1
|
Larnerd C, Nolazco M, Valdez A, Sanchez V, Wolf FW. Memory-like states created by the first ethanol experience are encoded into the Drosophila mushroom body learning and memory circuitry in an ethanol-specific manner. PLoS Genet 2025; 21:e1011582. [PMID: 39899623 PMCID: PMC11801723 DOI: 10.1371/journal.pgen.1011582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/06/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
A first ethanol exposure creates three memory-like states in Drosophila. Ethanol memory-like states appear genetically and behaviorally paralleled to the canonical learning and memory traces anesthesia-sensitive, anesthesia-resistant, and long-term memory ASM, ARM, and LTM. It is unknown if these ethanol memory-like states are also encoded by the canonical learning and memory circuitry that is centered on the mushroom bodies. We show that the three ethanol memory-like states, anesthesia-sensitive tolerance (AST) and anesthesia resistant tolerance (ART) created by ethanol sedation to a moderately high ethanol exposure, and chronic tolerance created by a longer low concentration ethanol exposure, each engage the mushroom body circuitry differently. Moreover, critical encoding steps for ethanol memory-like states reside outside the mushroom body circuitry, and within the mushroom body circuitry they are markedly distinct from classical memory traces. Thus, the first ethanol exposure creates distinct memory-like states in ethanol-specific circuits and impacts the function of learning and memory circuitry in ways that might influence the formation and retention of other memories.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Maria Nolazco
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Ashley Valdez
- Biological Sciences Undergraduate Program, University of California, Merced, California, United States of America
| | - Vanessa Sanchez
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, United States of America
- Department of Molecular and Cell Biology, University of California, Merced, California, United States of America
| |
Collapse
|
2
|
Rozenfeld E, Parnas M. Neuronal circuit mechanisms of competitive interaction between action-based and coincidence learning. SCIENCE ADVANCES 2024; 10:eadq3016. [PMID: 39642217 PMCID: PMC11623277 DOI: 10.1126/sciadv.adq3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
How information is integrated across different forms of learning is crucial to understanding higher cognitive functions. Animals form classic or operant associations between cues and their outcomes. It is believed that a prerequisite for operant conditioning is the formation of a classical association. Thus, both memories coexist and are additive. However, the two memories can result in opposing behavioral responses, which can be disadvantageous. We show that Drosophila classical and operant olfactory conditioning rely on distinct neuronal pathways leading to different behavioral responses. Plasticity in both pathways cannot be formed simultaneously. If plasticity occurs at both pathways, interference between them occurs and learning is disrupted. Activity of the navigation center is required to prevent plasticity in the classical pathway and enable it in the operant pathway. These findings fundamentally challenge hierarchical views of operant and classical learning and show that active processes prevent coexistence of the two memories.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Yan L, Wu L, Wiggin TD, Su X, Yan W, Li H, Li L, Lu Z, Li Y, Meng Z, Guo F, Li F, Griffith LC, Liu C. Brief disruption of activity in a subset of dopaminergic neurons during consolidation impairs long-term memory by fragmenting sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563499. [PMID: 37961167 PMCID: PMC10634733 DOI: 10.1101/2023.10.23.563499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, using both male and female flies, Drosophila melanogaster , we show that, during the first few hours of memory consolidation, disruption of basal activity of a small subset of protocerebral anterior medial DANs (PAM-DANs), by either brief activation or inhibition of the two dorsal posterior medial (DPM) neurons, impairs 24 h LTM. Interestingly, these brief changes in activity using female flies result in sleep loss and fragmentation, especially at night. Pharmacological rescue of sleep after manipulation restores LTM. A specific subset of PAM-DANs (PAM-α1) that synapse onto DPM neurons specify the microcircuit that links sleep and memory. PAM-DANs, including PAM-α1, form functional synapses onto DPM mainly via multiple dopamine receptor subtypes. This PAM-α1 to DPM microcircuit exhibits a synchronized, transient, post-training increase in activity during the critical memory consolidation window, suggesting an effect of this microcircuit on maintaining the sleep necessary for LTM consolidation. Our results provide a new cellular and circuit basis for the complex relationship between sleep and memory.
Collapse
|
4
|
Meschi E, Duquenoy L, Otto N, Dempsey G, Waddell S. Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila. Neuron 2024; 112:2315-2332.e8. [PMID: 38795709 DOI: 10.1016/j.neuron.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.
Collapse
Affiliation(s)
- Eleonora Meschi
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lucille Duquenoy
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Nils Otto
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Georgia Dempsey
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
5
|
Parnas M, Manoim JE, Lin AC. Sensory encoding and memory in the mushroom body: signals, noise, and variability. Learn Mem 2024; 31:a053825. [PMID: 38862174 PMCID: PMC11199953 DOI: 10.1101/lm.053825.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
To survive in changing environments, animals need to learn to associate specific sensory stimuli with positive or negative valence. How do they form stimulus-specific memories to distinguish between positively/negatively associated stimuli and other irrelevant stimuli? Solving this task is one of the functions of the mushroom body, the associative memory center in insect brains. Here we summarize recent work on sensory encoding and memory in the Drosophila mushroom body, highlighting general principles such as pattern separation, sparse coding, noise and variability, coincidence detection, and spatially localized neuromodulation, and placing the mushroom body in comparative perspective with mammalian memory systems.
Collapse
Affiliation(s)
- Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
6
|
Wu L, Liu C. Integrated neural circuits of sleep and memory regulation in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101105. [PMID: 37625641 DOI: 10.1016/j.cois.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Sleep and memory are highly intertwined, yet the integrative neural network of these two fundamental physiological behaviors remains poorly understood. Multiple cell types and structures of the Drosophila brain have been shown involved in the regulation of sleep and memory, and recent efforts are focusing on bridging them at molecular and circuit levels. Here, we briefly review 1) identified neurons as key nodes of olfactory-associative memory circuits involved in different memory processes; 2) how neurons of memory circuits participate in sleep regulation; and 3) other cell types and circuits besides the mushroom body in linking sleep and memory. We also attempt to provide the remaining gaps of circuitry integration of sleep and memory, which may spark some new thinking for future efforts.
Collapse
Affiliation(s)
- Litao Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| |
Collapse
|
7
|
Vogt K. Neuroscience: Merging multisensory memories. Curr Biol 2023; 33:R817-R819. [PMID: 37552950 DOI: 10.1016/j.cub.2023.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
How animals form and retain memories across multiple sensory modalities and how multisensory learning can enhance memory is largely unknown. A recent study sheds light on the neural mechanism underlying multisensory memory convergence in the Drosophila melanogaster brain.
Collapse
Affiliation(s)
- Katrin Vogt
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
8
|
Okray Z, Jacob PF, Stern C, Desmond K, Otto N, Talbot CB, Vargas-Gutierrez P, Waddell S. Multisensory learning binds neurons into a cross-modal memory engram. Nature 2023; 617:777-784. [PMID: 37100911 PMCID: PMC10208976 DOI: 10.1038/s41586-023-06013-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.
Collapse
Affiliation(s)
- Zeynep Okray
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| | - Pedro F Jacob
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Ciara Stern
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Kieran Desmond
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | - Nils Otto
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Clifford B Talbot
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK
| | | | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Zeng J, Li X, Zhang R, Lv M, Wang Y, Tan K, Xia X, Wan J, Jing M, Zhang X, Li Y, Yang Y, Wang L, Chu J, Li Y, Li Y. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron 2023; 111:1118-1135.e5. [PMID: 36706757 PMCID: PMC11152601 DOI: 10.1016/j.neuron.2022.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/03/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
The coincidence between conditioned stimulus (CS) and unconditioned stimulus (US) is essential for associative learning; however, the mechanism regulating the duration of this temporal window remains unclear. Here, we found that serotonin (5-HT) bi-directionally regulates the coincidence time window of olfactory learning in Drosophila and affects synaptic plasticity of Kenyon cells (KCs) in the mushroom body (MB). Utilizing GPCR-activation-based (GRAB) neurotransmitter sensors, we found that KC-released acetylcholine (ACh) activates a serotonergic dorsal paired medial (DPM) neuron, which in turn provides inhibitory feedback to KCs. Physiological stimuli induce spatially heterogeneous 5-HT signals, which proportionally gate the intrinsic coincidence time windows of different MB compartments. Artificially reducing or increasing the DPM neuron-released 5-HT shortens or prolongs the coincidence window, respectively. In a sequential trace conditioning paradigm, this serotonergic neuromodulation helps to bridge the CS-US temporal gap. Altogether, we report a model circuitry for perceiving the temporal coincidence and determining the causal relationship between environmental events.
