1
|
Tann JY, Xu F, Kimura M, Wilkes OR, Yoong LF, Skibbe H, Moore AW. Study of Dendrite Differentiation Using Drosophila Dendritic Arborization Neurons. Cold Spring Harb Protoc 2024; 2024:pdb.top108146. [PMID: 38148165 DOI: 10.1101/pdb.top108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neurons receive, process, and integrate inputs. These operations are organized by dendrite arbor morphology, and the dendritic arborization (da) neurons of the Drosophila peripheral sensory nervous system are an excellent experimental model for examining the differentiation processes that build and shape the dendrite arbor. Studies in da neurons are enabled by a wealth of fly genetic tools that allow targeted neuron manipulation and labeling of the neuron's cytoskeletal or organellar components. Moreover, as da neuron dendrite arbors cover the body wall, they are highly accessible for live imaging analysis of arbor patterning. Here, we outline the structure and function of different da neuron types and give examples of how they are used to elucidate central mechanisms of dendritic arbor formation.
Collapse
Affiliation(s)
- Jason Y Tann
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Fangke Xu
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Minami Kimura
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Oliver R Wilkes
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
- Department of Cellular and Molecular Biology, Institute for Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Li-Foong Yoong
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| |
Collapse
|
2
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. Genome Biol Evol 2024; 16:evae195. [PMID: 39235033 PMCID: PMC11421661 DOI: 10.1093/gbe/evae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Biological invasions carry substantial practical and scientific importance and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our dataset. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as the prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Samuel P DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
3
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547576. [PMID: 37461625 PMCID: PMC10349955 DOI: 10.1101/2023.07.03.547576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel P. DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Bhattacharjee S, Lottes EN, Nanda S, Golshir A, Patel AA, Ascoli GA, Cox DN. PP2A phosphatase regulates cell-type specific cytoskeletal organization to drive dendrite diversity. Front Mol Neurosci 2022; 15:926567. [PMID: 36452406 PMCID: PMC9702092 DOI: 10.3389/fnmol.2022.926567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Uncovering molecular mechanisms regulating dendritic diversification is essential to understanding the formation and modulation of functional neural circuitry. Transcription factors play critical roles in promoting dendritic diversity and here, we identify PP2A phosphatase function as a downstream effector of Cut-mediated transcriptional regulation of dendrite development. Mutant analyses of the PP2A catalytic subunit (mts) or the scaffolding subunit (PP2A-29B) reveal cell-type specific regulatory effects with the PP2A complex required to promote dendritic growth and branching in Drosophila Class IV (CIV) multidendritic (md) neurons, whereas in Class I (CI) md neurons, PP2A functions in restricting dendritic arborization. Cytoskeletal analyses reveal requirements for Mts in regulating microtubule stability/polarity and F-actin organization/dynamics. In CIV neurons, mts knockdown leads to reductions in dendritic localization of organelles including mitochondria and satellite Golgi outposts, while CI neurons show increased Golgi outpost trafficking along the dendritic arbor. Further, mts mutant neurons exhibit defects in neuronal polarity/compartmentalization. Finally, genetic interaction analyses suggest β-tubulin subunit 85D is a common PP2A target in CI and CIV neurons, while FoxO is a putative target in CI neurons.
Collapse
Affiliation(s)
| | - Erin N. Lottes
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Sumit Nanda
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - Andre Golshir
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
5
|
Kilo L, Stürner T, Tavosanis G, Ziegler AB. Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them. Cells 2021; 10:2777. [PMID: 34685757 PMCID: PMC8534399 DOI: 10.3390/cells10102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.
Collapse
Affiliation(s)
- Lukas Kilo
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
| | - Tomke Stürner
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Gaia Tavosanis
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
- LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Anna B. Ziegler
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
6
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
7
|
Nanda S, Bhattacharjee S, Cox DN, Ascoli GA. Distinct Relations of Microtubules and Actin Filaments with Dendritic Architecture. iScience 2020; 23:101865. [PMID: 33319182 PMCID: PMC7725934 DOI: 10.1016/j.isci.2020.101865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Microtubules (MTs) and F-actin (F-act) have long been recognized as key regulators of dendritic morphology. Nevertheless, precisely ascertaining their distinct influences on dendritic trees have been hampered until now by the lack of direct, arbor-wide cytoskeletal quantification. We pair live confocal imaging of fluorescently labeled dendritic arborization (da) neurons in Drosophila larvae with complete multi-signal neural tracing to separately measure MTs and F-act. We demonstrate that dendritic arbor length is highly interrelated with local MT quantity, whereas local F-act enrichment is associated with dendritic branching. Computational simulation of arbor structure solely constrained by experimentally observed subcellular distributions of these cytoskeletal components generated synthetic morphological and molecular patterns statistically equivalent to those of real da neurons, corroborating the efficacy of local MT and F-act in describing dendritic architecture. The analysis and modeling outcomes hold true for the simplest (class I), most complex (class IV), and genetically altered (Formin3 overexpression) da neuron types.
Collapse
Affiliation(s)
- Sumit Nanda
- Center for Neural Informatics, Structures, & Plasticity and Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity and Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA 22032, USA
| |
Collapse
|
8
|
Palavalli A, Tizón-Escamilla N, Rupprecht JF, Lecuit T. Deterministic and Stochastic Rules of Branching Govern Dendrite Morphogenesis of Sensory Neurons. Curr Biol 2020; 31:459-472.e4. [PMID: 33212017 DOI: 10.1016/j.cub.2020.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Dendrite morphology is necessary for the correct integration of inputs that neurons receive. The branching mechanisms allowing neurons to acquire their type-specific morphology remain unclear. Classically, axon and dendrite patterns were shown to be guided by molecules, providing deterministic cues. However, the extent to which deterministic and stochastic mechanisms, based upon purely statistical bias, contribute to the emergence of dendrite shape is largely unknown. We address this issue using the Drosophila class I vpda multi-dendritic neurons. Detailed quantitative analysis of vpda dendrite morphogenesis indicates that the primary branch grows very robustly in a fixed direction, though secondary branch numbers and lengths showed fluctuations characteristic of stochastic systems. Live-tracking dendrites and computational modeling revealed how neuron shape emerges from few local statistical parameters of branch dynamics. We report key opposing aspects of how tree architecture feedbacks on the local probability of branch shrinkage. Child branches promote stabilization of parent branches, although self-repulsion promotes shrinkage. Finally, we show that self-repulsion, mediated by the adhesion molecule Dscam1, indirectly patterns the growth of secondary branches by spatially restricting their direction of stable growth perpendicular to the primary branch. Thus, the stochastic nature of secondary branch dynamics and the existence of geometric feedback emphasize the importance of self-organization in neuronal dendrite morphogenesis.
