1
|
Wang J, Zhang Q, Fan W, Shi Q, Mao J, Xie J, Chai G, Zhang C. Deciphering olfactory receptor binding mechanisms: a structural and dynamic perspective on olfactory receptors. Front Mol Biosci 2025; 11:1498796. [PMID: 39845900 PMCID: PMC11751049 DOI: 10.3389/fmolb.2024.1498796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans. This has provided new insights into the binding mechanisms between odor molecules and olfactory receptors. Furthermore, due to the rapid advancements in related fields such as computer simulations, the prediction and exploration of odor molecule binding to olfactory receptors have been progressively achieved through molecular dynamics simulations. Through this comprehensive review, we aim to provide a thorough analysis of research related to the binding mechanisms between odor molecules and olfactory receptors from the perspectives of structural biology and molecular dynamics simulations. Finally, we will provide an outlook on the future of research in the field of olfactory receptor sensory mechanisms.
Collapse
Affiliation(s)
- Jingtao Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qidong Zhang
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Wu Fan
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qingzhao Shi
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jian Mao
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jianping Xie
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Guobi Chai
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
2
|
Mou YK, Song XY, Wang HR, Wang Y, Liu WC, Yang T, Zhang MJ, Hu Y, Ren C, Song XC. Understanding the nose-brain axis and its role in related diseases: A conceptual review. Neurobiol Dis 2024; 202:106690. [PMID: 39389156 DOI: 10.1016/j.nbd.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The nose-brain axis (NBA), a critical component of the body-brain axis, not only serves as a drug transport route for the treatment of brain diseases but also mediates changes such as neuroimmune disorders, which may be an important mechanism in the occurrence and development of some nasal or brain diseases. Despite its importance, there are substantial gaps that remain in our understanding of the characteristics of NBA-mediated diseases and of the cellular and molecular mechanisms underlying the bidirectional NBA crosstalk. These gaps have limited the translational application of NBA-related research findings to some extent. Therefore, this review aims to address the conceptual framework of NBA and highlight its values in representative diseases by combining existing literature with new research results from our group. We hope that this paper will provide a basis for further in-depth research in this field, and facilitate the clinical translation of NBA.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Wan-Chen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Ming-Jun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yue Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China; Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China; Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
| |
Collapse
|
3
|
Barwich AS, Severino GJ. The Wire Is Not the Territory: Understanding Representational Drift in Olfaction With Dynamical Systems Theory. Top Cogn Sci 2023. [PMID: 37690113 DOI: 10.1111/tops.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Representational drift is a phenomenon of increasing interest in the cognitive and neural sciences. While investigations are ongoing for other sensory cortices, recent research has demonstrated the pervasiveness in which it occurs in the piriform cortex for olfaction. This gradual weakening and shifting of stimulus-responsive cells has critical implications for sensory stimulus-response models and perceptual decision-making. While representational drift may complicate traditional sensory processing models, it could be seen as an advantage in olfaction, as animals live in environments with constantly changing and unpredictable chemical information. Non-topographical encoding in the olfactory system may aid in contextualizing reactions to promiscuous odor stimuli, facilitating adaptive animal behavior and survival. This article suggests that traditional models of stimulus-(neural) response mapping in olfaction may need to be reevaluated and instead motivates the use of dynamical systems theory as a methodology and conceptual framework.
Collapse
Affiliation(s)
- Ann-Sophie Barwich
- Cognitive Science Program, Indiana University
- Department of History and Philosophy of Science and Medicine, Indiana University
| | | |
Collapse
|
4
|
Ho UH, Pak SH, Kim K, Pak HS. Efficient screening of SNP in canine OR52N9 and OR9S25 as assistant marker of olfactory ability. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Barwich AS, Lloyd EA. More than meets the AI: The possibilities and limits of machine learning in olfaction. Front Neurosci 2022; 16:981294. [PMID: 36117640 PMCID: PMC9475214 DOI: 10.3389/fnins.2022.981294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Can machine learning crack the code in the nose? Over the past decade, studies tried to solve the relation between chemical structure and sensory quality with Big Data. These studies advanced computational models of the olfactory stimulus, utilizing artificial intelligence to mine for clear correlations between chemistry and psychophysics. Computational perspectives promised to solve the mystery of olfaction with more data and better data processing tools. None of them succeeded, however, and it matters as to why this is the case. This article argues that we should be deeply skeptical about the trend to black-box the sensory system's biology in our theories of perception. Instead, we need to ground both stimulus models and psychophysical data on real causal-mechanistic explanations of the olfactory system. The central question is: Would knowledge of biology lead to a better understanding of the stimulus in odor coding than the one utilized in current machine learning models? That is indeed the case. Recent studies about receptor behavior have revealed that the olfactory system operates by principles not captured in current stimulus-response models. This may require a fundamental revision of computational approaches to olfaction, including its psychological effects. To analyze the different research programs in olfaction, we draw on Lloyd's "Logic of Research Questions," a philosophical framework which assists scientists in explicating the reasoning, conceptual commitments, and problems of a modeling approach in question.