Collapse
Affiliation(s)
- Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China
| | - Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuning Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
10
|
Yan W, Lin H, Yu J, Wiggin TD, Wu L, Meng Z, Liu C, Griffith LC. Subtype-Specific Roles of Ellipsoid Body Ring Neurons in Sleep Regulation in Drosophila. J Neurosci 2023; 43:764-786. [PMID: 36535771 PMCID: PMC9899086 DOI: 10.1523/jneurosci.1350-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
The ellipsoid body (EB) is a major structure of the central complex of the Drosophila melanogaster brain. Twenty-two subtypes of EB ring neurons have been identified based on anatomic and morphologic characteristics by light-level microscopy and EM connectomics. A few studies have associated ring neurons with the regulation of sleep homeostasis and structure. However, cell type-specific and population interactions in the regulation of sleep remain unclear. Using an unbiased thermogenetic screen of EB drivers using female flies, we found the following: (1) multiple ring neurons are involved in the modulation of amount of sleep and structure in a synergistic manner; (2) analysis of data for ΔP(doze)/ΔP(wake) using a mixed Gaussian model detected 5 clusters of GAL4 drivers which had similar effects on sleep pressure and/or depth: lines driving arousal contained R4m neurons, whereas lines that increased sleep pressure had R3m cells; (3) a GLM analysis correlating ring cell subtype and activity-dependent changes in sleep parameters across all lines identified several cell types significantly associated with specific sleep effects: R3p was daytime sleep-promoting, and R4m was nighttime wake-promoting; and (4) R3d cells present in 5HT7-GAL4 and in GAL4 lines, which exclusively affect sleep structure, were found to contribute to fragmentation of sleep during both day and night. Thus, multiple subtypes of ring neurons distinctively control sleep amount and/or structure. The unique highly interconnected structure of the EB suggests a local-network model worth future investigation; understanding EB subtype interactions may provide insight how sleep circuits in general are structured.SIGNIFICANCE STATEMENT How multiple brain regions, with many cell types, can coherently regulate sleep remains unclear, but identification of cell type-specific roles can generate opportunities for understanding the principles of integration and cooperation. The ellipsoid body (EB) of the fly brain exhibits a high level of connectivity and functional heterogeneity yet is able to tune multiple behaviors in real-time, including sleep. Leveraging the powerful genetic tools available in Drosophila and recent progress in the characterization of the morphology and connectivity of EB ring neurons, we identify several EB subtypes specifically associated with distinct aspects of sleep. Our findings will aid in revealing the rules of coding and integration in the brain.
Collapse
Affiliation(s)
- Wei Yan
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, 200032, China
| | - Junwei Yu
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy D Wiggin
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Litao Wu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Zhiqiang Meng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen, 518000, China
| | - Chang Liu
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, 518000, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen, 518000, China
| | - Leslie C Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
11
|
Aranha MM, Ramaswami M. Emotional states: Sweet relief for depressed flies. Curr Biol 2022; 32:R954-R957. [PMID: 36167044 DOI: 10.1016/j.cub.2022.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mammals and insects appear to have emotional states with features characteristic of human depression. A new study has defined a neural circuit including serotonergic neurons that drive sugar-induced relief from a depression-like-state in Drosophila.
Collapse
Affiliation(s)
- Marcia M Aranha
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Dvořáček J, Kodrík D. Drug effect and addiction research with insects - From Drosophila to collective reward in honeybees. Neurosci Biobehav Rev 2022; 140:104816. [PMID: 35940307 DOI: 10.1016/j.neubiorev.2022.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Animals and humans share similar reactions to the effects of addictive substances, including those of their brain networks to drugs. Our review focuses on simple invertebrate models, particularly the honeybee (Apis mellifera), and on the effects of drugs on bee behaviour and brain functions. The drug effects in bees are very similar to those described in humans. Furthermore, the honeybee community is a superorganism in which many collective functions outperform the simple sum of individual functions. The distribution of reward functions in this superorganism is unique - although sublimated at the individual level, community reward functions are of higher quality. This phenomenon of collective reward may be extrapolated to other animal species living in close and strictly organised societies, i.e. humans. The relationship between sociality and reward, based on use of similar parts of the neural network (social decision-making network in mammals, mushroom body in bees), suggests a functional continuum of reward and sociality in animals.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budĕjovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budĕjovice, Czech Republic
| |
Collapse
|
13
|
Hermanns T, Graf-Boxhorn S, Poeck B, Strauss R. Octopamine mediates sugar relief from a chronic-stress-induced depression-like state in Drosophila. Curr Biol 2022; 32:4048-4056.e3. [PMID: 35914533 DOI: 10.1016/j.cub.2022.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 12/30/2022]
Abstract
Chronic, uncontrollable stress can result in psychiatric syndromes, including anxiety and major depressive disorder, in humans and mammalian disease models.1,2 Similarly, several days of chronic stress can induce depression-associated behavioral alteration in Drosophila accompanied by changes in biogenic amine levels in the adult brain.3-6 In our chronic stress paradigm, flies are subjected to 3 days of repetitive phases of 300 Hz vibrations combined with overcrowding and food deprivation. This treatment reduces voluntary behavioral activity, including the motivation to climb wide gaps (risk taking) and to stop for sweets (anhedonia), suggesting a depression-like state (DLS). These behavioral changes correlate with decreased serotonin release to the mushroom body (MB), a major behavioral control center in the central brain of the fly.7,8 Stressed flies are relieved from the DLS by feeding the anti-depressant serotonin precursor 5-HTP or the selective serotonin reuptake inhibitor fluoxetine. Notably, feeding sucrose to stressed flies results in elevated serotonin levels in the brain and ameliorates the DLS.3 Here, we show that this sugar relief is mediated by the neurotransmitter octopamine signaled from ventral unpaired medial neurons located in the subesophageal ganglion. The octopamine signaling of sweet sensation is transmitted to the MB via the dopaminergic PAM neurons. In addition, neuronal-silencing experiments reveal that the serotonergic dorsal paired medial (DPM) neurons innervating the MB are essential for sugar relief. Conversely, thermogenetic or optogenetic activation of DPMs can replace sweet sensation, elucidating that serotonergic signaling from DPMs takes part in positively modulating DLS-related behavioral changes.
Collapse
Affiliation(s)
- Tim Hermanns
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Sonja Graf-Boxhorn
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Burkhard Poeck
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Córdova-García G, Esquivel CJ, Pérez-Staples D, Ruiz-May E, Herrera-Cruz M, Reyes-Hernández M, Abraham S, Aluja M, Sirot L. Characterization of reproductive proteins in the Mexican fruit fly points towards the evolution of novel functions. Proc Biol Sci 2022; 289:20212806. [PMID: 35765836 PMCID: PMC9240691 DOI: 10.1098/rspb.2021.2806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Seminal fluid proteins (Sfps) modify female phenotypes and have wide-ranging evolutionary implications on fitness in many insects. However, in the Mexican fruit fly, Anastrepha ludens, a highly destructive agricultural pest, the functions of Sfps are still largely unknown. To gain insights into female phenotypes regulated by Sfps, we used nano-liquid chromatography mass spectrometry to conduct a proteomic analysis of the soluble proteins from reproductive organs of A. ludens. The proteins predicted to be transferred from males to females during copulation were 100 proteins from the accessory glands, 69 from the testes and 20 from the ejaculatory bulb, resulting in 141 unique proteins after accounting for redundancies from multiple tissues. These 141 included orthologues to Drosophila melanogaster proteins involved mainly in oogenesis, spermatogenesis, immune response, lifespan and fecundity. In particular, we found one protein associated with female olfactory response to repellent stimuli (Scribble), and two related to memory formation (aPKC and Shibire). Together, these results raise the possibility that A. ludens Sfps could play a role in regulating female olfactory responses and memory formation and could be indicative of novel evolutionary functions in this important agricultural pest.