Collapse
Affiliation(s)
- Amrutha Palavalli
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Nicolás Tizón-Escamilla
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France
| | - Jean-François Rupprecht
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France.
| | - Thomas Lecuit
- Aix Marseille Université and CNRS, IBDM - UMR7288 and Turing Centre for Living Systems Campus de Luminy Case 907, Marseille 13288, France; Collège de France, 11 Place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
9
|
Wang YH, Ding ZY, Cheng YJ, Chien CT, Huang ML. An Efficient Screen for Cell-Intrinsic Factors Identifies the Chaperonin CCT and Multiple Conserved Mechanisms as Mediating Dendrite Morphogenesis. Front Cell Neurosci 2020; 14:577315. [PMID: 33100975 PMCID: PMC7546278 DOI: 10.3389/fncel.2020.577315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Dendritic morphology is inextricably linked to neuronal function. Systematic large-scale screens combined with genetic mapping have uncovered several mechanisms underlying dendrite morphogenesis. However, a comprehensive overview of participating molecular mechanisms is still lacking. Here, we conducted an efficient clonal screen using a collection of mapped P-element insertions that were previously shown to cause lethality and eye defects in Drosophila melanogaster. Of 280 mutants, 52 exhibited dendritic defects. Further database analyses, complementation tests, and RNA interference validations verified 40 P-element insertion genes as being responsible for the dendritic defects. Twenty-eight mutants presented severe arbor reduction, and the remainder displayed other abnormalities. The intrinsic regulators encoded by the identified genes participate in multiple conserved mechanisms and pathways, including the protein folding machinery and the chaperonin-containing TCP-1 (CCT) complex that facilitates tubulin folding. Mutant neurons in which expression of CCT4 or CCT5 was depleted exhibited severely retarded dendrite growth. We show that CCT localizes in dendrites and is required for dendritic microtubule organization and tubulin stability, suggesting that CCT-mediated tubulin folding occurs locally within dendrites. Our study also reveals novel mechanisms underlying dendrite morphogenesis. For example, we show that Drosophila Nogo signaling is required for dendrite development and that Mummy and Wech also regulate dendrite morphogenesis, potentially via Dpp- and integrin-independent pathways. Our methodology represents an efficient strategy for identifying intrinsic dendrite regulators, and provides insights into the plethora of molecular mechanisms underlying dendrite morphogenesis.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Zhao-Ying Ding
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Min-Lang Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
10
|
Valenzuela A, Meservey L, Nguyen H, Fu MM. Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes. Trends Cell Biol 2020; 30:792-804. [PMID: 32863092 DOI: 10.1016/j.tcb.2020.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Classically, animal cells nucleate or form new microtubules off the perinuclear centrosome. In recent years, the Golgi outpost has emerged as a satellite organelle that can function as an acentrosomal microtubule-organizing center (MTOC), nucleating new microtubules at distances far from the nucleus or cell body. Golgi outposts can nucleate new microtubules in specialized cells with unique cytoarchitectures, including Drosophila neurons, mouse muscle cells, and rodent oligodendrocytes. This review compares and contrasts topics of functional relevance, including Golgi outpost heterogeneity, formation and transport, as well as regulation of microtubule polarity and branching. Golgi outposts have also been implicated in the pathology of diseases including muscular dystrophy, and neurodegenerative diseases, such as Parkinson's disease (PD). Since Golgi outposts are relatively understudied, many outstanding questions regarding their function and roles in disease remain.
Collapse
Affiliation(s)
- Alex Valenzuela
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsey Meservey
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Huy Nguyen
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
11
|
ZHAO W, ZOU W. [Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:90-99. [PMID: 32621417 PMCID: PMC8800678 DOI: 10.3785/j.issn.1008-9292.2020.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 06/11/2023]
Abstract
Neurons are the structural and functional unit of the nervous system. Precisely regulated dendrite morphogenesis is the basis of neural circuit assembly. Numerous studies have been conducted to explore the regulatory mechanisms of dendritic morphogenesis. According to their action regions, we divide them into two categories: the intrinsic and extrinsic regulators of neuronal dendritic morphogenesis. Intrinsic factors are cell type-specific transcription factors, actin polymerization or depolymerization regulators and regulators of the secretion or endocytic pathways. These intrinsic factors are produced by neuron itself and play an important role in regulating the development of dendrites. The extrinsic regulators are either secreted proteins or transmembrane domain containing cell adhesion molecules. They often form receptor-ligand pairs to mediate attractive or repulsive dendritic guidance. In this review, we summarize recent findings on the intrinsic and external molecular mechanisms of dendrite morphogenesis from multiple model organisms, including Caenorhabditis elegans, Drosophila and mice. These studies will provide a better understanding on how defective dendrite development and maintenance are associated with neurological diseases.
Collapse
|
12
|
let-7-Complex MicroRNAs Regulate Broad-Z3, Which Together with Chinmo Maintains Adult Lineage Neurons in an Immature State. G3-GENES GENOMES GENETICS 2020; 10:1393-1401. [PMID: 32071070 PMCID: PMC7144073 DOI: 10.1534/g3.120.401042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During Drosophila melanogaster metamorphosis, arrested immature neurons born during larval development differentiate into their functional adult form. This differentiation coincides with the downregulation of two zinc-finger transcription factors, Chronologically Inappropriate Morphogenesis (Chinmo) and the Z3 isoform of Broad (Br-Z3). Here, we show that br-Z3 is regulated by two microRNAs, let-7 and miR-125, that are activated at the larval-to-pupal transition and are known to also regulate chinmo. The br-Z3 3′UTR contains functional binding sites for both let-7 and miR-125 that confers sensitivity to both of these microRNAs, as determined by deletion analysis in reporter assays. Forced expression of let-7 and miR-125 miRNAs leads to early silencing of Br-Z3 and Chinmo and is associated with inappropriate neuronal sprouting and outgrowth. Similar phenotypes were observed by the combined but not separate depletion of br-Z3 and chinmo. Because persistent Br-Z3 was not detected in let-7-C mutants, this work suggests a model in which let-7 and miR-125 activation at the onset of metamorphosis may act as a failsafe mechanism that ensures the coordinated silencing of both br-Z3 and chinmo needed for the timely outgrowth of neurons arrested during larval development. The let-7 and miR-125 binding site sequences are conserved across Drosophila species and possibly other insects as well, suggesting that this functional relationship is evolutionarily conserved.
Collapse
|
13
|
Yang WK, Chien CT. Beyond being innervated: the epidermis actively shapes sensory dendritic patterning. Open Biol 2020; 9:180257. [PMID: 30914004 PMCID: PMC6451362 DOI: 10.1098/rsob.180257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sensing environmental cues requires well-built neuronal circuits linked to the body surface. Sensory neurons generate dendrites to innervate surface epithelium, thereby making it the largest sensory organ in the body. Previous studies have illustrated that neuronal type, physiological function and branching patterns are determined by intrinsic factors. Perhaps for effective sensation or protection, sensory dendrites bind to or are surrounded by the substrate epidermis. Recent studies have shed light on the mechanisms by which dendrites interact with their substrates. These interactions suggest that substrates can regulate dendrite guidance, arborization and degeneration. In this review, we focus on recent studies of Drosophila and Caenorhabditis elegans that demonstrate how epidermal cells can regulate dendrites in several aspects.
