1
|
Chen X, Perry S, Fan Z, Wang B, Loxterkamp E, Wang S, Hu J, Dickman D, Han C. Tissue-specific knockout in the Drosophila neuromuscular system reveals ESCRT's role in formation of synapse-derived extracellular vesicles. PLoS Genet 2024; 20:e1011438. [PMID: 39388480 PMCID: PMC11495600 DOI: 10.1371/journal.pgen.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Tissue-specific gene knockout by CRISPR/Cas9 is a powerful approach for characterizing gene functions during development. However, this approach has not been successfully applied to most Drosophila tissues, including the Drosophila neuromuscular junction (NMJ). To expand tissue-specific CRISPR to this powerful model system, here we present a CRISPR-mediated tissue-restricted mutagenesis (CRISPR-TRiM) toolkit for knocking out genes in motoneurons, muscles, and glial cells. We validated the efficacy of CRISPR-TRiM by knocking out multiple genes in each tissue, demonstrated its orthogonal use with the Gal4/UAS binary expression system, and showed simultaneous knockout of multiple redundant genes. We used CRISPR-TRiM to discover an essential role for SNARE components in NMJ maintenance. Furthermore, we demonstrate that the canonical ESCRT pathway suppresses NMJ bouton growth by downregulating retrograde Gbb signaling. Lastly, we found that axon termini of motoneurons rely on ESCRT-mediated intra-axonal membrane trafficking to release extracellular vesicles at the NMJ. Thus, we have successfully developed an NMJ CRISPR mutagenesis approach which we used to reveal genes important for NMJ structural plasticity.
Collapse
Affiliation(s)
- Xinchen Chen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Ziwei Fan
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth Loxterkamp
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Shuran Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jiayi Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, California, United States of America
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Guangming G, Mei C, Qinfeng Y, Xiang G, Chenchen Z, Qingyuan S, Wei X, Junhua G. Neurexin and neuroligins jointly regulate synaptic degeneration at the Drosophila neuromuscular junction based on TEM studies. Front Cell Neurosci 2023; 17:1257347. [PMID: 38026694 PMCID: PMC10646337 DOI: 10.3389/fncel.2023.1257347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
The Drosophila larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, primarily based on transmission electron microscopy (TEM) studies. When degeneration starts, the subsynaptic reticulum (SSR) swells, retracts and folds inward, and the residual SSR then degenerates into a disordered, thin or linear membrane. The axon terminal begins to degenerate from the central region, and the T-bar detaches from the presynaptic membrane with clustered synaptic vesicles to accelerate large-scale degeneration. There are two degeneration modes for clear synaptic vesicles. In the first mode, synaptic vesicles without actin filaments degenerate on the membrane with ultrafine spots and collapse and disperse to form an irregular profile with dark ultrafine particles. In the second mode, clear synaptic vesicles with actin filaments degenerate into dense synaptic vesicles, form irregular dark clumps without a membrane, and collapse and disperse to form an irregular profile with dark ultrafine particles. Last, all residual membranes in NMJ boutons degenerate into a linear shape, and all the residual elements in axon terminals degenerate and eventually form a cluster of dark ultrafine particles. Swelling and retraction of the SSR occurs prior to degradation of the axon terminal, which degenerates faster and with more intensity than the SSR. NMJ bouton degeneration occurs under normal physiological conditions but is accelerated in Drosophila neurexin (dnrx) dnrx273, Drosophila neuroligin (dnlg) dnlg1 and dnlg4 mutants and dnrx83;dnlg3 and dnlg2;dnlg3 double mutants, which suggests that both neurexin and neuroligins play a vital role in preventing synaptic degeneration.
Collapse
Affiliation(s)
- Gan Guangming
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Chen Mei
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Yu Qinfeng
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gao Xiang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhang Chenchen
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sheng Qingyuan
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Xie Wei
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
- The Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu, China
| | - Geng Junhua
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
- Shenzhen Research Institute of Southeast University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Furusawa K, Ishii K, Tsuji M, Tokumitsu N, Hasegawa E, Emoto K. Presynaptic Ube3a E3 ligase promotes synapse elimination through down-regulation of BMP signaling. Science 2023; 381:1197-1205. [PMID: 37708280 DOI: 10.1126/science.ade8978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Inactivation of the ubiquitin ligase Ube3a causes the developmental disorder Angelman syndrome, whereas increased Ube3a dosage is associated with autism spectrum disorders. Despite the enriched localization of Ube3a in the axon terminals including presynapses, little is known about the presynaptic function of Ube3a and mechanisms underlying its presynaptic localization. We show that developmental synapse elimination requires presynaptic Ube3a activity in Drosophila neurons. We further identified the domain of Ube3a that is required for its interaction with the kinesin motor. Angelman syndrome-associated missense mutations in the interaction domain attenuate presynaptic targeting of Ube3a and prevent synapse elimination. Conversely, increased Ube3a activity in presynapses leads to precocious synapse elimination and impairs synaptic transmission. Our findings reveal the physiological role of Ube3a and suggest potential pathogenic mechanisms associated with Ube3a dysregulation.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nagomi Tokumitsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Hasegawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Guss EJ, Akbergenova Y, Cunningham KL, Littleton JT. Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during Drosophila development. eLife 2023; 12:RP88273. [PMID: 37368474 PMCID: PMC10328508 DOI: 10.7554/elife.88273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. Although a core component of the ECM, the role of Perlecan in neuronal structure and function is less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval motoneuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes are not prevented by blocking Wallerian degeneration and are independent of Perlecan's role in Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual hemi-segments throughout larval development. These observations indicate disruption of neural lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.
Collapse
Affiliation(s)
- Ellen J Guss
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
6
|
Mushtaq Z, Aavula K, Lasser DA, Kieweg ID, Lion LM, Kins S, Pielage J. Madm/NRBP1 mediates synaptic maintenance and neurodegeneration-induced presynaptic homeostatic potentiation. Cell Rep 2022; 41:111710. [PMID: 36450258 DOI: 10.1016/j.celrep.2022.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
The precise regulation of synaptic connectivity and function is essential to maintain neuronal circuits. Here, we show that the Drosophila pseudo-kinase Madm/NRBP1 (Mlf-1-adapter-molecule/nuclear-receptor-binding protein 1) is required presynaptically to maintain synaptic stability and to coordinate synaptic growth and function. Presynaptic Madm mediates these functions by controlling cap-dependent translation via the target of rapamycin (TOR) effector 4E-BP/Thor (eukaryotic initiation factor 4E binding protein/Thor). Strikingly, at degenerating neuromuscular synapses, postsynaptic Madm induces a compensatory, transsynaptic signal that utilizes the presynaptic homeostatic potentiation (PHP) machinery to offset synaptic release deficits and to delay synaptic degeneration. Madm is not required for canonical PHP but induces a neurodegeneration-specific form of PHP and acts via the regulation of the cap-dependent translation regulators 4E-BP/Thor and S6-kinase. Consistently, postsynaptic induction of canonical PHP or TOR activation can compensate for postsynaptic Madm to alleviate functional and structural synaptic defects. Our results provide insights into the molecular mechanisms underlying neurodegeneration-induced PHP with potential neurotherapeutic applications.