Collapse
Affiliation(s)
- Guadalupe Córdova-García
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, CP 91090 Veracruz, México
| | | | - Diana Pérez-Staples
- INBIOTECA, Universidad Veracruzana, Av. de las Culturas Veracruzanas 101, Col. E. Zapata, Xalapa, CP 91090 Veracruz, México
| | - Eliel Ruiz-May
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Antigua Carretera a Coatepec 351, Xalapa, Veracruz, México
| | - Mariana Herrera-Cruz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex-Hda de Aguilera S/N, C.P. 68020, Oaxaca, Oaxaca, México
| | - Martha Reyes-Hernández
- Universidad Autónoma de Guadalajara, Av. Patria 1201, Col. Lomas del Valle, CP 45129 Zapopan, Jalisco, México
| | - Solana Abraham
- Laboratorio de Investigaciones Ecoetológicas de Moscas de la Fruta y sus Enemigos Naturales (LIEMEN), PROIMI-Biotecnología, CONICET, Avenida Belgrano y Pasaje Caseros s/n, CP 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Antigua Carretera a Coatepec 351, Xalapa, Veracruz, México
| | - Laura Sirot
- Department of Biology, College of Wooster, 931 College Mall, Wooster, OH 44691, USA
| |
Collapse
|
15
|
Stahl A, Noyes NC, Boto T, Botero V, Broyles CN, Jing M, Zeng J, King LB, Li Y, Davis RL, Tomchik SM. Associative learning drives longitudinally graded presynaptic plasticity of neurotransmitter release along axonal compartments. eLife 2022; 11:e76712. [PMID: 35285796 PMCID: PMC8956283 DOI: 10.7554/elife.76712] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Anatomical and physiological compartmentalization of neurons is a mechanism to increase the computational capacity of a circuit, and a major question is what role axonal compartmentalization plays. Axonal compartmentalization may enable localized, presynaptic plasticity to alter neuronal output in a flexible, experience-dependent manner. Here, we show that olfactory learning generates compartmentalized, bidirectional plasticity of acetylcholine release that varies across the longitudinal compartments of Drosophila mushroom body (MB) axons. The directionality of the learning-induced plasticity depends on the valence of the learning event (aversive vs. appetitive), varies linearly across proximal to distal compartments following appetitive conditioning, and correlates with learning-induced changes in downstream mushroom body output neurons (MBONs) that modulate behavioral action selection. Potentiation of acetylcholine release was dependent on the CaV2.1 calcium channel subunit cacophony. In addition, contrast between the positive conditioned stimulus and other odors required the inositol triphosphate receptor, which maintained responsivity to odors upon repeated presentations, preventing adaptation. Downstream from the MB, a set of MBONs that receive their input from the γ3 MB compartment were required for normal appetitive learning, suggesting that they represent a key node through which reward learning influences decision-making. These data demonstrate that learning drives valence-correlated, compartmentalized, bidirectional potentiation, and depression of synaptic neurotransmitter release, which rely on distinct mechanisms and are distributed across axonal compartments in a learning circuit.
Collapse
Affiliation(s)
- Aaron Stahl
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Nathaniel C Noyes
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Connor N Broyles
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Jianzhi Zeng
- Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- State Key Laboratory of Membrane Biology, Peking University School of Life SciencesBeijingChina
- PKU IDG/McGovern Institute for Brain ResearchBeijingChina
| | - Lanikea B King
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Yulong Li
- Chinese Institute for Brain ResearchBeijingChina
- Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- State Key Laboratory of Membrane Biology, Peking University School of Life SciencesBeijingChina
- PKU IDG/McGovern Institute for Brain ResearchBeijingChina
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Seth M Tomchik
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| |
Collapse
|
16
|
Lee WP, Chiang MH, Chang LY, Shyu WH, Chiu TH, Fu TF, Wu T, Wu CL. Serotonin Signals Modulate Mushroom Body Output Neurons for Sustaining Water-Reward Long-Term Memory in Drosophila. Front Cell Dev Biol 2021; 9:755574. [PMID: 34858982 PMCID: PMC8631865 DOI: 10.3389/fcell.2021.755574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
Memory consolidation is a time-dependent process through which an unstable learned experience is transformed into a stable long-term memory; however, the circuit and molecular mechanisms underlying this process are poorly understood. The Drosophila mushroom body (MB) is a huge brain neuropil that plays a crucial role in olfactory memory. The MB neurons can be generally classified into three subsets: γ, αβ, and α′β′. Here, we report that water-reward long-term memory (wLTM) consolidation requires activity from α′β′-related mushroom body output neurons (MBONs) in a specific time window. wLTM consolidation requires neurotransmission in MBON-γ3β′1 during the 0–2 h period after training, and neurotransmission in MBON-α′2 is required during the 2–4 h period after training. Moreover, neurotransmission in MBON-α′1α′3 is required during the 0–4 h period after training. Intriguingly, blocking neurotransmission during consolidation or inhibiting serotonin biosynthesis in serotoninergic dorsal paired medial (DPM) neurons also disrupted the wLTM, suggesting that wLTM consolidation requires serotonin signals from DPM neurons. The GFP Reconstitution Across Synaptic Partners (GRASP) data showed the connectivity between DPM neurons and MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3, and RNAi-mediated silencing of serotonin receptors in MBON-γ3β′1, MBON-α′2, or MBON-α′1α′3 disrupted wLTM. Taken together, our results suggest that serotonin released from DPM neurons modulates neuronal activity in MBON-γ3β′1, MBON-α′2, and MBON-α′1α′3 at specific time windows, which is critical for the consolidation of wLTM in Drosophila.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Yun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Huan Shyu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Hsiang Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Neurology, New Taipei Municipal Tucheng Hospital, Tucheng, Taiwan.,Department of Neurology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
17
|
Weiss JT, Donlea JM. Sleep deprivation results in diverse patterns of synaptic scaling across the Drosophila mushroom bodies. Curr Biol 2021; 31:3248-3261.e3. [PMID: 34107302 PMCID: PMC8355077 DOI: 10.1016/j.cub.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Sleep is essential for a variety of plastic processes, including learning and memory. However, the consequences of insufficient sleep on circuit connectivity remain poorly understood. To better appreciate the effects of sleep loss on synaptic connectivity across a memory-encoding circuit, we examined changes in the distribution of synaptic markers in the Drosophila mushroom body (MB). Protein-trap tags for active zone components indicate that recent sleep time is inversely correlated with Bruchpilot (BRP) abundance in the MB lobes; sleep loss elevates BRP while sleep induction reduces BRP across the MB. Overnight sleep deprivation also elevated levels of dSyd-1 and Cacophony, but not other pre-synaptic proteins. Cell-type-specific genetic reporters show that MB-intrinsic Kenyon cells (KCs) exhibit increased pre-synaptic BRP throughout the axonal lobes after sleep deprivation; similar increases were not detected in projections from large interneurons or dopaminergic neurons that innervate the MB. These results indicate that pre-synaptic plasticity in KCs is responsible for elevated levels of BRP in the MB lobes of sleep-deprived flies. Because KCs provide synaptic inputs to several classes of post-synaptic partners, we next used a fluorescent reporter for synaptic contacts to test whether each class of KC output connections is scaled uniformly by sleep loss. The KC output synapses that we observed here can be divided into three classes: KCs to MB interneurons; KCs to dopaminergic neurons; and KCs to MB output neurons. No single class showed uniform scaling across each constituent member, indicating that different rules may govern plasticity during sleep loss across cell types.