Collapse
Affiliation(s)
- Wei-Kang Yang
- Institute of Molecular Biology, Academia Sinica , Taipei 115 , Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
14
|
Hu C, Kanellopoulos AK, Richter M, Petersen M, Konietzny A, Tenedini FM, Hoyer N, Cheng L, Poon CLC, Harvey KF, Windhorst S, Parrish JZ, Mikhaylova M, Bagni C, Calderon de Anda F, Soba P. Conserved Tao Kinase Activity Regulates Dendritic Arborization, Cytoskeletal Dynamics, and Sensory Function in Drosophila. J Neurosci 2020; 40:1819-1833. [PMID: 31964717 PMCID: PMC7046460 DOI: 10.1523/jneurosci.1846-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.
Collapse
Affiliation(s)
- Chun Hu
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Melanie Richter
- Neuronal Development Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anja Konietzny
- Neuronal Protein Transport Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Federico M Tenedini
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nina Hoyer
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lin Cheng
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Carole L C Poon
- Peter MacCallum Cancer Centre, Melbourne, 3000 Victoria, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, 3000 Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Sabine Windhorst
- Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, 98195 Washington, and
| | - Marina Mikhaylova
- Neuronal Protein Transport Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Froylan Calderon de Anda
- Neuronal Development Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany,
| |
Collapse
|
15
|
Marchetti G, Tavosanis G. Modulators of hormonal response regulate temporal fate specification in the Drosophila brain. PLoS Genet 2019; 15:e1008491. [PMID: 31809495 PMCID: PMC6919624 DOI: 10.1371/journal.pgen.1008491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/18/2019] [Accepted: 10/24/2019] [Indexed: 12/03/2022] Open
Abstract
Neuronal diversity is at the core of the complex processing operated by the nervous system supporting fundamental functions such as sensory perception, motor control or memory formation. A small number of progenitors guarantee the production of this neuronal diversity, with each progenitor giving origin to different neuronal types over time. How a progenitor sequentially produces neurons of different fates and the impact of extrinsic signals conveying information about developmental progress or environmental conditions on this process represent key, but elusive questions. Each of the four progenitors of the Drosophila mushroom body (MB) sequentially gives rise to the MB neuron subtypes. The temporal fate determination pattern of MB neurons can be influenced by extrinsic cues, conveyed by the steroid hormone ecdysone. Here, we show that the activation of Transforming Growth Factor-β (TGF-β) signalling via glial-derived Myoglianin regulates the fate transition between the early-born α’β’ and the pioneer αβ MB neurons by promoting the expression of the ecdysone receptor B1 isoform (EcR-B1). While TGF-β signalling is required in MB neuronal progenitors to promote the expression of EcR-B1, ecdysone signalling acts postmitotically to consolidate theα’β’ MB fate. Indeed, we propose that if these signalling cascades are impaired α’β’ neurons lose their fate and convert to pioneer αβ. Conversely, an intrinsic signal conducted by the zinc finger transcription factor Krüppel-homolog 1 (Kr-h1) antagonises TGF-β signalling and acts as negative regulator of the response mediated by ecdysone in promoting α’β’ MB neuron fate consolidation. Taken together, the consolidation of α’β’ MB neuron fate requires the response of progenitors to local signalling to enable postmitotic neurons to sense a systemic signal. Throughout the development of the central nervous system (CNS), a vast number of neuronal types are produced with striking precision. The unique identity of each neuronal cell type and the great cellular complexity in the CNS are established by intricate gene regulatory networks. Disruption of these identity programs leads to neurodevelopmental disorders and defects in cognition. Here, we report an important regulatory mechanism involved in consolidating neuronal fate. We show that during brain development local signalling, derived from interactions between glial cells and neuronal progenitors, is required to promote the expression of a hormone receptor in immature neurons. The perception of a systemic hormonal cue in those postmitotic neurons is fundamental for the consolidation of their neuronal fate. In this context, we additionally uncover an intrinsic regulatory mechanism that coordinates the hormone response to maintain the final neuronal fate.
Collapse
Affiliation(s)
- Giovanni Marchetti
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Germany
- * E-mail: (GM); (GT)
| | - Gaia Tavosanis
- Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Germany
- LIMES-Institute, University of Bonn, Germany
- * E-mail: (GM); (GT)
| |
Collapse
|
16
|
The microRNA-306/abrupt regulatory axis controls wing and haltere growth in Drosophila. Mech Dev 2019; 158:103555. [PMID: 31112748 DOI: 10.1016/j.mod.2019.103555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Growth control relies on extrinsic and intrinsic mechanisms that regulate and coordinate the size and pattern of organisms. This control is crucial for a homeostatic development and healthy physiology. The gene networks acting in this process are large and complex: factors involved in growth control are also important in diverse biological processes and these networks include multiple regulators that interact and respond to intra- and extra-cellular inputs that may ultimately converge in the control of the cell cycle. In this work we have studied the function of the Drosophila abrupt gene, coding for a BTB-ZF protein and previously reported to be required for wing vein pattern, in the control of haltere and wing growth. We have found that inactivation of abrupt reduces the size of the wing and haltere. We also found that the microRNA miR-306 controls abrupt expression and that miR-306 and abrupt genetically interact to control wing size. Moreover, the reduced appendage size due to abrupt inactivation is rescued by overexpression of Cyclin-E and by inactivation of dacapo. These findings define a miR-306-abrupt regulatory axis that controls wing and haltere size, whereby miR-306 maintains appropriate levels of abrupt expression which, in turn, regulates the cell cycle. Thus, our results uncover a novel function of abrupt in the regulation of the size of Drosophila appendages during development and contribute to the understanding of the coordination between growth and pattern as well as to the understanding of abrupt oncogenic function in flies.
Collapse
|
17
|
A Computational Model of the Escape Response Latency in the Giant Fiber System of Drosophila melanogaster. eNeuro 2019; 6:eN-NWR-0423-18. [PMID: 31001574 PMCID: PMC6469880 DOI: 10.1523/eneuro.0423-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/22/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Abstract
The giant fiber system (GFS) is a multi-component neuronal pathway mediating rapid escape response in the adult fruit-fly Drosophila melanogaster, usually in the face of a threatening visual stimulus. Two branches of the circuit promote the response by stimulating an escape jump followed by flight initiation. A recent work demonstrated an age-associated decline in the speed of signal propagation through the circuit, measured as the stimulus-to-muscle depolarization response latency. The decline is likely due to the diminishing number of inter-neuronal gap junctions in the GFS of ageing flies. In this work, we presented a realistic conductance-based, computational model of the GFS that recapitulates the experimental results and identifies some of the critical anatomical and physiological components governing the circuit’s response latency. According to our model, anatomical properties of the GFS neurons have a stronger impact on the transmission than neuronal membrane conductance densities. The model provides testable predictions for the effect of experimental interventions on the circuit’s performance in young and ageing flies.