Collapse
Affiliation(s)
- Ann-Sophie Barwich
- Department of History and Philosophy of Science and Medicine, College of Arts and Sciences, Indiana University Bloomington, Bloomington, IN, United States
- Cognitive Science Program, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Elisabeth A. Lloyd
- Department of History and Philosophy of Science and Medicine, College of Arts and Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
6
|
Licon CC, Bosc G, Sabri M, Mantel M, Fournel A, Bushdid C, Golebiowski J, Robardet C, Plantevit M, Kaytoue M, Bensafi M. Chemical features mining provides new descriptive structure-odor relationships. PLoS Comput Biol 2019; 15:e1006945. [PMID: 31022180 PMCID: PMC6504111 DOI: 10.1371/journal.pcbi.1006945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/07/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
An important goal in researching the biology of olfaction is to link the perception of smells to the chemistry of odorants. In other words, why do some odorants smell like fruits and others like flowers? While the so-called stimulus-percept issue was resolved in the field of color vision some time ago, the relationship between the chemistry and psycho-biology of odors remains unclear up to the present day. Although a series of investigations have demonstrated that this relationship exists, the descriptive and explicative aspects of the proposed models that are currently in use require greater sophistication. One reason for this is that the algorithms of current models do not consistently consider the possibility that multiple chemical rules can describe a single quality despite the fact that this is the case in reality, whereby two very different molecules can evoke a similar odor. Moreover, the available datasets are often large and heterogeneous, thus rendering the generation of multiple rules without any use of a computational approach overly complex. We considered these two issues in the present paper. First, we built a new database containing 1689 odorants characterized by physicochemical properties and olfactory qualities. Second, we developed a computational method based on a subgroup discovery algorithm that discriminated perceptual qualities of smells on the basis of physicochemical properties. Third, we ran a series of experiments on 74 distinct olfactory qualities and showed that the generation and validation of rules linking chemistry to odor perception was possible. Taken together, our findings provide significant new insights into the relationship between stimulus and percept in olfaction. In addition, by automatically extracting new knowledge linking chemistry of odorants and psychology of smells, our results provide a new computational framework of analysis enabling scientists in the field to test original hypotheses using descriptive or predictive modeling. An important issue in olfaction sciences deals with the question of how a chemical information can be translated into percepts. This is known as the stimulus-percept problem. Here, we set out to better understand this issue by combining knowledge about the chemistry and cognition of smells with computational olfaction. We also assumed that not only one, but several physicochemical models may describe a given olfactory quality. To achieve this aim, a first challenge was to set up a database with ~1700 molecules characterized by chemical features and described by olfactory qualities (e.g. fruity, woody). A second challenge consisted in developing a computational model enabling the discrimination of olfactory qualities based on these chemical features. By meeting these 2 challenges, we provided for several olfactory qualities new chemical models describing why an odorant molecule smells fruity or woody (among others). For most qualities, multiple (rather than a single) chemical models were generated. These findings provide new elements of knowledge about the relationship between odorant chemistry and perception. They also make it possible to envisage concrete applications in the aroma and fragrance field where chemical characterization of smells is an important step in the design of new products.