Collapse
Affiliation(s)
- Zeeshan Mushtaq
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kumar Aavula
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | - Dario A Lasser
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ingrid D Kieweg
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lena M Lion
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
7
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
8
|
Vicidomini R, Serpe M. Local BMP signaling: A sensor for synaptic activity that balances synapse growth and function. Curr Top Dev Biol 2022; 150:211-254. [PMID: 35817503 PMCID: PMC11102767 DOI: 10.1016/bs.ctdb.2022.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Synapse development is coordinated by intercellular communication between the pre- and postsynaptic compartments, and by neuronal activity itself. In flies as in vertebrates, neuronal activity induces input-specific changes in the synaptic strength so that the entire circuit maintains stable function in the face of many challenges, including changes in synapse number and strength. But how do neurons sense synapse activity? In several studies carried out using the Drosophila neuromuscular junction (NMJ), we demonstrated that local BMP signaling provides an exquisite sensor for synapse activity. Here we review the main features of this exquisite sensor and discuss its functioning beyond monitoring the synapse activity but rather as a key controller that operates in coordination with other BMP signaling pathways to balance synapse growth, maturation and function.
Collapse
Affiliation(s)
- Rosario Vicidomini
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Mihaela Serpe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
9
|
Russo K, Wharton KA. BMP/TGF-β signaling as a modulator of neurodegeneration in ALS. Dev Dyn 2022; 251:10-25. [PMID: 33745185 PMCID: PMC11929146 DOI: 10.1002/dvdy.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary focuses on the emerging intersection between BMP/TGF-β signaling roles in nervous system function and the amyotrophic lateral sclerosis (ALS) disease state. Future research is critical to elucidate the molecular underpinnings of this intersection of the cellular processes disrupted in ALS and those influenced by BMP/TGF-β signaling, including synapse structure, neurotransmission, plasticity, and neuroinflammation. Such knowledge promises to inform us of ideal entry points for the targeted modulation of dysfunctional cellular processes in an effort to abrogate ALS pathologies. It is likely that different interventions are required, either at discrete points in disease progression, or across multiple dysfunctional processes which together lead to motor neuron degeneration and death. We discuss the challenging, but intriguing idea that modulation of the pleiotropic nature of BMP/TGF-β signaling could be advantageous, as a way to simultaneously treat defects in more than one cell process across different forms of ALS.
Collapse
Affiliation(s)
- Kathryn Russo
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | - Kristi A Wharton
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
11
|
LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021; 10:cells10082079. [PMID: 34440848 PMCID: PMC8391678 DOI: 10.3390/cells10082079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
Collapse
|
12
|
Nguyen TH, Han TH, Newfeld SJ, Serpe M. Selective Disruption of Synaptic BMP Signaling by a Smad Mutation Adjacent to the Highly Conserved H2 Helix. Genetics 2020; 216:159-175. [PMID: 32737119 PMCID: PMC7463279 DOI: 10.1534/genetics.120.303484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) shape normal development and function via canonical and noncanonical signaling pathways. BMPs initiate canonical signaling by binding to transmembrane receptors that phosphorylate Smad proteins and induce their translocation into the nucleus and regulation of target genes. Phosphorylated Smads also accumulate at cellular junctions, but this noncanonical, local BMP signaling modality remains less defined. We have recently reported that phosphorylated Smad (pMad in Drosophila) accumulates at synaptic junctions in protein complexes with genetically distinct composition and regulation. Here, we examined a wide collection of DrosophilaMad alleles and searched for molecular features relevant to pMad accumulation at synaptic junctions. We found that strong Mad alleles generally disrupt both synaptic and nuclear pMad, whereas moderate Mad alleles have a wider range of phenotypes and can selectively impact different BMP signaling pathways. Interestingly, regulatory Mad mutations reveal that synaptic pMad appears to be more sensitive to a net reduction in Mad levels than nuclear pMad. Importantly, a previously uncharacterized allele, Mad8 , showed markedly reduced synaptic pMad but only moderately diminished nuclear pMad. The postsynaptic composition and electrophysiological properties of Mad8 neuromuscular junctions (NMJs) were also altered. Using biochemical approaches, we examined how a single point mutation in Mad8 could influence the Mad-receptor interface and identified a key motif, the H2 helix. Our study highlights the biological relevance of Smad-dependent, synaptic BMP signaling and uncovers a highly conserved structural feature of Smads, critical for normal development and function.
Collapse
Affiliation(s)
- Tho Huu Nguyen
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Stuart J Newfeld
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
13
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Ho CH, Treisman JE. Specific Isoforms of the Guanine-Nucleotide Exchange Factor dPix Couple Neuromuscular Synapse Growth to Muscle Growth. Dev Cell 2020; 54:117-131.e5. [PMID: 32516570 DOI: 10.1016/j.devcel.2020.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
Developmental growth requires coordination between the growth rates of individual tissues and organs. Here, we examine how Drosophila neuromuscular synapses grow to match the size of their target muscles. We show that changes in muscle growth driven by autonomous modulation of insulin receptor signaling produce corresponding changes in synapse size, with each muscle affecting only its presynaptic motor neuron branches. This scaling growth is mechanistically distinct from synaptic plasticity driven by neuronal activity and requires increased postsynaptic differentiation induced by insulin receptor signaling in muscle. We identify the guanine-nucleotide exchange factor dPix as an effector of insulin receptor signaling. Alternatively spliced dPix isoforms that contain a specific exon are necessary and sufficient for postsynaptic differentiation and scaling growth, and their mRNA levels are regulated by insulin receptor signaling. These findings define a mechanism by which the same signaling pathway promotes both autonomous muscle growth and non-autonomous synapse growth.