Collapse
|
18
|
Abstract
Neurons are polarized cells with long branched axons and dendrites. Microtubule generation and organization machineries are crucial to grow and pattern these complex cellular extensions. Microtubule organizing centers (MTOCs) concentrate the molecular machinery for templating microtubules, stabilizing the nascent polymer, and organizing the resultant microtubules into higher-order structures. MTOC formation and function are well described at the centrosome, in the spindle, and at interphase Golgi; we review these studies and then describe recent results about how the machineries acting at these classic MTOCs are repurposed in the postmitotic neuron for axon and dendrite differentiation. We further discuss a constant tug-of-war interplay between different MTOC activities in the cell and how this process can be used as a substrate for transcription factor-mediated diversification of neuron types.
Collapse
Affiliation(s)
- Jason Y Tann
- Laboratory for Neurodiversity, RIKEN Centre for Brain Science, Saitama, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Centre for Brain Science, Saitama, Japan.
| |
Collapse
|
19
|
Peng YR, Tran NM, Krishnaswamy A, Kostadinov D, Martersteck EM, Sanes JR. Satb1 Regulates Contactin 5 to Pattern Dendrites of a Mammalian Retinal Ganglion Cell. Neuron 2017; 95:869-883.e6. [PMID: 28781169 DOI: 10.1016/j.neuron.2017.07.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
The size and shape of dendritic arbors are prime determinants of neuronal connectivity and function. We asked how ON-OFF direction-selective ganglion cells (ooDSGCs) in mouse retina acquire their bistratified dendrites, in which responses to light onset and light offset are segregated to distinct strata. We found that the transcriptional regulator Satb1 is selectively expressed by ooDSGCs. In Satb1 mutant mice, ooDSGC dendrites lack ON arbors, and the cells selectively lose ON responses. Satb1 regulates expression of a homophilic adhesion molecule, Contactin 5 (Cntn5). Both Cntn5 and its co-receptor Caspr4 are expressed not only by ooDSGCs, but also by interneurons that form a scaffold on which ooDSGC ON dendrites fasciculate. Removing Cntn5 from either ooDSGCs or interneurons partially phenocopies Satb1 mutants, demonstrating that Satb1-dependent Cntn5 expression in ooDSGCs leads to branch-specific homophilic interactions with interneurons. Thus, Satb1 directs formation of a morphologically and functionally specialized compartment within a complex dendritic arbor.
Collapse
Affiliation(s)
- Yi-Rong Peng
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Arjun Krishnaswamy
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Dimitar Kostadinov
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Emily M Martersteck
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Transcriptional and Epigenetic Regulation in Injury-Mediated Neuronal Dendritic Plasticity. Neurosci Bull 2016; 33:85-94. [PMID: 27730386 DOI: 10.1007/s12264-016-0071-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/27/2016] [Indexed: 12/26/2022] Open
Abstract
Injury to the nervous system induces localized damage in neural structures and neuronal death through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate dendritic fields necessary for interneuronal communication. Excitotoxicity and other secondary biochemical events contribute to morphological changes in neurons following injury. Evidence suggests that various transcription factors are involved in the dendritic response to injury and potential therapies. Transcription factors play critical roles in the intracellular regulation of neuronal morphological plasticity and dendritic growth and patterning. Mounting evidence supports a crucial role for epigenetic modifications via histone deacetylases, histone acetyltransferases, and DNA methyltransferases that modify gene expression in neuronal injury and repair processes. Gene regulation through epigenetic modification is of great interest in neurotrauma research, and an early picture is beginning to emerge concerning how injury triggers intracellular events that modulate such responses. This review provides an overview of injury-mediated influences on transcriptional regulation through epigenetic modification, the intracellular processes involved in the morphological consequences of such changes, and potential approaches to the therapeutic manipulation of neuronal epigenetics for regulating gene expression to facilitate growth and signaling through dendritic arborization following injury.
Collapse
|
21
|
Corty MM, Tam J, Grueber WB. Dendritic diversification through transcription factor-mediated suppression of alternative morphologies. Development 2016; 143:1351-62. [PMID: 27095495 DOI: 10.1242/dev.130906] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/25/2016] [Indexed: 01/23/2023]
Abstract
Neurons display a striking degree of functional and morphological diversity, and the developmental mechanisms that underlie diversification are of significant interest for understanding neural circuit assembly and function. We find that the morphology of Drosophila sensory neurons is diversified through a series of suppressive transcriptional interactions involving the POU domain transcription factors Pdm1 (Nubbin) and Pdm2, the homeodomain transcription factor Cut, and the transcriptional regulators Scalloped and Vestigial. Pdm1 and Pdm2 are expressed in a subset of proprioceptive sensory neurons and function to inhibit dendrite growth and branching. A subset of touch receptors show a capacity to express Pdm1/2, but Cut represses this expression and promotes more complex dendritic arbors. Levels of Cut expression are diversified in distinct sensory neurons by selective expression of Scalloped and Vestigial. Different levels of Cut impact dendritic complexity and, consistent with this, we show that Scalloped and Vestigial suppress terminal dendritic branching. This transcriptional hierarchy therefore acts to suppress alternative morphologies to diversify three distinct types of somatosensory neurons.
Collapse
Affiliation(s)
- Megan M Corty
- Department of Neuroscience, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA
| | - Justina Tam
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA
| | - Wesley B Grueber
- Department of Neuroscience, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA
| |
Collapse
|
22
|
Sears JC, Broihier HT. FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons. Dev Biol 2016; 418:40-54. [PMID: 27546375 DOI: 10.1016/j.ydbio.2016.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/15/2023]
Abstract
The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity.
Collapse
Affiliation(s)
- James C Sears
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Li X, Wang Y, Wang H, Liu T, Guo J, Yi W, Li Y. Epithelia-derived wingless regulates dendrite directional growth of drosophila ddaE neuron through the Fz-Fmi-Dsh-Rac1 pathway. Mol Brain 2016; 9:46. [PMID: 27129721 PMCID: PMC4850637 DOI: 10.1186/s13041-016-0228-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
Background Proper dendrite patterning is critical for the receiving and processing of information in the nervous system. Cell-autonomous molecules have been extensively studied in dendrite morphogenesis; however, the regulatory mechanisms of environmental factors in dendrite growth remain to be elucidated. Results By evaluating the angle between two primary dendrites (PD-Angle), we found that the directional growth of the primary dendrites of a Drosophila periphery sensory neuron ddaE is regulated by the morphogen molecule Wingless (Wg). During the early stage of dendrite growth, Wg is expressed in a group of epithelial cells posteriorly adjacent to ddaE. When Wg expression is reduced or shifted anteriorly, the PD-Angle is markedly decreased. Furthermore, Wg receptor Frizzled functions together with Flamingo and Dishevelled in transducing the Wg signal into ddaE neuron, and the downstream signal is mediated by non-canonical Wnt pathway through Rac1. Conclusions In conclusion, we reveal that epithelia-derived Wg plays a repulsive role in regulating the directional growth of dendrites through the non-canonical Wnt pathway. Thus, our findings provide strong in vivo evidence on how environmental signals serve as spatial cues for dendrite patterning. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0228-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoting Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongtong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Yi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
24
|
Abstract
Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies.