Collapse
Affiliation(s)
- Jacqueline T Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Wan J, Peng W, Li X, Qian T, Song K, Zeng J, Deng F, Hao S, Feng J, Zhang P, Zhang Y, Zou J, Pan S, Shin M, Venton BJ, Zhu JJ, Jing M, Xu M, Li Y. A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci 2021; 24:746-752. [PMID: 33821000 PMCID: PMC8544647 DOI: 10.1038/s41593-021-00823-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 02/19/2021] [Indexed: 01/30/2023]
Abstract
Serotonin (5-HT) is a phylogenetically conserved monoamine neurotransmitter modulating important processes in the brain. To directly visualize the release of 5-HT, we developed a genetically encoded G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensor with high sensitivity, high selectivity, subsecond kinetics and subcellular resolution. GRAB5-HT detects 5-HT release in multiple physiological and pathological conditions in both flies and mice and provides new insights into the dynamics and mechanisms of 5-HT signaling.
Collapse
Affiliation(s)
- Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuelin Li
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Kun Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Suyu Hao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yajun Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jing Zou
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China,Department of Biological Sciences, Neurobiology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Sunlei Pan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China,Manuscript correspondence: Yulong Li ()
| |
Collapse
|
19
|
Abstract
Sleep is critical for diverse aspects of brain function in animals ranging from invertebrates to humans. Powerful genetic tools in the fruit fly Drosophila melanogaster have identified - at an unprecedented level of detail - genes and neural circuits that regulate sleep. This research has revealed that the functions and neural principles of sleep regulation are largely conserved from flies to mammals. Further, genetic approaches to studying sleep have uncovered mechanisms underlying the integration of sleep and many different biological processes, including circadian timekeeping, metabolism, social interactions, and aging. These findings show that in flies, as in mammals, sleep is not a single state, but instead consists of multiple physiological and behavioral states that change in response to the environment, and is shaped by life history. Here, we review advances in the study of sleep in Drosophila, discuss their implications for understanding the fundamental functions of sleep that are likely to be conserved among animal species, and identify important unanswered questions in the field.
Collapse
Affiliation(s)
- Orie T Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA.
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
20
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
21
|
Wu Y, Funato Y, Meschi E, Jovanoski KD, Miki H, Waddell S. Magnesium efflux from Drosophila Kenyon cells is critical for normal and diet-enhanced long-term memory. eLife 2020; 9:61339. [PMID: 33242000 PMCID: PMC7843133 DOI: 10.7554/elife.61339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary magnesium (Mg2+) supplementation can enhance memory in young and aged rats. Memory-enhancing capacity was largely ascribed to increases in hippocampal synaptic density and elevated expression of the NR2B subunit of the NMDA-type glutamate receptor. Here we show that Mg2+ feeding also enhances long-term memory in Drosophila. Normal and Mg2+-enhanced fly memory appears independent of NMDA receptors in the mushroom body and instead requires expression of a conserved CNNM-type Mg2+-efflux transporter encoded by the unextended (uex) gene. UEX contains a putative cyclic nucleotide-binding homology domain and its mutation separates a vital role for uex from a function in memory. Moreover, UEX localization in mushroom body Kenyon cells (KCs) is altered in memory-defective flies harboring mutations in cAMP-related genes. Functional imaging suggests that UEX-dependent efflux is required for slow rhythmic maintenance of KC Mg2+. We propose that regulated neuronal Mg2+ efflux is critical for normal and Mg2+-enhanced memory. The proverbial saying ‘you are what you eat’ perfectly summarizes the concept that our diet can influence both our mental and physical health. We know that foods that are good for the heart, such as nuts, oily fish and berries, are also good for the brain. We know too that vitamins and minerals are essential for overall good health. But is there any evidence that increasing your intake of specific vitamins or minerals could help boost your brain power? While it might sound almost too good to be true, there is some evidence that this is the case for at least one mineral, magnesium. Studies in rodents have shown that adding magnesium supplements to food improves how well the animals perform on memory tasks. Both young and old animals benefit from additional magnesium. Even elderly rodents with a condition similar to Alzheimer’s disease show less memory loss when given magnesium supplements. But what about other species? Wu et al. now show that magnesium supplements also boost memory performance in fruit flies. One group of flies was fed with standard cornmeal for several days, while the other group received cornmeal supplemented with magnesium. Both groups were then trained to associate an odor with a food reward. Flies that had received the extra magnesium showed better memory for the odor when tested 24 hours after training. Wu et al. show that magnesium improves memory in the flies via a different mechanism to that reported previously for rodents. In rodents, magnesium increased levels of a receptor protein for a brain chemical called glutamate. In fruit flies, by contrast, the memory boost depended on a protein that transports magnesium out of neurons. Mutant flies that lacked this transporter showed memory impairments. Unlike normal flies, those without the transporter showed no memory improvement after eating magnesium-enriched food. The results suggest that the transporter may help adjust magnesium levels inside brain cells in response to neural activity. Humans produce four variants of this magnesium transporter, each encoded by a different gene. One of these transporters has already been implicated in brain development. The findings of Wu et al. suggest that the transporters may also act in the adult brain to influence cognition. Further studies are needed to test whether targeting the magnesium transporter could ultimately hold promise for treating memory impairments.
Collapse
Affiliation(s)
- Yanying Wu
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Eleonora Meschi
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Kristijan D Jovanoski
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| |
Collapse
|
22
|
Lee WP, Chiang MH, Chang LY, Lee JY, Tsai YL, Chiu TH, Chiang HC, Fu TF, Wu T, Wu CL. Mushroom body subsets encode CREB2-dependent water-reward long-term memory in Drosophila. PLoS Genet 2020; 16:e1008963. [PMID: 32780743 PMCID: PMC7418956 DOI: 10.1371/journal.pgen.1008963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Long-term memory (LTM) formation depends on the conversed cAMP response element-binding protein (CREB)-dependent gene transcription followed by de novo protein synthesis. Thirsty fruit flies can be trained to associate an odor with water reward to form water-reward LTM (wLTM), which can last for over 24 hours without a significant decline. The role of de novo protein synthesis and CREB-regulated gene expression changes in neural circuits that contribute to wLTM remains unclear. Here, we show that acute inhibition of protein synthesis in the mushroom body (MB) αβ or γ neurons during memory formation using a cold-sensitive ribosome-inactivating toxin disrupts wLTM. Furthermore, adult stage-specific expression of dCREB2b in αβ or γ neurons also disrupts wLTM. The MB αβ and γ neurons can be further classified into five different neuronal subsets including αβ core, αβ surface, αβ posterior, γ main, and γ dorsal. We observed that the neurotransmission from αβ surface and γ dorsal neuron subsets is required for wLTM retrieval, whereas the αβ core, αβ posterior, and γ main are dispensable. Adult stage-specific expression of dCREB2b in αβ surface and γ dorsal neurons inhibits wLTM formation. In vivo calcium imaging revealed that αβ surface and γ dorsal neurons form wLTM traces with different dynamic properties, and these memory traces are abolished by dCREB2b expression. Our results suggest that a small population of neurons within the MB circuits support long-term storage of water-reward memory in Drosophila.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Li-Yun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Jhen-Yi Lee
- School of Medicine, College of Medicine, Chang Gung University, Taiwan
| | - Ya-Lun Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Tai-Hsiang Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
| | | | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Taiwan
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Hidalgo S, Fuenzalida-Uribe N, Molina-Mateo D, Escobar AP, Oliva C, España RA, Andrés ME, Campusano JM. Study of the release of endogenous amines in Drosophila brain in vivo in response to stimuli linked to aversive olfactory conditioning. J Neurochem 2020; 156:337-351. [PMID: 32596813 DOI: 10.1111/jnc.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/27/2022]
Abstract