Collapse
Affiliation(s)
- Cheuk Hei Ho
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Berke B, Le L, Keshishian H. Target-dependent retrograde signaling mediates synaptic plasticity at the Drosophila neuromuscular junction. Dev Neurobiol 2020; 79:895-912. [PMID: 31950660 DOI: 10.1002/dneu.22731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Neurons that innervate multiple targets often establish synapses with target-specific strengths, and local forms of synaptic plasticity. We have examined the molecular-genetic mechanisms that allow a single Drosophila motoneuron, the ventral Common Exciter (vCE), to establish connections with target-specific properties at its various synaptic partners. By driving transgenes in a subset of vCE's targets, we found that individual target cells are able to independently control the properties of vCE's innervating branch and synapses. This is achieved by means of a trans-synaptic growth factor secreted by the target cell. At the larval neuromuscular junction, postsynaptic glutamate receptor activity stimulates the release of the BMP4/5/6 homolog Glass bottom boat (Gbb). As larvae mature and motoneuron terminals grow, Gbb activates the R-Smad transcriptional regulator phosphorylated Mad (pMad) to facilitate presynaptic development. We found that manipulations affecting glutamate receptors or Gbb within subsets of target muscles led to local effects either specific to the manipulated muscle or by a limited gradient within the presynaptic branches. While presynaptic development depends on pMad transcriptional activity within the motoneuron nucleus, we find that the Gbb growth factor may also act locally within presynaptic terminals. Local Gbb signaling and presynaptic pMad accumulation within boutons may therefore participate in a "synaptic tagging" mechanism, to influence synaptic growth and plasticity in Drosophila.
Collapse
Affiliation(s)
- Brett Berke
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| | - Linh Le
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Hoover KM, Gratz SJ, Qi N, Herrmann KA, Liu Y, Perry-Richardson JJ, Vanderzalm PJ, O'Connor-Giles KM, Broihier HT. The calcium channel subunit α 2δ-3 organizes synapses via an activity-dependent and autocrine BMP signaling pathway. Nat Commun 2019; 10:5575. [PMID: 31811118 PMCID: PMC6898181 DOI: 10.1038/s41467-019-13165-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Synapses are highly specialized for neurotransmitter signaling, yet activity-dependent growth factor release also plays critical roles at synapses. While efficient neurotransmitter signaling relies on precise apposition of release sites and neurotransmitter receptors, molecular mechanisms enabling high-fidelity growth factor signaling within the synaptic microenvironment remain obscure. Here we show that the auxiliary calcium channel subunit α2δ-3 promotes the function of an activity-dependent autocrine Bone Morphogenetic Protein (BMP) signaling pathway at the Drosophila neuromuscular junction (NMJ). α2δ proteins have conserved synaptogenic activity, although how they execute this function has remained elusive. We find that α2δ-3 provides an extracellular scaffold for an autocrine BMP signal, suggesting a mechanistic framework for understanding α2δ's conserved role in synapse organization. We further establish a transcriptional requirement for activity-dependent, autocrine BMP signaling in determining synapse density, structure, and function. We propose that activity-dependent, autocrine signals provide neurons with continuous feedback on their activity state for modulating both synapse structure and function.
Collapse
Affiliation(s)
- Kendall M Hoover
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Nova Qi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kelsey A Herrmann
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yizhou Liu
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jahci J Perry-Richardson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, OH, 44118, USA
| | | | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Liu S, Liu Y, Jiang L, Li Z, Lee S, Liu C, Wang J, Zhang J. Recombinant human BMP-2 accelerates the migration of bone marrow mesenchymal stem cells via the CDC42/PAK1/LIMK1 pathway in vitro and in vivo. Biomater Sci 2019; 7:362-372. [PMID: 30484785 DOI: 10.1039/c8bm00846a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biomaterials are widely used for bone regeneration and fracture repair. The migration of bone marrow mesenchymal stem cells (BMSCs) into bone defect sites or material implantation sites, and their differentiation into osteoblasts, is central to the fracture healing process, and the directional migration of BMSCs depends on cytokines or chemokines at the defect site. BMP-2 can stimulate the migration of a variety of cells, but it remains unclear whether BMSC migration can be induced. To provide evidence for BMP-2-induced BMSC migration, we tested the cytoskeletal changes and migration ability of BMSCs after treatment with recombinant human BMP-2 (rhBMP-2). We also explored the recruitment of BMSCs from the circulatory system using a collagen sponge incorporating rhBMP-2 that was implanted in vivo. Furthermore, to understand the mechanism underlying this migration, we investigated the effect of rhBMP-2 on migration-related signal pathways. Here, we found that, rhBMP-2 treatment significantly increased the migration of BMSCs in vitro via activation of the CDC42/PAK1/LIMK1 pathway, and that this migration could be blocked by silencing CDC42. In vivo, collagen sponge material loaded with rhBMP-2 could recruit BMSCs injected into the circulatory system. Moreover, inhibition using the small interfering RNA for CDC42 led to a significant decrease in the number of BMSCs within the material. In conclusion, our data prove that rhBMP-2 can accelerate BMSC migration via the CDC42/PAK1/LIMK1 pathway both in vivo and in vitro, and therefore provides a foundation for further understanding and application of rhBMP-2-incorporated materials by enhancing BMSC recruitment.