Collapse
Affiliation(s)
- Caroline Delandre
- a Laboratory for Genetic Control of Neuronal Architecture, RIKEN Brain Science Institute , Wako , Saitama , Japan
| | - Reiko Amikura
- a Laboratory for Genetic Control of Neuronal Architecture, RIKEN Brain Science Institute , Wako , Saitama , Japan
| | - Adrian W Moore
- a Laboratory for Genetic Control of Neuronal Architecture, RIKEN Brain Science Institute , Wako , Saitama , Japan
| |
Collapse
|
25
|
Abstract
UNLABELLED Neurons typically assume multipolar, bipolar, or unipolar morphologies. Little is known about the mechanisms underlying the development of these basic morphological types. Here, we show that the Krüppel-like transcription factor Dar1 determines the multipolar morphology of postmitotic neurons in Drosophila. Dar1 is specifically expressed in multipolar neurons and loss of dar1 gradually converts multipolar neurons into the bipolar or unipolar morphology without changing neuronal identity. Conversely, misexpression of Dar1 or its mammalian homolog in unipolar and bipolar neurons causes them to assume multipolar morphologies. Dar1 regulates the expression of several dynein genes and nuclear distribution protein C (nudC), which is an essential component of a specialized dynein complex that positions the nucleus in a cell. We further show that these genes are required for Dar1-induced multipolar neuron morphology. Dar1 likely functions as a terminal selector gene for the basic layout of neuron morphology by regulating both dendrite extension and the dendrite-nucleus coupling. SIGNIFICANCE STATEMENT The three basic morphological types of neurons--unipolar, bipolar, and multipolar--are important for information processing and wiring of neural circuits. Little progress has been made toward understanding the molecular and cellular programs that generate these types since their discovery over a century ago. It is generally assumed that basic morphological types of neurons are determined by the number of dendrites growing out from the cell body. Here, we show that this model alone is insufficient. We introduce the positioning of nucleus as a critical factor in this process and report that the transcription factor Dar1 determines multipolar neuron morphology in postmitotic neurons by regulating genes involved in nuclear positioning.
Collapse
|
26
|
Abstract
The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;
Collapse
Affiliation(s)
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | - Jeremy N Kay
- Departments of Neurobiology and Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
27
|
Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat Neurosci 2015; 18:1437-45. [PMID: 26322925 DOI: 10.1038/nn.4099] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
Neuronal dendrite branching is fundamental for building nervous systems. Branch formation is genetically encoded by transcriptional programs to create dendrite arbor morphological diversity for complex neuronal functions. In Drosophila sensory neurons, the transcription factor Abrupt represses branching via an unknown effector pathway. Targeted screening for branching-control effectors identified Centrosomin, the primary centrosome-associated protein for mitotic spindle maturation. Centrosomin repressed dendrite branch formation and was used by Abrupt to simplify arbor branching. Live imaging revealed that Centrosomin localized to the Golgi cis face and that it recruited microtubule nucleation to Golgi outposts for net retrograde microtubule polymerization away from nascent dendrite branches. Removal of Centrosomin enabled the engagement of wee Augmin activity to promote anterograde microtubule growth into the nascent branches, leading to increased branching. The findings reveal that polarized targeting of Centrosomin to Golgi outposts during elaboration of the dendrite arbor creates a local system for guiding microtubule polymerization.
Collapse
|
28
|
Santiago C, Bashaw GJ. Transcription factors and effectors that regulate neuronal morphology. Development 2015; 141:4667-80. [PMID: 25468936 DOI: 10.1242/dev.110817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcription factors establish the tremendous diversity of cell types in the nervous system by regulating the expression of genes that give a cell its morphological and functional properties. Although many studies have identified requirements for specific transcription factors during the different steps of neural circuit assembly, few have identified the downstream effectors by which they control neuronal morphology. In this Review, we highlight recent work that has elucidated the functional relationships between transcription factors and the downstream effectors through which they regulate neural connectivity in multiple model systems, with a focus on axon guidance and dendrite morphogenesis.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Abstract
The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors.
Collapse
|
30
|
Bagley JA, Yan Z, Zhang W, Wildonger J, Jan LY, Jan YN. Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function. Genes Dev 2014; 28:1940-56. [PMID: 25184680 PMCID: PMC4197945 DOI: 10.1101/gad.239962.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the "histone code," in regulating dendrite morphology.
Collapse
Affiliation(s)
- Joshua A Bagley
- Neuroscience Graduate Program, University of California at San Francisco, San Francisco, California 94158, USA; Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco at San Francisco, California 94158, USA
| | - Zhiqiang Yan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco at San Francisco, California 94158, USA
| | - Wei Zhang
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco at San Francisco, California 94158, USA
| | - Jill Wildonger
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco at San Francisco, California 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco at San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco at San Francisco, California 94158, USA
| |
Collapse
|
31
|
Copf T. Developmental shaping of dendritic arbors in Drosophila relies on tightly regulated intra-neuronal activity of protein kinase A (PKA). Dev Biol 2014; 393:282-297. [PMID: 25017992 DOI: 10.1016/j.ydbio.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/24/2022]
Abstract
Dendrites develop morphologies characterized by multiple levels of complexity that involve neuron type specific dendritic length and particular spatial distribution. How this is developmentally regulated and in particular which signaling molecules are crucial in the process is still not understood. Using Drosophila class IV dendritic arborization (da) neurons we test in vivo the effects of cell-autonomous dose-dependent changes in the activity levels of the cAMP-dependent Protein Kinase A (PKA) on the formation of complex dendritic arbors. We find that genetic manipulations of the PKA activity levels affect profoundly the arbor complexity with strongest impact on distal branches. Both decreasing and increasing PKA activity result in a reduced complexity of the arbors, as reflected in decreased dendritic length and number of branching points, suggesting an inverted U-shape response to PKA. The phenotypes are accompanied by changes in organelle distribution: Golgi outposts and early endosomes in distal dendritic branches are reduced in PKA mutants. By using Rab5 dominant negative we find that PKA interacts genetically with the early endosomal pathway. We test if the possible relationship between PKA and organelles may be the result of phosphorylation of the microtubule motor dynein components or Rab5. We find that Drosophila cytoplasmic dynein components are direct PKA phosphorylation targets in vitro, but not in vivo, thus pointing to a different putative in vivo target. Our data argue that tightly controlled dose-dependent intra-neuronal PKA activity levels are critical in determining the dendritic arbor complexity, one of the possible ways being through the regulation of organelle distribution.
Collapse
Affiliation(s)
- Tijana Copf
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, NY 10032, USA; Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, P.O Box 1385, GR-70013 Heraklion, Crete, Greece.
| |
Collapse
|
32
|
Singhania A, Grueber WB. Development of the embryonic and larval peripheral nervous system of Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:193-210. [PMID: 24896657 DOI: 10.1002/wdev.135] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 01/01/2023]
Abstract
The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. Many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development.