A highly challenging question in neuroscience is to understand how aminergic neural circuits contribute to the planning and execution of behaviors, including the generation of olfactory memories. In this regard, electrophysiological techniques like Local Field Potential or imaging methods have been used to answer questions relevant to cell and circuit physiology in different animal models, such as the fly Drosophila melanogaster. However, these techniques do not provide information on the neurochemical identity of the circuits of interest. Different approaches including fast scan cyclic voltammetry, allow researchers to identify and quantify in a timely fashion the release of endogenous neuroactive molecules, but have been only used in in vitro Drosophila brain preparations. Here, we report a procedure to record for the first time the release of endogenous amines -dopamine, serotonin and octopamine- in adult fly brain in vivo, by fast scan cyclic voltammetry. As a proof of principle, we carried out recordings in the calyx region of the Mushroom Bodies, the brain area mainly associated to the generation of olfactory memories in flies. By using principal component regression in normalized training sets for in vivo recordings, we detect an increase in octopamine and serotonin levels in response to electric shock and olfactory cues respectively. This new approach allows the study of dynamic changes in amine neurotransmission that underlie complex behaviors in Drosophila and shed new light on the contribution of these amines to olfactory processing in this animal model.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,School of Physiology, Pharmacology and Ncxeuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Nicolás Fuenzalida-Uribe
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Molina-Mateo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica P Escobar
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Oliva
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Maria Estela Andrés
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencia UC, Santiago, Chile
| |
Collapse
|
24
|
Dissel S. Drosophila as a Model to Study the Relationship Between Sleep, Plasticity, and Memory. Front Physiol 2020; 11:533. [PMID: 32547415 PMCID: PMC7270326 DOI: 10.3389/fphys.2020.00533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
Humans spend nearly a third of their life sleeping, yet, despite decades of research the function of sleep still remains a mystery. Sleep has been linked with various biological systems and functions, including metabolism, immunity, the cardiovascular system, and cognitive functions. Importantly, sleep appears to be present throughout the animal kingdom suggesting that it must provide an evolutionary advantage. Among the many possible functions of sleep, the relationship between sleep, and cognition has received a lot of support. We have all experienced the negative cognitive effects associated with a night of sleep deprivation. These can include increased emotional reactivity, poor judgment, deficit in attention, impairment in learning and memory, and obviously increase in daytime sleepiness. Furthermore, many neurological diseases like Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep disorder can exacerbate the progression of the neurological disease. Thus, it is clear that sleep plays an important role for many brain functions. In particular, sleep has been shown to play a positive role in the consolidation of long-term memory while sleep deprivation negatively impacts learning and memory. Importantly, sleep is a behavior that is adapted to an individual’s need and influenced by many external and internal stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in the brain at the level of synaptic connections between neurons and neuronal plasticity influences sleep. Understanding how sleep is modulated by internal and external stimuli and how sleep can modulate memory and plasticity is a key question in neuroscience. In order to address this question, several animal models have been developed. Among them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved to be extremely valuable. In addition to sleep, Drosophila has been shown to be an excellent model to study many complex behaviors, including learning, and memory. This review describes our current knowledge of the relationship between sleep, plasticity, and memory using the fly model.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
25
|
Drosophila Middle-Term Memory: Amnesiac is Required for PKA Activation in the Mushroom Bodies, a Function Modulated by Neprilysin 1. J Neurosci 2020; 40:4219-4229. [PMID: 32303647 DOI: 10.1523/jneurosci.2311-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
Abstract
In Drosophila, the mushroom bodies (MB) constitute the central brain structure for olfactory associative memory. As in mammals, the cAMP/PKA pathway plays a key role in memory formation. In the MB, Rutabaga (Rut) adenylate cyclase acts as a coincidence detector during associative conditioning to integrate calcium influx resulting from acetylcholine stimulation and G-protein activation resulting from dopaminergic stimulation. Amnesiac encodes a secreted neuropeptide required in the MB for two phases of aversive olfactory memory. Previous sequence analysis has revealed strong homology with the mammalian pituitary adenylate cyclase-activating peptide (PACAP). Here, we examined whether amnesiac is involved in cAMP/PKA dynamics in response to dopamine and acetylcholine co-stimulation in living flies. Experiments were conducted with both sexes, or with either sex. Our data show that amnesiac is necessary for the PKA activation process that results from coincidence detection in the MB. Since PACAP peptide is cleaved by the human membrane neprilysin hNEP, we searched for an interaction between Amnesiac and Neprilysin 1 (Nep1), a fly neprilysin involved in memory. We show that when Nep1 expression is acutely knocked down in adult MB, memory deficits displayed by amn hypomorphic mutants are rescued. Consistently, Nep1 inhibition also restores normal PKA activation in amn mutant flies. Taken together, the results suggest that Nep1 targets Amnesiac degradation to terminate its signaling function. Our work thus highlights a key role for Amnesiac in establishing within the MB the PKA dynamics that sustain middle-term memory (MTM) formation, a function modulated by Nep1.SIGNIFICANCE STATEMENT The Drosophila amnesiac gene encodes a secreted neuropeptide whose expression is required for specific memory phases in the mushroom bodies (MB), the olfactory memory center. Here, we show that Amnesiac is required for PKA activation resulting from coincidence detection, a mechanism by which the MB integrate two spatially distinct stimuli to encode associative memory. Furthermore, our results uncover a functional relationship between Amnesiac and Neprilysin 1 (Nep1), a membrane peptidase involved in memory and expressed in the MB. These results suggest that Nep1 modulates Amnesiac levels. We propose that on conditioning, Amnesiac release from the MB allows, via an autocrine process, the sustaining of PKA activation-mediating memory, which subsequently is inactivated by Nep1 degradation.
Collapse
|
26
|
Siegenthaler D, Escribano B, Bräuler V, Pielage J. Selective suppression and recall of long-term memories in Drosophila. PLoS Biol 2019; 17:e3000400. [PMID: 31454345 PMCID: PMC6711512 DOI: 10.1371/journal.pbio.3000400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Adaptive decision-making depends on the formation of novel memories. In Drosophila, the mushroom body (MB) is the site of associative olfactory long-term memory (LTM) storage. However, due to the sparse and stochastic representation of olfactory information in Kenyon cells (KCs), genetic access to individual LTMs remains elusive. Here, we develop a cAMP response element (CRE)-activity–dependent memory engram label (CAMEL) tool that genetically tags KCs responding to the conditioned stimulus (CS). CAMEL activity depends on protein-synthesis–dependent aversive LTM conditioning and reflects the time course of CRE binding protein 2 (CREB2) activity during natural memory formation. We demonstrate that inhibition of LTM-induced CAMEL neurons reduces memory expression and that artificial optogenetic reactivation is sufficient to evoke aversive behavior phenocopying memory recall. Together, our data are consistent with CAMEL neurons marking a subset of engram KCs encoding individual memories. This study provides new insights into memory circuitry organization and an entry point towards cellular and molecular understanding of LTM storage. A novel genetic approach enables the visualization and manipulation of memory engram cells in Drosophila, providing a key methodological opportunity to characterize associative memory at the cellular and circuit level.
Collapse
Affiliation(s)
- Dominique Siegenthaler
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Benjamin Escribano
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Bräuler
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan Pielage
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
- * E-mail:
| |
Collapse
|
27
|
Suppression of GABAergic neurons through D2-like receptor secures efficient conditioning in Drosophila aversive olfactory learning. Proc Natl Acad Sci U S A 2019; 116:5118-5125. [PMID: 30796183 DOI: 10.1073/pnas.1812342116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The GABAergic system serves as a vital negative modulator in cognitive functions, such as learning and memory, while the mechanisms governing this inhibitory system remain to be elucidated. In Drosophila, the GABAergic anterior paired lateral (APL) neurons mediate a negative feedback essential for odor discrimination; however, their activity is suppressed by learning via unknown mechanisms. In aversive olfactory learning, a group of dopaminergic (DA) neurons is activated on electric shock (ES) and modulates the Kenyon cells (KCs) in the mushroom body, the center of olfactory learning. Here we find that the same group of DA neurons also form functional synaptic connections with the APL neurons, thereby emitting a suppressive signal to the latter through Drosophila dopamine 2-like receptor (DD2R). Knockdown of either DD2R or its downstream molecules in the APL neurons results in impaired olfactory learning at the behavioral level. Results obtained from in vivo functional imaging experiments indicate that this DD2R-dependent DA-to-APL suppression occurs during odor-ES conditioning and discharges the GABAergic inhibition on the KCs specific to the conditioned odor. Moreover, the decrease in odor response of the APL neurons persists to the postconditioning phase, and this change is also absent in DD2R knockdown flies. Taken together, our findings show that DA-to-GABA suppression is essential for restraining the GABAergic inhibition during conditioning, as well as for inducing synaptic modification in this learning circuit. Such circuit mechanisms may play conserved roles in associative learning across species.