Collapse
Affiliation(s)
- Carmen C. Licon
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
- Food Science and Nutrition Department, California State University, Fresno, California, United States of America
| | - Guillaume Bosc
- INSA Lyon, CNRS, LIRIS UMR5205, France
- Infologic, Bourg-lès-Valence, France
| | - Mohammed Sabri
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
- Ecole Nationale Polytechnique d’Oran—Maurice Audin, Département de Mathématiques et Informatique, Oran, Algérie
| | - Marylou Mantel
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
| | - Arnaud Fournel
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
| | - Caroline Bushdid
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, Nice, France
| | - Jerome Golebiowski
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, Nice, France
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | | | | | - Mehdi Kaytoue
- INSA Lyon, CNRS, LIRIS UMR5205, France
- Infologic, Bourg-lès-Valence, France
| | - Moustafa Bensafi
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
- * E-mail:
| |
Collapse
|
7
|
Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Front Mol Biosci 2017; 4:63. [PMID: 28932739 PMCID: PMC5592726 DOI: 10.3389/fmolb.2017.00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Human G-protein coupled receptors (hGPCRs) constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany
| | - Eda Suku
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Biotechnology, University of VeronaVerona, Italy
| | - Sven Cichon
- Institute of Neuroscience and Medicine INM-1, Forschungszentrum JülichJülich, Germany.,Institute for Human Genetics, Department of Genomics, Life&Brain Center, University of BonnBonn, Germany.,Division of Medical Genetics, Department of Biomedicine, University of BaselBasel, Switzerland
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule AachenAachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National UniversityHanoi, Vietnam
| |
Collapse
|
8
|
Ferdenzi C, Rouby C, Bensafi M. The Social Nose: Importance of Olfactory Perception in Group Dynamics and Relationships. PSYCHOLOGICAL INQUIRY 2016. [DOI: 10.1080/1047840x.2016.1215207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Reisert J, Restrepo D. Molecular tuning of odorant receptors and its implication for odor signal processing. Chem Senses 2009; 34:535-45. [PMID: 19525317 DOI: 10.1093/chemse/bjp028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of the odorant receptor (OR) family by Buck and Axel in 1991 provided a quantum jump in our understanding of olfactory function. However, the study of the responsiveness of ORs to odor ligands was challenging due to the difficulties in deorphanizing the receptors. In this manuscript, we review recent findings of OR responsiveness that have come about through improved OR deorphanization methods, site-directed mutagenesis, structural modeling studies, and studies of OR responses in situ in olfactory sensory neurons. Although there has been a major leap in our understanding of receptor-ligand interactions and how these contribute to the input to the olfactory system, an improvement of our understanding of receptor structure and dynamics and interactions with intracellular and extracellular proteins is necessary.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Lesniak A, Walczak M, Jezierski T, Sacharczuk M, Gawkowski M, Jaszczak K. Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs. J Hered 2008; 99:518-27. [PMID: 18664716 DOI: 10.1093/jhered/esn057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The outstanding sensitivity of the canine olfactory system has been acknowledged by using sniffer dogs in military and civilian service for detection of a variety of odors. It is hypothesized that the canine olfactory ability is determined by polymorphisms in olfactory receptor (OR) genes. We investigated 5 OR genes for polymorphic sites which might affect the olfactory ability of service dogs in different fields of specific substance detection. All investigated OR DNA sequences proved to have allelic variants, the majority of which lead to protein sequence alteration. Homozygous individuals at 2 gene loci significantly differed in their detection skills from other genotypes. This suggests a role of specific alleles in odor detection and a linkage between single-nucleotide polymorphism and odor recognition efficiency.
Collapse
Affiliation(s)
- Anna Lesniak
- Institute of Genetics and Animal Breeding Polish Academy of Sciences, Jastrzebiec, Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Goyert HF, Frank ME, Gent JF, Hettinger TP. Characteristic component odors emerge from mixtures after selective adaptation. Brain Res Bull 2007; 72:1-9. [PMID: 17303501 PMCID: PMC1913636 DOI: 10.1016/j.brainresbull.2006.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 11/30/2022]
Abstract
Humans cannot reliably identify the distinctive characteristic odors of components in mixtures containing more than three compounds. In the present study, we demonstrate that selective adaptation can improve component identification. Characteristic component odors, lost in mixtures, were identifiable after presenting other mixture constituents for a few seconds. In mixtures of vanillin, isopropyl alcohol, l-menthol and phenethyl alcohol, this rapid selective adaptation unmasked each component. We suggest that these findings relate directly to how olfactory qualities are coded: olfactory receptors do not act as detectors of isolated molecular features, but likely recognize entire molecules closely associated with perceived olfactory qualities or "notes". Rapid and focused activation of a few distinct receptor types may dominate most odor percepts, emphasizing the importance of many dynamic and specific neural signals. An interaction between two fundamental coding strategies, mixture suppression and selective adaptation, with hundreds of potential olfactory notes, explains humans experiencing the appearance and disappearance of identifiable odors against ambient mixture backgrounds.