Collapse
Affiliation(s)
- Aditi Singhania
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
33
|
Ferreira T, Ou Y, Li S, Giniger E, van Meyel DJ. Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire. Development 2014; 141:650-60. [PMID: 24449841 DOI: 10.1242/dev.099655] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Collapse
Affiliation(s)
- Tiago Ferreira
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
34
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
Hattori Y, Usui T, Satoh D, Moriyama S, Shimono K, Itoh T, Shirahige K, Uemura T. Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of Abrupt and Knot/Collier. Dev Cell 2013; 27:530-44. [PMID: 24290980 DOI: 10.1016/j.devcel.2013.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 08/08/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022]
Abstract
The transcription factors Abrupt (Ab) and Knot (Kn) act as selectors of distinct dendritic arbor morphologies in two classes of Drosophila sensory neurons, termed class I and class IV, respectively. We performed binding-site mapping and transcriptional profiling of these isolated neurons. Their profiles were similarly enriched in cell-type-specific enhancers of genes implicated in neural development. We identified a total of 429 target genes, of which 56 were common to Ab and Kn; these targets included genes necessary to shape dendritic arbors in either or both of the two sensory subtypes. Furthermore, a common target gene, encoding the cell adhesion molecule Ten-m, was expressed more strongly in class I than class IV, and this differential was critical to the class-selective directional control of dendritic branch sprouting or extension. Our analyses illustrate how differentiating neurons employ distinct and shared repertoires of gene expression to produce class-selective morphological traits.
Collapse
Affiliation(s)
- Yukako Hattori
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Daisuke Satoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Sanefumi Moriyama
- Kobayashi-Maskawa Institute, Nagoya University, Aichi 464-8602, Japan; Graduate School of Mathematics, Nagoya University, Aichi 464-8602, Japan
| | - Kohei Shimono
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Takehiko Itoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
36
|
Matsui A, Tran M, Yoshida AC, Kikuchi SS, U M, Ogawa M, Shimogori T. BTBD3 Controls Dendrite Orientation Toward Active Axons in Mammalian Neocortex. Science 2013; 342:1114-8. [DOI: 10.1126/science.1244505] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Iyer EPR, Iyer SC, Sullivan L, Wang D, Meduri R, Graybeal LL, Cox DN. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning. PLoS One 2013; 8:e72434. [PMID: 23977298 PMCID: PMC3744488 DOI: 10.1371/journal.pone.0072434] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background Neurons are one of the most structurally and functionally diverse cell types found in nature, owing in large part to their unique class specific dendritic architectures. Dendrites, being highly specialized in receiving and processing neuronal signals, play a key role in the formation of functional neural circuits. Hence, in order to understand the emergence and assembly of a complex nervous system, it is critical to understand the molecular mechanisms that direct class specific dendritogenesis. Methodology/Principal Findings We have used the Drosophila dendritic arborization (da) neurons to gain systems-level insight into dendritogenesis by a comparative study of the morphologically distinct Class-I (C-I) and Class-IV (C-IV) da neurons. We have used a combination of cell-type specific transcriptional expression profiling coupled to a targeted and systematic in vivo RNAi functional validation screen. Our comparative transcriptomic analyses have revealed a large number of differentially enriched/depleted gene-sets between C-I and C-IV neurons, including a broad range of molecular factors and biological processes such as proteolytic and metabolic pathways. Further, using this data, we have identified and validated the role of 37 transcription factors in regulating class specific dendrite development using in vivo class-specific RNAi knockdowns followed by rigorous and quantitative neurometric analysis. Conclusions/Significance This study reports the first global gene-expression profiles from purified Drosophila C-I and C-IV da neurons. We also report the first large-scale semi-automated reconstruction of over 4,900 da neurons, which were used to quantitatively validate the RNAi screen phenotypes. Overall, these analyses shed global and unbiased novel insights into the molecular differences that underlie the morphological diversity of distinct neuronal cell-types. Furthermore, our class-specific gene expression datasets should prove a valuable community resource in guiding further investigations designed to explore the molecular mechanisms underlying class specific neuronal patterning.
Collapse
Affiliation(s)
- Eswar Prasad R. Iyer
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Srividya Chandramouli Iyer
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Luis Sullivan
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Dennis Wang
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Ramakrishna Meduri
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Lacey L. Graybeal
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Daniel N. Cox
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kucherenko MM, Shcherbata HR. Steroids as external temporal codes act via microRNAs and cooperate with cytokines in differential neurogenesis. Fly (Austin) 2013; 7:173-83. [PMID: 23839338 PMCID: PMC4049850 DOI: 10.4161/fly.25241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The generation of neuronal cell diversity is controlled by interdependent mechanisms, including cell intrinsic programs and environmental cues. During development, the astonishing variety of neurons is originated according to a precise timetable that is managed by a complex network of genes specifying individual types of neurons. Different neurons express specific sets of transcription factors, and they can be recognized by morphological characteristics and spatial localization, but, most importantly, they connect to each other and form functional units in a stereotyped fashion. This connectivity depends, mostly, on selective cell adhesion that is strictly regulated. While intrinsic factors specifying neuronal temporal identity have been extensively studied, an extrinsic temporal factor controlling neuronal temporal identity switch has not been shown. Our data demonstrate that pulses of steroid hormone act as a temporal cue to fine-tune neuronal cell differentiation. Here we also provide evidence that extrinsic JAK/STAT cytokine signaling acts as a spatial code in the process. Particularly, in Drosophila mushroom bodies, neuronal identity transition is controlled by steroid-dependent microRNAs that regulate spatially distributed cytokine-dependent signaling factors that in turn modulate cell adhesion. A new era of neuronal plasticity assessment via managing external temporal cues such as hormones and cytokines that specify individual types of neurons might open new possibilities for brain regenerative therapeutics.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling; Max Planck Institute for Biophysical Chemistry; Goettingen, Germany
| | | |
Collapse
|
39
|
Kucherenko MM, Barth J, Fiala A, Shcherbata HR. Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J 2012; 31:4511-23. [PMID: 23160410 PMCID: PMC3545287 DOI: 10.1038/emboj.2012.298] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/17/2012] [Indexed: 01/12/2023] Open
Abstract
Mammalian neuronal stem cells produce multiple neuron types in the course of an individual's development. Similarly, neuronal progenitors in the Drosophila brain generate different types of closely related neurons that are born at specific time points during development. We found that in the post-embryonic Drosophila brain, steroid hormones act as temporal cues that specify the cell fate of mushroom body (MB) neuroblast progeny. Chronological regulation of neurogenesis is subsequently mediated by the microRNA (miRNA) let-7, absence of which causes learning impairment due to morphological MB defects. The miRNA let-7 is required to regulate the timing of α'/β' to α/β neuronal identity transition by targeting the transcription factor Abrupt. At a cellular level, the ecdysone-let-7-Ab signalling pathway controls the expression levels of the cell adhesion molecule Fasciclin II in developing neurons that ultimately influences their differentiation. Our data propose a novel role for miRNAs as transducers between chronologically regulated developmental signalling and physical cell adhesion.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | | | |
Collapse
|
40
|
Satoh D, Suyama R, Kimura KI, Uemura T. High-resolution in vivo imaging of regenerating dendrites of Drosophila sensory neurons during metamorphosis: local filopodial degeneration and heterotypic dendrite-dendrite contacts. Genes Cells 2012; 17:939-51. [PMID: 23157286 PMCID: PMC3549480 DOI: 10.1111/gtc.12008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/14/2012] [Indexed: 11/29/2022]
Abstract
Neuronal circuits that are formed in early development are reorganized at later developmental stages to support a wide range of adult behaviors. At Drosophila pupal stages, one example of this reorganization is dendritic remodeling of multidendritic neurons, which is accomplished by pruning and subsequent regeneration of branches in environments quite distinct from those in larval life. Here, we used long-term in vivo time-lapse recordings at high spatiotemporal resolution and analyzed the dynamics of two adjacent cell types that remodel dendritic arbors, which eventually innervate the lateral plate of the adult abdomen. These neurons initially exhibited dynamic extension, withdrawal and local degeneration of filopodia that sprouted from all along the length of regenerating branches. At a midpupal stage, branches extending from the two cell types started fasciculating with each other, which prompted us to test the hypothesis that this heterotypic contact may serve as a guiding scaffold for shaping dendritic arbors. Unexpectedly, our cell ablation study gave only marginal effects on the branch length and the arbor shape. This result suggests that the arbor morphology of the adult neurons in this study can be specified mostly in the absence of the dendrite–dendrite contact.