Collapse
Affiliation(s)
- Shuhao Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200030 People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mansilla A, Jordán-Álvarez S, Santana E, Jarabo P, Casas-Tintó S, Ferrús A. Molecular mechanisms that change synapse number. J Neurogenet 2018; 32:155-170. [DOI: 10.1080/01677063.2018.1506781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
BMP signaling downstream of the Highwire E3 ligase sensitizes nociceptors. PLoS Genet 2018; 14:e1007464. [PMID: 30001326 PMCID: PMC6042685 DOI: 10.1371/journal.pgen.1007464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 01/18/2023] Open
Abstract
A comprehensive understanding of the molecular machinery important for nociception is essential to improving the treatment of pain. Here, we show that the BMP signaling pathway regulates nociception downstream of the E3 ubiquitin ligase highwire (hiw). hiw loss of function in nociceptors caused antagonistic and pleiotropic phenotypes with simultaneous insensitivity to noxious heat but sensitized responses to optogenetic activation of nociceptors. Thus, hiw functions to both positively and negatively regulate nociceptors. We find that a sensory reception-independent sensitization pathway was associated with BMP signaling. BMP signaling in nociceptors was up-regulated in hiw mutants, and nociceptor-specific expression of hiw rescued all nociception phenotypes including the increased BMP signaling. Blocking the transcriptional output of the BMP pathway with dominant negative Mad suppressed nociceptive hypersensitivity that was induced by interfering with hiw. The up-regulated BMP signaling phenotype in hiw genetic mutants could not be suppressed by mutation in wallenda suggesting that hiw regulates BMP in nociceptors via a wallenda independent pathway. In a newly established Ca2+ imaging preparation, we observed that up-regulated BMP signaling caused a significantly enhanced Ca2+ signal in the axon terminals of nociceptors that were stimulated by noxious heat. This response likely accounts for the nociceptive hypersensitivity induced by elevated BMP signaling in nociceptors. Finally, we showed that 24-hour activation of BMP signaling in nociceptors was sufficient to sensitize nociceptive responses to optogenetically-triggered nociceptor activation without altering nociceptor morphology. Overall, this study demonstrates the previously unrevealed roles of the Hiw-BMP pathway in the regulation of nociception and provides the first direct evidence that up-regulated BMP signaling physiologically sensitizes responses of nociceptors and nociception behaviors. Although pain is a universally experienced sensation that has a significant impact on human lives and society, the molecular mechanisms of pain remain poorly understood. Elucidating these mechanisms is particularly important to gaining insight into the clinical development of currently incurable chronic pain diseases. Taking an advantage of the powerful genetic model organism Drosophila melanogaster (fruit flies), we unveil the Highwire-BMP signaling pathway as a novel molecular pathway that regulates the sensitivity of nociceptive sensory neurons. Highwire and the molecular components of the BMP signaling pathway are known to be widely conserved among animal phyla, from nematode worms to humans. Since abnormal sensitivity of nociceptive sensory neurons can play a critical role in the development of chronic pain conditions, a deeper understanding of the regulation of nociceptor sensitivity has the potential to advance effective therapeutic strategies to treat difficult pain conditions.
Collapse
|
20
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
21
|
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:106-120. [PMID: 29190314 PMCID: PMC5846707 DOI: 10.1093/abbs/gmx124] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The TGF-β superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Lin S, Wei L, Ping Y, Xia L, Xiao S. Upregulated BMP6 pathway involved in the pathogenesis of Aβ toxicity in vivo. Neurosci Lett 2017; 664:152-159. [PMID: 29129677 DOI: 10.1016/j.neulet.2017.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022]
Abstract
In our previous work, we demonstrated the protective effect of BMP6 on neuron against Aβ toxicity in vitro. In the present study, our aim was to determine the effects of BMP6 in Aβ toxicity in vivo. Firstly, we evaluated the levels and localization of endogenous BMP6 in APP/PS1 transgenic mice. Secondly, dose-response effects of exogenous BMP6 and BMP6 pathway antagonists were tested in transgenic CL2006C. elegans (expressing Aβ3-42) lifespan and locomotor activity. We have three findings: 1) BMP6 was upregulated in the hippocampus in APP/PS1 mice. 2) The endogenous BMP6 is mainly expressed in the cytoplasm of neuron and nuclear of microglia, not in astrocyte in APP/PS1 mice. 3) BMP6 supplementation did not benefit transgenic worms, even toxic at certain concentrations, and antagonizing BMP downstream pathways including Smad and LIMK1 could alleviate the toxicity caused by 0.1μg/ml BMP6. The results suggest there is elevated BMP6 pathway in Aβ toxicity, and normalization of BMPs may be an important target for therapeutic intervention of AD.
Collapse
Affiliation(s)
- Sun Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Ping
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Li Xia
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shifu Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Perry S, Han Y, Das A, Dickman D. Homeostatic plasticity can be induced and expressed to restore synaptic strength at neuromuscular junctions undergoing ALS-related degeneration. Hum Mol Genet 2017; 26:4153-4167. [PMID: 28973139 PMCID: PMC5886083 DOI: 10.1093/hmg/ddx304] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/09/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is debilitating neurodegenerative disease characterized by motor neuron dysfunction and progressive weakening of the neuromuscular junction (NMJ). Hereditary ALS is strongly associated with variants in the human C9orf72 gene. We have characterized C9orf72 pathology at the Drosophila NMJ and utilized several approaches to restore synaptic strength in this model. First, we demonstrate a dramatic reduction in synaptic arborization and active zone number at NMJs following C9orf72 transgenic expression in motor neurons. Further, neurotransmission is similarly reduced at these synapses, consistent with severe degradation. However, despite these defects, C9orf72 synapses still retain the ability to express presynaptic homeostatic plasticity, a fundamental and adaptive form of NMJ plasticity in which perturbation to postsynaptic neurotransmitter receptors leads to a retrograde enhancement in presynaptic release. Next, we show that these endogenous but dormant homeostatic mechanisms can be harnessed to restore synaptic strength despite C9orf72 pathogenesis. Finally, activation of regenerative signaling is not neuroprotective in motor neurons undergoing C9orf72 toxicity. Together, these experiments define synaptic dysfunction at NMJs experiencing ALS-related degradation and demonstrate the potential to activate latent plasticity as a novel therapeutic strategy to restore synaptic strength.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
- USC Neuroscience Graduate Program, Los Angeles, CA 90089, USA
| | - Anushka Das
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017; 12:e0184238. [PMID: 28892511 PMCID: PMC5593197 DOI: 10.1371/journal.pone.0184238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The number of synapses is a major determinant of behavior and many neural diseases exhibit deviations in that number. However, how signaling pathways control this number is still poorly understood. Using the Drosophila larval neuromuscular junction, we show here a PI3K-dependent pathway for synaptogenesis which is functionally connected with other previously known elements including the Wit receptor, its ligand Gbb, and the MAPkinases cascade. Based on epistasis assays, we determined the functional hierarchy within the pathway. Wit seems to trigger signaling through PI3K, and Ras85D also contributes to the initiation of synaptogenesis. However, contrary to other signaling pathways, PI3K does not require Ras85D binding in the context of synaptogenesis. In addition to the MAPK cascade, Bsk/JNK undergoes regulation by Puc and Ras85D which results in a narrow range of activity of this kinase to determine normalcy of synapse number. The transcriptional readout of the synaptogenesis pathway involves the Fos/Jun complex and the repressor Cic. In addition, we identified an antagonistic pathway that uses the transcription factors Mad and Medea and the microRNA bantam to down-regulate key elements of the pro-synaptogenesis pathway. Like its counterpart, the anti-synaptogenesis signaling uses small GTPases and MAPKs including Ras64B, Ras-like-a, p38a and Licorne. Bantam downregulates the pro-synaptogenesis factors PI3K, Hiw, Ras85D and Bsk, but not AKT. AKT, however, can suppress Mad which, in conjunction with the reported suppression of Mad by Hiw, closes the mutual regulation between both pathways. Thus, the number of synapses seems to result from the balanced output from these two pathways.