Collapse
Affiliation(s)
| | - Marion E. Frank
- Center for Neurosciences, Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT
| | - Janneane F. Gent
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University School of Medicine, New Haven, CT USA
| | - Thomas P. Hettinger
- Center for Neurosciences, Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
12
|
Abstract
Images of the exquisitely formed apparatus of the nervous system have great potential to capture the imagination. However, the fascinating complexity and diversity of neuronal form has only rarely been celebrated in broader visual culture. We discuss how scientific and cultural practices at the time of the neuron's discovery generated a legacy of schematic and simplified popular neuronal imagery, which is only now being revised in the light of technological advances and a changing artistic climate.
Collapse
Affiliation(s)
- Richard Wingate
- Medical Research Council Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
13
|
Niimura Y, Nei M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 2006; 51:505-517. [PMID: 16607462 PMCID: PMC1850483 DOI: 10.1007/s10038-006-0391-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
The numbers of functional olfactory receptor (OR) genes in humans and mice are about 400 and 1,000 respectively. In both humans and mice, these genes exist as genomic clusters and are scattered over almost all chromosomes. The difference in the number of genes between the two species is apparently caused by massive inactivation of OR genes in the human lineage and a substantial increase of OR genes in the mouse lineage after the human-mouse divergence. Compared with mammals, fishes have a much smaller number of OR genes. However, the OR gene family in fishes is much more divergent than that in mammals. Fishes have many different groups of genes that are absent in mammals, suggesting that the mammalian OR gene family is characterized by the loss of many group genes that existed in the ancestor of vertebrates and the subsequent expansion of specific groups of genes. Therefore, this gene family apparently changed dynamically depending on the evolutionary lineage and evolved under the birth-and-death model of evolution. Study of the evolutionary changes of two gene families for vomeronasal receptors and two gene families for taste receptors, which are structurally similar, but remotely related to OR genes, showed that some of the gene families evolved in the same fashion as the OR gene family. It appears that the number and types of genes in chemosensory receptor gene families have evolved in response to environmental needs, but they are also affected by fortuitous factors.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Brown RL, Strassmaier T, Brady JD, Karpen JW. The pharmacology of cyclic nucleotide-gated channels: emerging from the darkness. Curr Pharm Des 2006; 12:3597-613. [PMID: 17073662 PMCID: PMC2467446 DOI: 10.2174/138161206778522100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These channels have been detected in many other tissues where their functions are largely unclear. The use of gene knockouts and other methods have yielded some information, but there is a pressing need for potent and specific pharmacological agents directed at CNG channels. To date there has been very little systematic effort in this direction - most of what can be termed CNG channel pharmacology arose from testing reagents known to target protein kinases or other ion channels, or by accident when researchers were investigating other intracellular pathways that may regulate the activity of CNG channels. Predictably, these studies have not produced selective agents. However, taking advantage of emerging structural information and the increasing knowledge of the biophysical properties of these channels, some promising compounds and strategies have begun to emerge. In this review we discuss progress on two fronts, cyclic nucleotide analogs as both activators and competitive inhibitors, and inhibitors that target the pore or gating machinery of the channel. We also discuss the potential of these compounds for treating certain forms of retinal degeneration.
Collapse
Affiliation(s)
- R. Lane Brown
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy Strassmaier
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James D. Brady
- Neurological Sciences Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey W. Karpen
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
15
|
Rash JE, Davidson KGV, Kamasawa N, Yasumura T, Kamasawa M, Zhang C, Michaels R, Restrepo D, Ottersen OP, Olson CO, Nagy JI. Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. JOURNAL OF NEUROCYTOLOGY 2005; 34:307-41. [PMID: 16841170 PMCID: PMC1525003 DOI: 10.1007/s11068-005-8360-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 01/06/2006] [Accepted: 01/07/2006] [Indexed: 01/21/2023]
Abstract
Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at "mixed" glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3'-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli.
Collapse
Affiliation(s)
- John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, 80523, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
A striking example of neuronal synchronization occurs in the mammalian main olfactory bulb where mitral cells that project to the same glomerular unit display highly synchronized spike activity. In this issue of Neuron, Christie et al. use mice deficient for the gap junction protein connexin36 (Cx36) to demonstrate that Cx36-mediated electrical coupling underlies such synchrony.
Collapse
Affiliation(s)
- Frank Zufall
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, Maryland 21201, USA
| |
Collapse
|