Collapse
Affiliation(s)
- Daisuke Satoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
41
|
Wu YC, Chen CH, Mercer A, Sokol NS. Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev Cell 2012; 23:202-9. [PMID: 22814608 DOI: 10.1016/j.devcel.2012.05.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
Abstract
Many neural lineages display a temporal pattern, but the mechanisms controlling the ordered production of neuronal subtypes remain unclear. Here, we show that Drosophila let-7 and miR-125, cotranscribed from the let-7-Complex (let-7-C) locus, regulate the transcription factor chinmo to control temporal cell fate in the mushroom body (MB) lineage. We find that let-7-C is activated in postmitotic neurons born during the larval-to-pupal transition, when transitions among three MB subtypes occur. Loss or increase of let-7-C delays or accelerates these transitions, respectively, and leads to cell fate transformations. Consistent with our identification of let-7 and miR-125 sites in a recently identified ∼6 kb extension of the chinmo 3' UTR, Chinmo is elevated in let-7-C mutant MBs. In addition, we show that let-7-C acts upstream of chinmo and that let-7-C phenotypes are caused by elevated chinmo. Thus, these heterochronic miRNAs, originally identified in C. elegans, underlie progenitor cell multipotency during the development of diverse bilateria.
Collapse
Affiliation(s)
- Yen-Chi Wu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
42
|
Nagel J, Delandre C, Zhang Y, Förstner F, Moore AW, Tavosanis G. Fascin controls neuronal class-specific dendrite arbor morphology. Development 2012; 139:2999-3009. [DOI: 10.1242/dev.077800] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The branched morphology of dendrites represents a functional hallmark of distinct neuronal types. Nonetheless, how diverse neuronal class-specific dendrite branches are generated is not understood. We investigated specific classes of sensory neurons of Drosophila larvae to address the fundamental mechanisms underlying the formation of distinct branch types. We addressed the function of fascin, a conserved actin-bundling protein involved in filopodium formation, in class III and class IV sensory neurons. We found that the terminal branchlets of different classes of neurons have distinctive dynamics and are formed on the basis of molecularly separable mechanisms; in particular, class III neurons require fascin for terminal branching whereas class IV neurons do not. In class III neurons, fascin controls the formation and dynamics of terminal branchlets. Previous studies have shown that transcription factor combinations define dendrite patterns; we find that fascin represents a downstream component of such programs, as it is a major effector of the transcription factor Cut in defining class III-specific dendrite morphology. Furthermore, fascin defines the morphological distinction between class III and class IV neurons. In fact, loss of fascin function leads to a partial conversion of class III neurons to class IV characteristics, while the reverse effect is obtained by fascin overexpression in class IV neurons. We propose that dedicated molecular mechanisms underlie the formation and dynamics of distinct dendrite branch types to elicit the accurate establishment of neuronal circuits.
Collapse
Affiliation(s)
- Julia Nagel
- Dendrite Differentiation Group, Department of Molecular Neurobiology, MPI of Neurobiology, 82152 Munich-Martinsried, Germany
| | - Caroline Delandre
- Disease Mechanism Research Core, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yun Zhang
- Dendrite Differentiation Group, Department of Molecular Neurobiology, MPI of Neurobiology, 82152 Munich-Martinsried, Germany
| | - Friedrich Förstner
- Department of Systems and Computational Neurobiology, MPI of Neurobiology, 82152 Munich-Martinsried, Germany
| | - Adrian W. Moore
- Disease Mechanism Research Core, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Gaia Tavosanis
- Dendrite Differentiation Group, Department of Molecular Neurobiology, MPI of Neurobiology, 82152 Munich-Martinsried, Germany
| |
Collapse
|
43
|
Wang X, Ye B. Transcriptional regulators that differentially control dendrite and axon development. FRONTIERS IN BIOLOGY 2012; 7:292-296. [PMID: 39219713 PMCID: PMC11364217 DOI: 10.1007/s11515-012-1234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurons are the basic units establishing connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neurons and send outputs to target cells, respectively. The separation of dendritic and axonal compartments is achieved in two steps during development: 1) dendrite and axon specification: how neurites are initially specified as dendrites and axons; and 2) dendrite and axon commitment: how dendrites and axons are committed to distinct compartmental fates and architectures. In order to understand neural circuit assembly and to correct erroneous dendrite or axon growth in a compartment-specific manner, it is essential to understand the regulatory mechanisms underlying dendrite and axon commitment. Compared to extensive studies on dendrite and axon specification, little is known about the molecular mechanisms exclusively dedicated to dendrite or axon commitment. Recent studies have uncovered the requirement of transcriptional regulation in this process. Here, we review the studies on transcriptional regulators: Dar1, p300-SnoN, NeuroD, which have been shown to separate dendrite- and axon-specific growth of the same neuron type after compartmental fates are specified.
Collapse
Affiliation(s)
- Xin Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Abstract
Dendrites represent the compartment of neurons primarily devoted to collecting and computating input. Far from being static structures, dendrites are highly dynamic during development and appear to be capable of plastic changes during the adult life of animals. During development, it is a combination of intrinsic programs and external signals that shapes dendrite morphology; input activity is a conserved extrinsic factor involved in this process. In adult life, dendrites respond with more modest modifications of their structure to various types of extrinsic information, including alterations of input activity. Here, the author reviews classical and recent evidence of dendrite plasticity in invertebrates and vertebrates and current progress in the understanding of the molecular mechanisms that underlie this plasticity. Importantly, some fundamental questions such as the functional role of dendrite remodeling and the causal link between structural modifications of neurons and plastic processes, including learning, are still open.