Collapse
|
28
|
Knaden M. Learning and processing of navigational cues in the desert ant. Curr Opin Neurobiol 2019; 54:140-145. [DOI: 10.1016/j.conb.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
|
29
|
Dolan MJ, Belliart-Guérin G, Bates AS, Frechter S, Lampin-Saint-Amaux A, Aso Y, Roberts RJV, Schlegel P, Wong A, Hammad A, Bock D, Rubin GM, Preat T, Plaçais PY, Jefferis GSXE. Communication from Learned to Innate Olfactory Processing Centers Is Required for Memory Retrieval in Drosophila. Neuron 2018; 100:651-668.e8. [PMID: 30244885 PMCID: PMC6226615 DOI: 10.1016/j.neuron.2018.08.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022]
Abstract
The behavioral response to a sensory stimulus may depend on both learned and innate neuronal representations. How these circuits interact to produce appropriate behavior is unknown. In Drosophila, the lateral horn (LH) and mushroom body (MB) are thought to mediate innate and learned olfactory behavior, respectively, although LH function has not been tested directly. Here we identify two LH cell types (PD2a1 and PD2b1) that receive input from an MB output neuron required for recall of aversive olfactory memories. These neurons are required for aversive memory retrieval and modulated by training. Connectomics data demonstrate that PD2a1 and PD2b1 neurons also receive direct input from food odor-encoding neurons. Consistent with this, PD2a1 and PD2b1 are also necessary for unlearned attraction to some odors, indicating that these neurons have a dual behavioral role. This provides a circuit mechanism by which learned and innate olfactory information can interact in identified neurons to produce appropriate behavior. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Michael-John Dolan
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ghislain Belliart-Guérin
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | | | - Shahar Frechter
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aurélie Lampin-Saint-Amaux
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Philipp Schlegel
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Allan Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adnan Hammad
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Davi Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France.
| | - Gregory S X E Jefferis
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| |
Collapse
|
30
|
Donlea JM. Roles for sleep in memory: insights from the fly. Curr Opin Neurobiol 2018; 54:120-126. [PMID: 30366270 DOI: 10.1016/j.conb.2018.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/04/2018] [Indexed: 01/10/2023]
Abstract
Sleep has been universally conserved across animal species. The basic functions of sleep remain unclear, but insufficient sleep impairs memory acquisition and retention in both vertebrates and invertebrates. Sleep is also a homeostatic process that is influenced not only by the amount of time awake, but also by neural activity and plasticity. Because of the breadth and precision of available genetic tools, the fruit fly has become a powerful model system to understand sleep regulation and function. Importantly, these tools enable the dissection of memory-encoding circuits at the level of individual neurons, and have allowed the development of genetic tools to induce sleep on-demand. This review describes recent investigations of the role for sleep in memory using Drosophila and current hypotheses of sleep's functions for supporting plasticity, learning, and memory.
Collapse
Affiliation(s)
- Jeffrey M Donlea
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
31
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
32
|
Amnesiac Is Required in the Adult Mushroom Body for Memory Formation. J Neurosci 2018; 38:9202-9214. [PMID: 30201766 DOI: 10.1523/jneurosci.0876-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 11/21/2022] Open
Abstract
It was proposed that the Drosophila amnesiac gene (amn) is required for consolidation of aversive memory in the dorsal paired medial (DPM) neurons, a pair of large neurons that broadly innervate the mushroom bodies (MB), the fly center for olfactory learning and memory (Waddell et al., 2000). Yet, a conditional analysis showed that it was not possible to rescue the memory deficit of amnX8 null mutant flies when amn expression was restored only in the adult (DeZazzo et al., 1999), which led the authors to suggest that amn might be involved in the development of brain structures that normally promote adult olfactory memory. To further investigate temporal and spatial requirements of Amnesiac (AMN) peptide in memory, we used RNA interference in combination with conditional drivers. Experiments were conducted either in both sexes, or in either sexes. Our data show that acute modulation of amn expression in adult DPM neurons does not impact memory. We further show that amn expression is required for normal development of DPM neurons. Detailed enhancer trap analyses suggest that amn transcription unit contains two distinct enhancers, one specific of DPM neurons, and the other specific of α/β MB neurons. This prompted us to investigate extensively the role of AMN in the adult MB. Together, our results demonstrate that amn is acutely required in adult α/β MB neurons for middle-term and long-term memory. The data thus establish that amn plays two distinct roles. Its expression is required in DPM neurons for their development, and in adult MB for olfactory memory.SIGNIFICANCE STATEMENT The Drosophila amnesiac gene encodes a neuropeptide whose expression was proposed to be required for consolidation of aversive memory in the dorsal paired medial (DPM) neurons, a pair of large neurons that broadly innervate the mushroom bodies (MB), the olfactory memory center. Here, we investigated amnesiac temporal and spatial requirement using conditional tools that allowed us to manipulate its expression in selected neurons. This work leads to a complete reassessment of the role of amnesiac in brain development and memory. We show that amnesiac is required for two distinct processes: for normal development of DPM neurons, and in adult MB for memory.
Collapse
|
33
|
Cognigni P, Felsenberg J, Waddell S. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr Opin Neurobiol 2018; 49:51-58. [PMID: 29258011 PMCID: PMC5981003 DOI: 10.1016/j.conb.2017.12.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/02/2022]
Abstract
When animals learn, plasticity in brain networks that respond to specific cues results in a change in the behavior that these cues elicit. Individual network components in the mushroom bodies of the fruit fly Drosophila melanogaster represent cues, learning signals and behavioral outcomes of learned experience. Recent findings have highlighted the importance of dopamine-driven plasticity and activity in feedback and feedforward connections, between various elements of the mushroom body neural network. These computational motifs have been shown to be crucial for long term olfactory memory consolidation, integration of internal states, re-evaluation and updating of learned information. The often recurrent circuit anatomy and a prolonged requirement for activity in parts of these underlying networks, suggest that self-sustained and precisely timed activity is a fundamental feature of network computations in the insect brain. Together these processes allow flies to continuously adjust the content of their learned knowledge and direct their behavior in a way that best represents learned expectations and serves their most pressing current needs.
Collapse
Affiliation(s)
- Paola Cognigni
- Centre for Neural Circuit and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, United Kingdom
| | - Johannes Felsenberg
- Centre for Neural Circuit and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, United Kingdom
| | - Scott Waddell
- Centre for Neural Circuit and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, United Kingdom.
| |
Collapse
|
34
|
Signaling Mode of the Broad-Spectrum Conserved CO 2 Receptor Is One of the Important Determinants of Odor Valence in Drosophila. Neuron 2018; 97:1153-1167.e4. [PMID: 29429938 DOI: 10.1016/j.neuron.2018.01.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022]
Abstract
Odor detection involves hundreds of olfactory receptors from diverse families, making modeling of hedonic valence of an odorant difficult, even in Drosophila melanogaster where most receptors have been deorphanised. We demonstrate that a broadly tuned heteromeric receptor that detects CO2 (Gr21a, Gr63a) and other odorants is a key determinant of valence along with a few members of the Odorant receptor family in a T-maze, but not in a trap assay. Gr21a and Gr63a have atypically high amino acid conservation in Dipteran insects, and they use both inhibition and activation to convey positive or negative valence for numerous odorants. Inhibitors elicit a robust Gr63a-dependent attraction, while activators, strong aversion. The attractiveness of inhibitory odorants increases with increasing background CO2 levels, providing a mechanism for behavior modulation in odor blends. In mosquitoes, valence is switched and activation of the orthologous receptor conveys attraction. Reverse chemical ecology enables the identification of inhibitory odorants to reduce attraction of mosquitoes to skin.