Collapse
Affiliation(s)
| | | | | | - Ángel Acebes
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| | - Alberto Ferrús
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| |
Collapse
|
25
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
26
|
Laugks U, Hieke M, Wagner N. MAN1 Restricts BMP Signaling During Synaptic Growth in Drosophila. Cell Mol Neurobiol 2017; 37:1077-1093. [PMID: 27848060 PMCID: PMC11482078 DOI: 10.1007/s10571-016-0442-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/05/2016] [Indexed: 01/25/2023]
Abstract
Bone morphogenic protein (BMP) signaling is crucial for coordinated synaptic growth and plasticity. Here, we show that the nuclear LEM-domain protein MAN1 is a negative regulator of synaptic growth at Drosophila larval and adult neuromuscular junctions (NMJs). Loss of MAN1 is associated with synaptic structural defects, including floating T-bars, membrane attachment defects, and accumulation of vesicles between perisynaptic membranes and membranes of the subsynaptic reticulum. In addition, MAN1 mutants accumulate more heterogeneously sized vesicles and multivesicular bodies in larval and adult synapses, the latter indicating that MAN1 may function in synaptic vesicle recycling and endosome-to-lysosome trafficking. Synaptic overgrowth in MAN1 is sensitive to BMP signaling levels, and loss of key BMP components attenuate BMP-induced synaptic overgrowth. Based on these observations, we propose that MAN1 negatively regulates accumulation and distribution of BMP signaling components to ensure proper synaptic growth and integrity at larval and adult NMJs.
Collapse
Affiliation(s)
- Ulrike Laugks
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marie Hieke
- Neurobiology and Genetics, Biocenter, Theodor-Boveri Institute, Julius-Maximilians University Wuerzburg, Wuerzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
27
|
Danella EB, Keller LC. A Simple Neuronal Mechanical Injury Methodology to Study Drosophila Motor Neuron Degeneration. J Vis Exp 2017. [PMID: 28745645 DOI: 10.3791/56128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The degeneration of neurons occurs during normal development and in response to injury, stress, and disease. The cellular hallmarks of neuronal degeneration are remarkably similar in humans and invertebrates as are the molecular mechanisms that drive these processes. The fruit fly, Drosophila melanogaster, provides a powerful yet simple genetic model organism to study the cellular complexities of neurodegenerative diseases. In fact, approximately 70% of disease-associated human genes have a Drosophila homolog and a plethora of tools and assays have been described using flies to study human neurodegenerative diseases. More specifically the neuromuscular junction (NMJ) in Drosophila has proven to be an effective system to study neuromuscular diseases because of the ability to analyze the structural connections between the neuron and the muscle. Here, we report on an in vivo motor neuron injury assay in Drosophila, which reproducibly induces neurodegeneration at the NMJ by 24 h. Using this methodology, we have described a temporal sequence of cellular events resulting in motor neuron degeneration. The injury method has diverse applications and has also been utilized to identify specific genes required for neurodegeneration and to dissect transcriptional responses to neuronal injury.
Collapse
Affiliation(s)
| | - Lani C Keller
- Department of Biological Sciences, Quinnipiac University;
| |
Collapse
|
28
|
Van Vactor D, Sigrist SJ. Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila. Curr Opin Neurobiol 2017; 43:119-129. [PMID: 28388491 DOI: 10.1016/j.conb.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic part of the developmental logic for the formation and refinement of synaptic connectivity. Structural plasticity of presynaptic sites can involve the addition, remodeling, or removal of pre- and post-synaptic elements. However, this requires coordination of morphogenesis and assembly of the subcellular machinery for neurotransmitter release within the presynaptic neuron, as well as coordination of these events with the postsynaptic cell. While much progress has been made in revealing the cell biological mechanisms of postsynaptic structural plasticity, our understanding of presynaptic mechanisms is less complete.
Collapse
Affiliation(s)
- David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna-son, Okinawa, Japan.
| | - Stephan J Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
| |
Collapse
|
29
|
Lee SH, Kim YJ, Choi SY. BMP signaling modulates the probability of neurotransmitter release and readily releasable pools in Drosophila neuromuscular junction synapses. Biochem Biophys Res Commun 2016; 479:440-446. [DOI: 10.1016/j.bbrc.2016.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
|
30
|
Deshpande M, Feiger Z, Shilton AK, Luo CC, Silverman E, Rodal AA. Role of BMP receptor traffic in synaptic growth defects in an ALS model. Mol Biol Cell 2016; 27:2898-910. [PMID: 27535427 PMCID: PMC5042577 DOI: 10.1091/mbc.e16-07-0519] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022] Open
Abstract
In a Drosophila model of ALS, neuronal defects are associated with altered endosomal traffic of growth factor receptors and loss of growth-promoting signals. Manipulation of an endosomal recycling pathway suppresses these neuronal defects. The findings suggest that rerouting membrane traffic could be therapeutic in ALS. TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth–promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor–containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43–induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment.
Collapse
Affiliation(s)
| | - Zachary Feiger
- Department of Biology, Brandeis University, Waltham, MA 02453
| | | | - Christina C Luo
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - Ethan Silverman
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA 02453
| |
Collapse
|
31
|
Bodaleo FJ, Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front Mol Neurosci 2016; 9:60. [PMID: 27504085 PMCID: PMC4958632 DOI: 10.3389/fnmol.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Collapse
Affiliation(s)
- Felipe J Bodaleo
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA
| |
Collapse
|
32
|
Margolis KG, Gershon MD, Bogunovic M. Cellular Organization of Neuroimmune Interactions in the Gastrointestinal Tract. Trends Immunol 2016; 37:487-501. [PMID: 27289177 PMCID: PMC5003109 DOI: 10.1016/j.it.2016.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/19/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract is the largest immune organ; in vertebrates, it is the only organ whose function is controlled by its own intrinsic enteric nervous system (ENS), but it is additionally regulated by extrinsic (sympathetic and parasympathetic) innervation. The GI nervous and immune systems are highly integrated in their common goal, which is to unite digestive functions with protection from ingested environmental threats. This review discusses the physiological relevance of enteric neuroimmune integration by summarizing the current knowledge of evolutionary and developmental pathways, cellular organization, and molecular mechanisms of neuroimmune interactions in health and disease.
