the IPG in the subfascial space in a patient undergoing deep brain stimulation. In addition, we provide pearls and pitfalls to be mindful of when implementing this method. CONCLUSION In this technical report, we have outlined a simple alternative approach to the traditional subcutaneous IPG placement by placing the IPG under the superficial pectoralis fascia. This subfascial approach can potentially reduce complications and preserve device longevity.
Collapse
Affiliation(s)
- Alexander R. Evans
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Audrey A. Grossen
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kiana Y. Prather
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew K. Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Stapińska-Syniec A, Sobstyl M, Paskal W. Skin-related complications following deep brain stimulation surgery: A single-center retrospective analysis of 525 patients who underwent DBS surgery. Clin Neurol Neurosurg 2023; 225:107571. [PMID: 36608467 DOI: 10.1016/j.clineuro.2022.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although Deep Brain Stimulation (DBS) is a safe and proven treatment modality for patients suffering from debilitating movement and neuropsychiatric disorders, it is not free from complications. Management of skin erosion and infection following DBS surgery constitutes a challenge in everyday clinical practice. OBJECTIVES Skin-related complications were evaluated in patients who underwent DBS surgery due to Parkinson's disease (PD), dystonia, essential tremor (ET), and other indications including Tourette syndrome (TS), Obsessive-Compulsive Disorder (OCD), and epilepsy. METHODS A retrospective analysis of clinical data was performed on patients who underwent DBS surgery between November 2008 and September 2021 at the Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw. RESULTS 525 patients who underwent 927 DBS leads implantations were included in the analysis. There were 398 patients with PD, 80 with dystonia, 26 with ET, 7 with drug-resistant epilepsy, 5 with Multiple Sclerosis, 4 with Holme's or cerebellar tremor, 3 with TS, and 2 with OCD. 42 patients (8,0%) had 78 skin infection episodes. The overall level of skin erosion was 3,8% (20/525 patients). The risk of developing infection episode was connected with younger age at diagnosis (p = 0.017) and at surgery (p = 0.023), whereas the development of skin erosion was connected with the dystonia diagnosis (p = 0.012). Patients with dystonia showed the highest rate of infections and erosions (11/70 and 7/70 patients retrospectively). DISCUSSION Postoperative skin complications are a serious side effect of DBS surgery. CONCLUSION Our study suggests that dystonic patients are at higher risk of developing skin-related complications after DBS surgery.
Collapse
Affiliation(s)
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Wiktor Paskal
- Department of Methodology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Gelineau-Morel R, Kruer MC, Garris JF, Libdeh AA, Barbosa DAN, Coffman KA, Moon D, Barton C, Vera AZ, Bruce AB, Larsh T, Wu SW, Gilbert DL, O’Malley JA. Deep Brain Stimulation for Pediatric Dystonia: A Review of the Literature and Suggested Programming Algorithm. J Child Neurol 2022; 37:813-824. [PMID: 36053123 PMCID: PMC9912476 DOI: 10.1177/08830738221115248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.
Collapse
Affiliation(s)
- Rose Gelineau-Morel
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital & University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85016
| | - Jordan F Garris
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Amal Abu Libdeh
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Bldg, Stanford, CA, 94305
| | - Keith A Coffman
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - David Moon
- Department of Child Neurology, Division of Neurosciences, Helen DeVos Children’s Hospital, 100 Michigan St NE, Grand Rapids, MI 49503
| | - Christopher Barton
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky; Division of Child Neurology, Norton Children’s Medical Group, 231 E Chestnut St, Louisville, KY 40202
| | - Alonso Zea Vera
- Department of Neurology, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, 20010
| | - Adrienne B Bruce
- Division of Pediatric Neurology, Department of Pediatrics, Prisma Health, 200 Patewood Drive A350, Greenville, SC, USA 29615; University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, 29605
| | - Travis Larsh
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Steve W Wu
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Jennifer A O’Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, 750 Welch Road, Suite 317, Palo Alto, California, 94304
| |
Collapse
|
8
|
Weise LM, McCormick I, Restrepo C, Hill R, Greene R, Hong M, Potvin C, Flynn P, Morris S, Quick-Weller J. Motor evoked potentials versus Macrostimulation in predicting the postoperative motor threshold in STN Deep brain stimulation. Clin Neurol Neurosurg 2022; 219:107332. [PMID: 35738118 DOI: 10.1016/j.clineuro.2022.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Accuracy is crucial in Deep Brain Stimulation (DBS). Electrophysiological and image-based techniques are used to avoid suboptimal positioning. Macrostimulation is the gold standard to delineate the therapeutic window intraoperatively. Despite this, electrode revision rates due to malpositioning are as high as 17%. The goal was to compare motor evoked potentials (MEPs) with the gold standard of Macrostimulation. We assessed accuracy and precision as well as the correlation in predicting motor side effects at the initial mapping 4 weeks postoperatively. METHODS In this prospective study intraoperative MEPs from 94 contacts in 16 patients undergoing STN DBS under local anesthesia were correlated to the postoperative threshold for stimulation-induced motor side effects and compared to intraoperative Macrostimulation. Analysis of accuracy, precision and correlation (Pearson) was performed. RESULTS MEPs of the upper extremity had a mean percentage error of 25% (SD 38.8%) and correlated significantly with the motor threshold at postoperative mapping (R=0.235). Macrostimulation was less accurate and precise with a mean percentage error of - 68% (SD 78.8%) but had a higher correlation (R=0.388). MEPs rarely (3%) overestimated the threshold by maximally 1 mA. In contrast, Macrostimulation overestimated the threshold by over 1 mA in 69% leading to a false sense of security. CONCLUSION MEPs are feasible in an awake setting during Deep Brain Stimulation in the STN for PD patients. MEPs of the upper extremity are more accurate and precise predicting the motor threshold and avoid a false sense of security in comparison to the gold standard of Macrostimulation.
Collapse
Affiliation(s)
- Lutz Martin Weise
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada.
| | - Ian McCormick
- Dalhousie University, Department of Psychology and Neuroscience, Halifax, Canada
| | - Carlos Restrepo
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada
| | - Ron Hill
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada
| | - Ryan Greene
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada
| | - Murray Hong
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada
| | - Christine Potvin
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada
| | - Peggy Flynn
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada
| | - Susan Morris
- Dalhousie University, Department of Surgery, Division of Neurosurgery, Halifax, Canada
| | | |
Collapse
|