Collapse
|
35
|
Fuenzalida-Uribe N, Campusano JM. Unveiling the Dual Role of the Dopaminergic System on Locomotion and the Innate Value for an Aversive Olfactory Stimulus in Drosophila. Neuroscience 2018; 371:433-444. [DOI: 10.1016/j.neuroscience.2017.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023]
|
36
|
Abstract
The study of behavior requires manipulation of the controlling neural circuits. The fruit fly, Drosophila melanogaster, is an ideal model for studying behavior because of its relatively small brain and the numerous sophisticated genetic tools that have been developed for this animal. Relatively recent technical advances allow the manipulation of a small subset of neurons with temporal resolution in flies while they are subject to behavior assays. This review briefly describes the most important genetic techniques, reagents, and approaches that are available to study and manipulate the neural circuits involved in Drosophila behavior. We also describe some examples of these genetic tools in the study of the olfactory receptor system.
Collapse
Affiliation(s)
- Fernando Martín
- a Department of Functional Biology (Genetics) , University of Oviedo , Oviedo , Spain
| | - Esther Alcorta
- a Department of Functional Biology (Genetics) , University of Oviedo , Oviedo , Spain
| |
Collapse
|
37
|
Drosophila Neprilysin 1 Rescues Memory Deficits Caused by Amyloid-β Peptide. J Neurosci 2017; 37:10334-10345. [PMID: 28931572 DOI: 10.1523/jneurosci.1634-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023] Open
Abstract
Neprilysins are Type II metalloproteinases known to degrade and inactivate a number of small peptides, in particular the mammalian amyloid-β peptide (Aβ). In Drosophila, several neprilysins expressed in the brain are required for middle-term (MTM) and long-term memory (LTM) in the dorsal paired medial (DPM) neurons, a pair of large neurons that broadly innervate the mushroom bodies (MB), the center of olfactory memory. These data indicate that one or several peptides need to be degraded for MTM and LTM. We have previously shown that the fly amyloid precursor protein (APPL) is required for memory in the MB. We show here that APPL is also required in adult DPM neurons for MTM and LTM formation. This finding prompted us to search for an interaction between neprilysins and Drosophila Aβ (dAβ), a cleavage product of APPL. To find out whether dAβ was a neprilysin's target, we used inducible drivers to modulate neprilysin 1 (Nep1) and dAβ expression in adult DPM neurons. Experiments were conducted either in both sexes or in females. We show that Nep1 inhibition makes dAβ expression detrimental to both MTM and LTM. Conversely, memory deficits displayed by dAβ-expressing flies are rescued by Nep1 overexpression. Consistent with behavioral data, biochemical analyses confirmed that Nep1 degrades dAβ. Together, our findings establish that Nep1 and dAβ expressed in DPM neurons are functionally linked for memory processes, suggesting that dAβ is a physiological target for Nep1.SIGNIFICANCE STATEMENT Neprilysins are endopeptidases known to degrade a number of small peptides and in particular the amyloid peptide. We previously showed that all four neprilysins expressed in the Drosophila brain are involved in specific phases of olfactory memory. Here we show that an increase in the level of the neprilysin 1 peptidase overcomes memory deficits induced by amyloid peptide in young flies. Together, the data reveal a functional interaction between neprilysin 1 and amyloid peptide, suggesting that neprilysin 1 degrades amyloid peptide. These findings raise the possibility that, under nonpathological conditions, mammalian neprilysins degrade amyloid peptide to ensure memory formation.
Collapse
|
38
|
Drosophila Neprilysins Are Involved in Middle-Term and Long-Term Memory. J Neurosci 2017; 36:9535-46. [PMID: 27629706 DOI: 10.1523/jneurosci.3730-15.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Neprilysins are type II metalloproteinases known to degrade and inactivate a number of small peptides. Neprilysins in particular are the major amyloid-β peptide-degrading enzymes. In mouse models of Alzheimer's disease, neprilysin overexpression improves learning and memory deficits, whereas neprilysin deficiency aggravates the behavioral phenotypes. However, whether these enzymes are involved in memory in nonpathological conditions is an open question. Drosophila melanogaster is a well suited model system with which to address this issue. Several memory phases have been characterized in this organism and the neuronal circuits involved are well described. The fly genome contains five neprilysin-encoding genes, four of which are expressed in the adult. Using conditional RNA interference, we show here that all four neprilysins are involved in middle-term and long-term memory. Strikingly, all four are required in a single pair of neurons, the dorsal paired medial (DPM) neurons that broadly innervate the mushroom bodies (MBs), the center of olfactory memory. Neprilysins are also required in the MB, reflecting the functional relationship between the DPM neurons and the MB, a circuit believed to stabilize memories. Together, our data establish a role for neprilysins in two specific memory phases and further show that DPM neurons play a critical role in the proper targeting of neuropeptides involved in these processes. SIGNIFICANCE STATEMENT Neprilysins are endopeptidases known to degrade a number of small peptides. Neprilysin research has essentially focused on their role in Alzheimer's disease and heart failure. Here, we use Drosophila melanogaster to study whether neprilysins are involved in memory. Drosophila can form several types of olfactory memory and the neuronal structures involved are well described. Four neprilysin genes are expressed in adult Drosophila Using conditional RNA interference, we show that all four are specifically involved in middle-term memory (MTM) and long-term memory (LTM) and that their expression is required in the mushroom bodies and also in a single pair of closely connected neurons. The data show that these two neurons play a critical role in targeting neuropeptides essential for MTM and LTM.
Collapse
|
39
|
Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, Ordish C, Shinomiya A, Sigmund C, Takemura S, Tran J, Turner GC, Rubin GM, Scheffer LK. A connectome of a learning and memory center in the adult Drosophila brain. eLife 2017; 6. [PMID: 28718765 PMCID: PMC5550281 DOI: 10.7554/elife.26975] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall. DOI:http://dx.doi.org/10.7554/eLife.26975.001
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Allan Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - William Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lei-Ann Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Sigmund
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie Tran
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
40
|
Shyu WH, Chiu TH, Chiang MH, Cheng YC, Tsai YL, Fu TF, Wu T, Wu CL. Neural circuits for long-term water-reward memory processing in thirsty Drosophila. Nat Commun 2017; 8:15230. [PMID: 28504254 PMCID: PMC5440665 DOI: 10.1038/ncomms15230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
The intake of water is important for the survival of all animals and drinking water can be used as a reward in thirsty animals. Here we found that thirsty Drosophila melanogaster can associate drinking water with an odour to form a protein-synthesis-dependent water-reward long-term memory (LTM). Furthermore, we found that the reinforcement of LTM requires water-responsive dopaminergic neurons projecting to the restricted region of mushroom body (MB) β′ lobe, which are different from the neurons required for the reinforcement of learning and short-term memory (STM). Synaptic output from α′β′ neurons is required for consolidation, whereas the output from γ and αβ neurons is required for the retrieval of LTM. Finally, two types of MB efferent neurons retrieve LTM from γ and αβ neurons by releasing glutamate and acetylcholine, respectively. Our results therefore cast light on the cellular and molecular mechanisms responsible for processing water-reward LTM in Drosophila. Distinct subsets of dopaminergic PAM neurons have been shown to be involved in short-term and long-term memory for sugar reward. Here the authors report the neural circuits and the cellular and molecular mechanisms for short-term and long-term memory for water reward in thirsty Drosophila.