Collapse
Affiliation(s)
- Kara Gross Margolis
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael David Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Milena Bogunovic
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
33
|
Kashima R, Roy S, Ascano M, Martinez-Cerdeno V, Ariza-Torres J, Kim S, Louie J, Lu Y, Leyton P, Bloch KD, Kornberg TB, Hagerman PJ, Hagerman R, Lagna G, Hata A. Augmented noncanonical BMP type II receptor signaling mediates the synaptic abnormality of fragile X syndrome. Sci Signal 2016; 9:ra58. [PMID: 27273096 DOI: 10.1126/scisignal.aaf6060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unclear. We found that the messenger RNA encoding bone morphogenetic protein type II receptor (BMPR2) is a target of FMRP. Depletion of FMRP increased BMPR2 abundance, especially that of the full-length isoform that bound and activated LIM domain kinase 1 (LIMK1), a component of the noncanonical BMP signal transduction pathway that stimulates actin reorganization to promote neurite outgrowth and synapse formation. Heterozygosity for BMPR2 rescued the morphological abnormalities in neurons both in Drosophila and in mouse models of FXS, as did the postnatal pharmacological inhibition of LIMK1 activity. Compared with postmortem prefrontal cortex tissue from healthy subjects, the amount of full-length BMPR2 and of a marker of LIMK1 activity was increased in this brain region from FXS patients. These findings suggest that increased BMPR2 signal transduction is linked to FXS and that the BMPR2-LIMK1 pathway is a putative therapeutic target in patients with FXS and possibly other forms of autism.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sougata Roy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Veronica Martinez-Cerdeno
- Institute for Pediatric Regenerative Medicine, Department of Pathology, University of California, Davis, Davis, CA 95817, USA. MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California, Davis, Davis, CA 95817, USA
| | - Jeanelle Ariza-Torres
- Institute for Pediatric Regenerative Medicine, Department of Pathology, University of California, Davis, Davis, CA 95817, USA
| | - Sunghwan Kim
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Justin Louie
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yao Lu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patricio Leyton
- Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kenneth D Bloch
- Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Randi Hagerman
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California, Davis, Davis, CA 95817, USA
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Abstract
Fragile X syndrome is the most common inherited form of intellectual disability and results from a loss of function of the translational repressor FMRP. In this issue of Science Signaling, Kashima et al find that FMRP binds to and represses a specific isoform of BMPR2, a type II bone morphogenetic protein (BMP) receptor. Reducing signaling through this BMP pathway reverses neuroanatomical defects observed in fragile X models.
Collapse
Affiliation(s)
- Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
35
|
Sulkowski MJ, Han TH, Ott C, Wang Q, Verheyen EM, Lippincott-Schwartz J, Serpe M. A Novel, Noncanonical BMP Pathway Modulates Synapse Maturation at the Drosophila Neuromuscular Junction. PLoS Genet 2016; 12:e1005810. [PMID: 26815659 PMCID: PMC4729469 DOI: 10.1371/journal.pgen.1005810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
At the Drosophila NMJ, BMP signaling is critical for synapse growth and homeostasis. Signaling by the BMP7 homolog, Gbb, in motor neurons triggers a canonical pathway—which modulates transcription of BMP target genes, and a noncanonical pathway—which connects local BMP/BMP receptor complexes with the cytoskeleton. Here we describe a novel noncanonical BMP pathway characterized by the accumulation of the pathway effector, the phosphorylated Smad (pMad), at synaptic sites. Using genetic epistasis, histology, super resolution microscopy, and electrophysiology approaches we demonstrate that this novel pathway is genetically distinguishable from all other known BMP signaling cascades. This novel pathway does not require Gbb, but depends on presynaptic BMP receptors and specific postsynaptic glutamate receptor subtypes, the type-A receptors. Synaptic pMad is coordinated to BMP’s role in the transcriptional control of target genes by shared pathway components, but it has no role in the regulation of NMJ growth. Instead, selective disruption of presynaptic pMad accumulation reduces the postsynaptic levels of type-A receptors, revealing a positive feedback loop which appears to function to stabilize active type-A receptors at synaptic sites. Thus, BMP pathway may monitor synapse activity then function to adjust synapse growth and maturation during development. Synaptic activity and synapse development are intimately linked, but our understanding of the coupling mechanisms remains limited. Anterograde and retrograde signals together with trans-synaptic complexes enable intercellular communications. How synapse activity status is monitored and relayed across the synaptic cleft remains poorly understood. The Drosophila NMJ is a very powerful genetic system to study synapse development. BMP signaling modulates NMJ growth via a canonical, Smad-dependent pathway, but also synapse stability, via a noncanonical, Smad-independent pathway. Here we describe a novel, noncanonical BMP pathway, which is genetically distinguishable from all other known BMP pathways. This pathway does not contribute to NMJ growth and instead influences synapse formation and maturation in an activity-dependent manner. Specifically, phosphorylated Smad (pMad in flies) accumulates at active zone in response to active postsynaptic type-A glutamate receptors, a specific receptor subtype. In turn, synaptic pMad functions to promote the recruitment of type-A receptors at synaptic sites. This positive feedback loop provides a molecular switch controlling which flavor of glutamate receptors will be stabilized at synaptic locations as a function of synapse status. Since BMP signaling also controls NMJ growth and stability, BMP pathway offers an exquisite means to monitor the status of synapse activity and coordinate NMJ growth with synapse maturation and stabilization.
Collapse
Affiliation(s)
- Mikolaj J. Sulkowski
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tae Hee Han
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Carolyn Ott
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Qi Wang
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jennifer Lippincott-Schwartz
- Cellular Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Deshpande M, Rodal AA. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila. Traffic 2015; 17:87-101. [PMID: 26538429 DOI: 10.1111/tra.12345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.
Collapse
Affiliation(s)
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
37
|
Cuberos H, Vallée B, Vourc'h P, Tastet J, Andres CR, Bénédetti H. Roles of LIM kinases in central nervous system function and dysfunction. FEBS Lett 2015; 589:3795-806. [PMID: 26545494 DOI: 10.1016/j.febslet.2015.10.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022]
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) regulate actin dynamics by phosphorylating cofilin. In this review, we outline studies that have shown an involvement of LIMKs in neuronal function and we detail some of the pathways and molecular mechanisms involving LIMKs in neurodevelopment and synaptic plasticity. We also review the involvement of LIMKs in neuronal diseases and emphasize the differences in the regulation of LIMKs expression and mode of action. We finally present the existence of a cofilin-independent pathway also involved in neuronal function. A better understanding of the differences between both LIMKs and of the precise molecular mechanisms involved in their mode of action and regulation is now required to improve our understanding of the physiopathology of the neuronal diseases associated with LIMKs.