Collapse
Affiliation(s)
- Gaia Tavosanis
- Department of Molecular Neurobiology, Dendrite Differentiation Group, MPI of Neurobiology, Munich, Germany.
| |
Collapse
|
45
|
Abstract
Development of sensory neural circuits requires concurrent specification of neuron modality, position, and topographic projections. However, little is understood about how controls over these distinct parameters can unify in a single developmental sequence. To address this question, we have used the nociceptive class IV dendritic arborization neurons in the Drosophila larval body wall as an excellent model that allows precise spatiotemporal dissection of developmental-genetic control over sensory neuron positioning and wiring, and subsequent analysis of its functional significance for sensorimotor behavior. The class IV neurogenetic program is intrinsic to the anterior domain of the embryonic parasegment epithelium. Along the ventrolateral axis of this domain, nociceptive neuron induction requirements depend upon location. Near the ventral midline, both Hedgehog and Epithelial growth factor receptor signaling are required for class IV neurogenesis. In addition, close to the ventral midline, class IV neurogenesis is preceded by expression of the Iroquois factor Mirror that promotes local nociceptive neuron differentiation. Remarkably, Mirror is also required for the proper routing of class IV topographic axonal projections across the midline of the CNS. Manipulation of Mirror activity in class IV neurons retargeted axonal projections and caused concordant changes in larval nociceptive escape behavior. These findings indicate that convergent sensory neuron specification, local differentiation, and topographic wiring are mediated by Mirror, and they suggest an integrated paradigm for position-sensitive neural development.
Collapse
|
46
|
Scott JA, Williams DW, Truman JW. The BTB/POZ zinc finger protein Broad-Z3 promotes dendritic outgrowth during metamorphic remodeling of the peripheral stretch receptor dbd. Neural Dev 2011; 6:39. [PMID: 22152995 PMCID: PMC3275534 DOI: 10.1186/1749-8104-6-39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/12/2011] [Indexed: 11/14/2022] Open
Abstract
Background Various members of the family of BTB/POZ zinc-finger transcription factors influence patterns of dendritic branching. One such member, Broad, is notable because its BrZ3 isoform is widely expressed in Drosophila in immature neurons around the time of arbor outgrowth. We used the metamorphic remodeling of an identified sensory neuron, the dorsal bipolar dendrite sensory neuron (dbd), to examine the effects of BrZ3 expression on the extent and pattern of dendrite growth during metamorphosis. Results Using live imaging of dbd in Drosophila pupae, we followed its normal development during metamorphosis and the effect of ectopic expression of BrZ3 on this development. After migration of its cell body, dbd extends a growth-cone that grows between two muscle bands followed by branching and turning back on itself to form a compact dendritic bundle. The ectopic expression of the BrZ3 isoform, using the GAL4/UAS system, caused dbd's dendritic tree to transform from its normal, compact, fasciculated form into a comb-like arbor that spread over on the body wall. Time-lapse analysis revealed that the expression of BrZ3 caused the premature extension of the primary dendrite onto immature myoblasts, ectopic growth past the muscle target region, and subsequent elaboration onto the epidermis. To control the timing of expression of BrZ3, we used a temperature-sensitive GAL80 mutant. When BrZ3 expression was delayed until after the extension of the primary dendrite, then a normal arbor was formed. By contrast, when BrZ3 expression was confined to only the early outgrowth phase, then ectopic arbors were subsequently formed and maintained on the epidermis despite the subsequent absence of BrZ3. Conclusions The adult arbor of dbd is a highly branched arbor whose branches self-fasciculate to form a compact dendritic bundle. The ectopic expression of BrZ3 in this cell causes a premature extension of its growth-cone, resulting in dendrites that extend beyond their normal muscle substrate and onto the epidermis, where they form a comb-shaped, ectopic arbor. Our quantitative data suggest that new ectopic arbor represents an 'unpacking' of the normally fasciculated arbor onto the epidermis. These data suggest that the nature of their local environment can change dendrite behavior from self-adhesion to self-avoidance.
Collapse
Affiliation(s)
- Janet A Scott
- Department of Biology, Box 351800, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
47
|
The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans. Nat Neurosci 2011; 15:57-63. [PMID: 22138642 PMCID: PMC3848871 DOI: 10.1038/nn.2978] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 10/07/2011] [Indexed: 02/07/2023]
Abstract
Dendrites often adopt complex branched structures. The development and organization of these arbors fundamentally determine the potential input and connectivity of a given neuron. The cell-surface receptors that control dendritic branching remain poorly understood. Here, we show that in Caenorhabditis elegans, a previously uncharacterized transmembrane protein containing extracellular leucine-rich repeat (LRR) domains, which we name DMA-1 (Dendrite-Morphogenesis-Abnormal), promotes dendrite branching and growth. Sustained expression of dma-1 is found only in the elaborately branched sensory neurons PVD and FLP. Genetic analysis showed that loss of dma-1 causes much reduced dendritic arbors while overexpression of dma-1 results in excessive branching. Forced expression of dma-1 in neurons with simple dendrites was sufficient to promote ectopic branching. Animals lacking dma-1 are defective in sensing harsh touch. DMA-1 is the first transmembrane LRR protein to be implicated in dendritic branching and expands the breadth of roles played by LRR receptors in nervous system development.
Collapse
|
48
|
Garrett AM, Burgess RW. Candidate molecular mechanisms for establishing cell identity in the developing retina. Dev Neurobiol 2011; 71:1258-72. [PMID: 21630473 PMCID: PMC3292780 DOI: 10.1002/dneu.20926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the developing nervous system, individual neurons must occupy appropriate positions within circuits. This requires that these neurons recognize and form connections with specific pre- and postsynaptic partners. Cellular recognition is also required for the spacing of cell bodies and the arborization of dendrites, factors that determine the inputs onto a given neuron. These issues are particularly evident in the retina, where different types of neurons are evenly spaced relative to other cells of the same type. This establishes a reiterated columnar circuitry resembling the insect retina. Establishing these mosaic patterns requires that cells of a given type (homotypic cells) be able to sense their neighbors. Therefore, both synaptic specificity and mosaic spacing require cellular identifiers. In synaptic specificity, recognition often occurs between different types of cells in a pre- and postsynaptic pairing. In mosaic spacing, recognition is often occurring between different cells of the same type, orhomotypic self-recognition. Dendritic arborization can require recognition of different neurites of the same cell, or isoneuronal self-recognition. The retina is an extremely amenable system for studying the molecular identifiers that drive these various forms of recognition. The different neuronal types in the retina are well defined, and the genetic tools for marking cell types are increasingly available. In this review we will summarize retinal anatomy and describe cell types in the retina and how they are defined. We will then describe the requirements of a recognition code and discuss newly emerging candidate molecular mechanisms for recognition that may meet these requirements.
Collapse
|
49
|
Karim MR, Moore AW. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics. J Vis Exp 2011:e3111. [PMID: 22158135 DOI: 10.3791/3111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).
Collapse
Affiliation(s)
- M Rezaul Karim
- Disease Mechanism Research Core, RIKEN Brain Science Institute
| | | |
Collapse
|
50
|
Shrestha BR, Grueber WB. Methods for exploring the genetic control of sensory neuron dendrite morphogenesis in Drosophila. Cold Spring Harb Protoc 2011; 2011:910-6. [PMID: 21807859 DOI: 10.1101/pdb.top123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|