Collapse
Affiliation(s)
- Wei-Huan Shyu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Hsiang Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chin Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Lun Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi-Nan University, Nantou 54561, Taiwan
| | - Tony Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
41
|
Tanabe K, Itoh M, Tonoki A. Age-Related Changes in Insulin-like Signaling Lead to Intermediate-Term Memory Impairment in Drosophila. Cell Rep 2017; 18:1598-1605. [DOI: 10.1016/j.celrep.2017.01.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 11/30/2022] Open
|
42
|
Wolff GH, Strausfeld NJ. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150055. [PMID: 26598732 DOI: 10.1098/rstb.2015.0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome-deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
43
|
Mushroom body signaling is required for locomotor activity rhythms in Drosophila. Neurosci Res 2016; 111:25-33. [PMID: 27106579 DOI: 10.1016/j.neures.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 02/01/2023]
Abstract
In the fruitfly Drosophila melanogaster, circadian rhythms of locomotor activity under constant darkness are controlled by pacemaker neurons. To understand how behavioral rhythmicity is generated by the nervous system, it is essential to identify the output circuits from the pacemaker neurons. A recent study of Drosophila has suggested that pacemaker neurons project to mushroom body (MB) neurons, which are considered the memory center in Drosophila. MBs also regulate spontaneous locomotor activity without learning, suggesting that MB neuronal activity regulates behavioral rhythms. However, the importance of MBs in generating behavioral rhythmicity remains controversial because contradicting results have been reported as follows: (1) locomotor activity in MB-ablated flies is substantially rhythmic, but (2) activation of restricted neuronal populations including MB neurons induces arrhythmic locomotor activity. Here, we report that neurotransmission in MBs is required for behavioral rhythmicity. For adult-specific disruption of neurotransmission in MBs, we used the GAL80/GAL4/UAS ternary gene expression system in combination with the temperature-sensitive dynamin mutation shibire(ts1). Blocking of neurotransmission in GAL4-positive neurons including MB neurons induced arrhythmic locomotor activity, whereas this arrhythmicity was rescued by the MB-specific expression of GAL80. Our results indicate that MB signaling plays a key role in locomotor activity rhythms in Drosophila.
Collapse
|
44
|
Hige T, Aso Y, Modi MN, Rubin GM, Turner GC. Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila. Neuron 2016; 88:985-998. [PMID: 26637800 DOI: 10.1016/j.neuron.2015.11.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/11/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
Abstract
Although associative learning has been localized to specific brain areas in many animals, identifying the underlying synaptic processes in vivo has been difficult. Here, we provide the first demonstration of long-term synaptic plasticity at the output site of the Drosophila mushroom body. Pairing an odor with activation of specific dopamine neurons induces both learning and odor-specific synaptic depression. The plasticity induction strictly depends on the temporal order of the two stimuli, replicating the logical requirement for associative learning. Furthermore, we reveal that dopamine action is confined to and distinct across different anatomical compartments of the mushroom body lobes. Finally, we find that overlap between sparse representations of different odors defines both stimulus specificity of the plasticity and generalizability of associative memories across odors. Thus, the plasticity we find here not only manifests important features of associative learning but also provides general insights into how a sparse sensory code is read out.
Collapse
Affiliation(s)
- Toshihide Hige
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mehrab N Modi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Glenn C Turner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
45
|
Current techniques for high-resolution mapping of behavioral circuits in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:895-909. [DOI: 10.1007/s00359-015-1010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
46
|
Abstract
Although aging is known to impair intermediate-term memory in Drosophila, its effect on protein-synthesis-dependent long-term memory (LTM) is unknown. We show here that LTM is impaired with age, not due to functional defects in synaptic output of mushroom body (MB) neurons, but due to connectivity defects of dorsal paired medial (DPM) neurons with their postsynaptic MB neurons. GFP reconstitution across synaptic partners (GRASP) experiments revealed structural connectivity defects in aged animals of DPM neurons with MB axons in the α lobe neuropil. As a consequence, a protein-synthesis-dependent LTM trace in the α/β MB neurons fails to form. Aging thus impairs protein-synthesis-dependent LTM along with the α/β MB neuron LTM trace by lessening the connectivity of DPM and α/β MB neurons.
Collapse
|
47
|
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4:e03868. [PMID: 25564731 PMCID: PMC4305081 DOI: 10.7554/elife.03868] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
48
|
Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S. Decoding odor quality and intensity in the Drosophila brain. eLife 2014; 3:e04147. [PMID: 25512254 PMCID: PMC4270039 DOI: 10.7554/elife.04147] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022] Open
Abstract
To internally reflect the sensory environment, animals create neural maps encoding the external stimulus space. From that primary neural code relevant information has to be extracted for accurate navigation. We analyzed how different odor features such as hedonic valence and intensity are functionally integrated in the lateral horn (LH) of the vinegar fly, Drosophila melanogaster. We characterized an olfactory-processing pathway, comprised of inhibitory projection neurons (iPNs) that target the LH exclusively, at morphological, functional and behavioral levels. We demonstrate that iPNs are subdivided into two morphological groups encoding positive hedonic valence or intensity information and conveying these features into separate domains in the LH. Silencing iPNs severely diminished flies' attraction behavior. Moreover, functional imaging disclosed a LH region tuned to repulsive odors comprised exclusively of third-order neurons. We provide evidence for a feature-based map in the LH, and elucidate its role as the center for integrating behaviorally relevant olfactory information. DOI:http://dx.doi.org/10.7554/eLife.04147.001 Organisms need to sense and adapt to their environment in order to survive. Senses such as vision and smell allow an organism to absorb information about the external environment and translate it into a meaningful internal image. This internal image helps the organism to remember incidents and act accordingly when they encounter similar situations again. A typical example is when organisms are repeatedly attracted to odors that are essential for survival, such as food and pheromones, and are repulsed by odors that threaten survival. Strutz et al. addressed how attractiveness or repulsiveness of a smell, and also the strength of a smell, are processed by a part of the olfactory system called the lateral horn in fruit flies. This involved mapping the neuronal patterns that were generated in the lateral horn when a fly was exposed to particular odors. Strutz et al. found that a subset of neurons called inhibitory projection neurons processes information about whether the odor is attractive or repulsive, and that a second subset of these neurons process information about the intensity of the odor. Other insects, such as honey bees and hawk moths, have olfactory systems with a similar architecture and might also employ a similar spatial approach to encode information regarding the intensity and identity of odors. Locusts, on the other hand, employ a temporal approach to encoding information about odors. The work of Strutz et al. shows that certain qualities of odors are contained in a spatial map in a specific brain region of the fly. This opens up the question of how the information in this spatial map influences decisions made by the fly. DOI:http://dx.doi.org/10.7554/eLife.04147.002
Collapse
Affiliation(s)
- Antonia Strutz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jan Soelter
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Amelie Baschwitz
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Abu Farhan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Schmuker
- Department for Biology, Pharmacy and Chemistry, Free University Berlin, Neuroinformatics and Theoretical Neuroscience, Berlin, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
49
|
Genetic dissection of sleep-metabolism interactions in the fruit fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:869-77. [PMID: 25236355 DOI: 10.1007/s00359-014-0936-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/16/2014] [Indexed: 10/24/2022]
Abstract
Dysregulation of sleep and metabolism has enormous health consequences. Sleep loss is linked to increased appetite and insulin insensitivity, and epidemiological studies link chronic sleep deprivation to obesity-related disorders including type II diabetes and cardiovascular disease. Interactions between sleep and metabolism involve the integration of signaling from brain regions regulating sleep, feeding, and metabolic function. Investigating the relationship between these processes provides a model to address more general questions of how the brain prioritizes homeostatically regulated behaviors. The availability of powerful genetic tools in the fruit fly, Drosophila melanogaster, allows for precise manipulation of neural function in freely behaving animals. There is a strong conservation of genes and neural circuit principles regulating sleep and metabolic function, and genetic screens in fruit flies have been effective in identifying novel regulators of these processes. Here, we review recent findings in the fruit fly that further our understanding of how the brain modulates sleep in accordance with metabolic state.
Collapse
|
50
|
Abstract
New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive.
Collapse
|