Collapse
Affiliation(s)
- H Cuberos
- CNRS UPR 4301, CBM, Orléans, France; UMR INSERM U930, Université François-Rabelais, Tours, France
| | - B Vallée
- CNRS UPR 4301, CBM, Orléans, France
| | - P Vourc'h
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | - J Tastet
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - C R Andres
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | | |
Collapse
|
38
|
Lincoln BL, Alabsi SH, Frendo N, Freund R, Keller LC. Drosophila Neuronal Injury Follows a Temporal Sequence of Cellular Events Leading to Degeneration at the Neuromuscular Junction. J Exp Neurosci 2015; 9:1-9. [PMID: 26512206 PMCID: PMC4612769 DOI: 10.4137/jen.s25516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide, and as the global population ages, there is a critical need to improve our understanding of the molecular and cellular mechanisms that drive neurodegeneration. At the molecular level, neurodegeneration involves the activation of complex signaling pathways that drive the active destruction of neurons and their intracellular components. Here, we use an in vivo motor neuron injury assay to acutely induce neurodegeneration in order to follow the temporal order of events that occur following injury in Drosophila melanogaster. We find that sites of injury can be rapidly identified based on structural defects to the neuronal cytoskeleton that result in disrupted axonal transport. Additionally, the neuromuscular junction accumulates ubiquitinated proteins prior to the neurodegenerative events, occurring at 24 hours post injury. Our data provide insights into the early molecular events that occur during axonal and neuromuscular degeneration in a genetically tractable model organism. Importantly, the mechanisms that mediate neurodegeneration in flies are conserved in humans. Thus, these studies have implications for our understanding of the cellular and molecular events that occur in humans and will facilitate the identification of biomedically relevant targets for future treatments.
Collapse
Affiliation(s)
- Barron L Lincoln
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Sahar H Alabsi
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Nicholas Frendo
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Robert Freund
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| | - Lani C Keller
- Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| |
Collapse
|
39
|
Harris KP, Littleton JT. Transmission, Development, and Plasticity of Synapses. Genetics 2015; 201:345-75. [PMID: 26447126 PMCID: PMC4596655 DOI: 10.1534/genetics.115.176529] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 01/03/2023] Open
Abstract
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.
Collapse
Affiliation(s)
- Kathryn P Harris
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
40
|
Natarajan R, Barber K, Buckley A, Cho P, Egbejimi A, Wairkar YP. Tricornered Kinase Regulates Synapse Development by Regulating the Levels of Wiskott-Aldrich Syndrome Protein. PLoS One 2015; 10:e0138188. [PMID: 26393506 PMCID: PMC4578898 DOI: 10.1371/journal.pone.0138188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022] Open
Abstract
Precise regulation of synapses during development is essential to ensure accurate neural connectivity and function of nervous system. Many signaling pathways, including the mTOR (mechanical Target of Rapamycin) pathway operate in neurons to maintain genetically determined number of synapses during development. mTOR, a kinase, is shared between two functionally distinct multi-protein complexes- mTORC1 and mTORC2, that act downstream of Tuberous Sclerosis Complex (TSC). We and others have suggested an important role for TSC in synapse development at the Drosophila neuromuscular junction (NMJ) synapses. In addition, our data suggested that the regulation of the NMJ synapse numbers in Drosophila largely depends on signaling via mTORC2. In the present study, we further this observation by identifying Tricornered (Trc) kinase, a serine/threonine kinase as a likely mediator of TSC signaling. trc genetically interacts with Tsc2 to regulate the number of synapses. In addition, Tsc2 and trc mutants exhibit a dramatic reduction in synaptic levels of WASP, an important regulator of actin polymerization. We show that Trc regulates the WASP levels largely, by regulating the transcription of WASP. Finally, we show that overexpression of WASP (Wiskott-Aldrich Syndrome Protein) in trc mutants can suppress the increase in the number of synapses observed in trc mutants, suggesting that WASP regulates synapses downstream of Trc. Thus, our data provide a novel insight into how Trc may regulate the genetic program that controls the number of synapses during development.
Collapse
Affiliation(s)
- Rajalaxmi Natarajan
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kara Barber
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amanda Buckley
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Phillip Cho
- Summer Undergraduate Research Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anuoluwapo Egbejimi
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Neuroscience Graduate Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yogesh P. Wairkar
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
41
|
Ojelade SA, Acevedo SF, Kalahasti G, Rodan AR, Rothenfluh A. RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin. PLoS One 2015; 10:e0137465. [PMID: 26366560 PMCID: PMC4569326 DOI: 10.1371/journal.pone.0137465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Responses to the effects of ethanol are highly conserved across organisms, with reduced responses to the sedating effects of ethanol being predictive of increased risk for human alcohol dependence. Previously, we described that regulators of actin dynamics, such as the Rho-family GTPases Rac1, Rho1, and Cdc42, alter Drosophila's sensitivity to ethanol-induced sedation. The GTPase activating protein RhoGAP18B also affects sensitivity to ethanol. To better understand how different RhoGAP18B isoforms affect ethanol sedation, we examined them for their effects on cell shape, GTP-loading of Rho-family GTPase, activation of the actin-severing cofilin, and actin filamentation. Our results suggest that the RhoGAP18B-PA isoform acts on Cdc42, while PC and PD act via Rac1 and Rho1 to activate cofilin. In vivo, a loss-of-function mutation in the cofilin-encoding gene twinstar leads to reduced ethanol-sensitivity and acts in concert with RhoGAP18B. Different RhoGAP18B isoforms, therefore, act on distinct subsets of Rho-family GTPases to modulate cofilin activity, actin dynamics, and ethanol-induced behaviors.
Collapse
Affiliation(s)
- Shamsideen A. Ojelade
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
- Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Summer F. Acevedo
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Geetha Kalahasti
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Aylin R. Rodan
- Division of Nephrology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States of America
| | - Adrian Rothenfluh
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
- Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
42
|
The role of the bone morphogenetic proteins in leukaemic stem cell persistence. Biochem Soc Trans 2015; 42:809-15. [PMID: 25109962 DOI: 10.1042/bst20140037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CML (chronic myeloid leukaemia) is characterized by the presence of the oncogenic tyrosine kinase fusion protein BCR (breakpoint cluster region)-Abl, responsible for driving the disease. Current TKI (tyrosine kinase inhibitor) therapies effectively inhibit BCR-Abl to control CML in the majority of patients, but do not eliminate the LSC (leukaemic stem cell) population, which becomes quiescent following treatment. Patients require long-term treatment to sustain remission; alternative strategies are therefore required, either alone or in combination with TKIs to eliminate the LSCs and provide a cure. The embryonic morphogenetic pathways play a key role in haemopoiesis with recent evidence suggesting LSCs are more dependent on these signals following chemotherapy than normal HSCs (haemopoietic stem cells). Recent evidence in the literature and from our group has revealed that the BMP (bone morphogenetic protein) pathway is differentially expressed in CML patients compared with normal donors. In the present review, we explore the role that BMP signalling plays in oesteoblast differentiation, HSC maintenance and the implication of altered BMP signalling on LSC persistence in the BM (bone marrow) niche. Overall, we highlight the BMP pathway as a potential target for developing LSC-directed therapies in CML in the future.
Collapse
|
43
|
Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ 2015; 57:275-90. [DOI: 10.1111/dgd.12213] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Kazumasa Ohashi
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| |
Collapse
|
44
|
Ball RW, Peled ES, Guerrero G, Isacoff EY. BMP signaling and microtubule organization regulate synaptic strength. Neuroscience 2015; 291:155-66. [PMID: 25681521 DOI: 10.1016/j.neuroscience.2015.01.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/24/2014] [Accepted: 01/29/2015] [Indexed: 12/14/2022]
Abstract
The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strengths between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system.
Collapse
Affiliation(s)
- R W Ball
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - E S Peled
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - G Guerrero
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - E Y Isacoff
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
45
|
Osses N, Henríquez JP. Bone morphogenetic protein signaling in vertebrate motor neurons and neuromuscular communication. Front Cell Neurosci 2015; 8:453. [PMID: 25674047 PMCID: PMC4307192 DOI: 10.3389/fncel.2014.00453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/15/2014] [Indexed: 01/28/2023] Open
Abstract
An accurate communication between motor neurons and skeletal muscle fibers is required for the proper assembly, growth and maintenance of neuromuscular junctions (NMJs). Several signaling and extracellular matrix molecules play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in Drosophila have revealed crucial functions for early morphogens, such as members of the Wnt and Bone Morphogenetic Proteins (BMP) signaling pathways, during the assembly and maturation of the NMJ. Here, we bring together recent findings that led us to propose that BMPs also work in vertebrate organisms as diffusible cues to communicate motor neurons and skeletal muscles.
Collapse
Affiliation(s)
- Nelson Osses
- BMP Research Group, Institute of Chemistry, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Juan P Henríquez
- Laboratory of Developmental Neurobiology, Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción Concepción, Chile
| |
Collapse
|
46
|
Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 2014; 158:300-313. [PMID: 25036630 DOI: 10.1016/j.cell.2014.04.050] [Citation(s) in RCA: 491] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/12/2013] [Accepted: 04/23/2014] [Indexed: 12/15/2022]
Abstract
Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:
Collapse
|
47
|
Halstead JM, Lin YQ, Durraine L, Hamilton RS, Ball G, Neely GG, Bellen HJ, Davis I. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse. Biol Open 2014; 3:839-49. [PMID: 25171887 PMCID: PMC4163661 DOI: 10.1242/bio.20149027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation.
Collapse
Affiliation(s)
- James M Halstead
- Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Yong Qi Lin
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Department of Neuroscience, Program in Developmental Biology, Neurological Research Institute at Baylor College of Medicine, Houston, TX 77030, USA Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Lita Durraine
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Department of Neuroscience, Program in Developmental Biology, Neurological Research Institute at Baylor College of Medicine, Houston, TX 77030, USA
| | - Russell S Hamilton
- Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK
| | - Graeme Ball
- Micron Imaging Facility, Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK
| | - Greg G Neely
- Neuroscience Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Department of Neuroscience, Program in Developmental Biology, Neurological Research Institute at Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilan Davis
- Department of Biochemistry, South Parks Road, The University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
48
|
Kang MJ, Hansen TJ, Mickiewicz M, Kaczynski TJ, Fye S, Gunawardena S. Disruption of axonal transport perturbs bone morphogenetic protein (BMP)--signaling and contributes to synaptic abnormalities in two neurodegenerative diseases. PLoS One 2014; 9:e104617. [PMID: 25127478 PMCID: PMC4134223 DOI: 10.1371/journal.pone.0104617] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/14/2023] Open
Abstract
Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases.
Collapse
Affiliation(s)
- Min Jung Kang
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Timothy J. Hansen
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Monique Mickiewicz
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Tadeusz J. Kaczynski
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Samantha Fye
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Zhong J, Zou H. BMP signaling in axon regeneration. Curr Opin Neurobiol 2014; 27:127-34. [PMID: 24713578 PMCID: PMC4122622 DOI: 10.1016/j.conb.2014.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022]
Abstract
Neuronal competence to re-extend axons and a permissive environment that allows growth cone navigation are two major determinants for successful axon regeneration. Here, we review the roles of bone morphogenetic protein (BMP) signaling in mediating both neuronal and glial injury responses after CNS injury. BMPs can activate a pro-regenerative transcription program in neurons through Smad-mediated canonical pathway, or act locally on cytoskeleton assembly at distal axons via non-canonical pathways. Emerging evidence implicates retrograde BMP signalosomes in connecting the cytoskeletal and nuclear responses. In addition, BMP/Smad signaling modulates neurotrophin-mediated axonal outgrowth, and interacts with the epigenetic machinery to initiate epigenetic reprogramming for axon regeneration. Besides their influences on neurons, BMPs also regulate astrogliosis, inflammatory processes, and neural progenitor cell differentiation at the injury site, all of which can either positively or negatively modify the injury microenvironment. Lastly, an increasing number of BMP signaling partners, sensitizers, and downstream effectors collectively fine-tune the signaling intensity and spatiotemporal dynamics of BMP activity in an integrated signaling network during axon regeneration.
Collapse
Affiliation(s)
- Jian Zhong
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Hongyan Zou
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
50
|
Peterson AJ, O'Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014; 68:183-93. [PMID: 24680699 PMCID: PMC4057889 DOI: 10.1016/j.ymeth.2014.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|