1
|
Będziechowska-Czyżewska M, Malak R, Romanowski M, Andrusiewicz M, Samborski W, Baum E. Postural Differences in Speaking Versus Non-Speaking Children with Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2025; 12:145. [PMID: 40003247 PMCID: PMC11853906 DOI: 10.3390/children12020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a heterogeneous condition with diverse symptoms influenced by factors like gender, severity and the involvement of family and therapists. While many risk factors that contribute to ASD development are known, the exact etiology remains unclear. The relationship between speech ability and postural/gait patterns in ASD has not been extensively studied. This study aimed to verify if the ability to speak can affect body posture and gait patterns. Methods: The study involved 28 boys aged 6-17. The postural assessment used the Adams test, Bunnell scoliometer, goniometer, and inclinometer to measure trunk rotation, joint range of motion, and spinal curvature. Trunk muscle strength was assessed via a flexion test measuring position maintenance time. This study compare body posture parameters in speaking and non-speaking children with Autism Spectrum Disorders. Moreover the parameters were compared to the general norms. Results: The study observed a tendency for speaking children to deviate more from normative body posture. They presented shoulder protraction more often, increased lumbar lordosis angle, and anterior pelvic tilt. Additionally, non-speaking children were more prone to toe-walking, which, according to other studies, is present in approximately 8-9% of all children with autism spectrum disorders. Both groups presented a decreased angle of dorsal flexion in the ankle joint. Conclusions: This study suggests that speaking children with ASD exhibit greater anterior-posterior postural deviations (increased lumbar lordosis, shoulder protraction, anterior pelvic tilt) than non-speaking children. ASD did not affect scoliosis or trunk rotation. Non-speaking children showed a higher incidence of toe-walking. However, the small sample size limits the generalizability of these findings.
Collapse
Affiliation(s)
- Marta Będziechowska-Czyżewska
- Department and Clinic of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 28 Czerwca 1956 r. 135/147, 61-545 Poznań, Poland;
| | - Roksana Malak
- Department and Clinic of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 28 Czerwca 1956 r. 135/147, 61-545 Poznań, Poland;
| | - Mateusz Romanowski
- Greaterpoland Physiotherapy Center, Bohaterów II Wojny Światowej, 60-386 Poznań, Poland;
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland;
| | - Włodzimierz Samborski
- Department and Clinic of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 28 Czerwca 1956 r. 135/147, 61-545 Poznań, Poland;
| | - Ewa Baum
- Department of Social and Human Sciences, Poznan University of Medical Sciences, Rokietnicka 7, 60-806 Poznań, Poland;
| |
Collapse
|
2
|
Lu T, Wang M, Zhou W, Ni Q, Yue Y, Wang W, Shi Y, Liu Z, Li C, Hong B, Zhou X, Zhong S, Wang K, Zeng B, Zhang J, Wang W, Zhang X, Wu Q, Wang X. Decoding transcriptional identity in developing human sensory neurons and organoid modeling. Cell 2024; 187:7374-7393.e28. [PMID: 39536745 DOI: 10.1016/j.cell.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/03/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Dorsal root ganglia (DRGs) play a crucial role in processing sensory information, making it essential to understand their development. Here, we construct a single-cell spatiotemporal transcriptomic atlas of human embryonic DRG. This atlas reveals the diversity of cell types and highlights the extrinsic signaling cascades and intrinsic regulatory hierarchies that guide cell fate decisions, including neuronal/glial lineage restriction, sensory neuron differentiation and specification, and the formation of neuron-satellite glial cell (SGC) units. Additionally, we identify a human-enriched NTRK3+/DCC+ nociceptor subtype, which is involved in multimodal nociceptive processing. Mimicking the programmed activation of signaling pathways in vivo, we successfully establish functional human DRG organoids and underscore the critical roles of transcriptional regulators in the fate commitment of unspecialized sensory neurons (uSNs). Overall, our research elucidates the multilevel signaling pathways and transcription factor (TF) regulatory hierarchies that underpin the diversity of somatosensory neurons, emphasizing the phenotypic distinctions in human nociceptor subtypes.
Collapse
Affiliation(s)
- Tian Lu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Ni
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | | | - Wei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China
| | - Yingchao Shi
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Changlin Li
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| | - Bei Hong
- Changping Laboratory, Beijing 102206, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Kaikai Wang
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China
| | - Bo Zeng
- Changping Laboratory, Beijing 102206, China
| | - Jun Zhang
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Zhang
- Guangdong Institute of Intelligence Science and Technology, Guangdong 519031, China.
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cognitive Neuroscience and Learning, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
3
|
Orlovsky K, Appel E, Hantisteanu S, Olender T, Lotem J, Levanon D, Groner Y. Runx3, Brn3a and Isl1 interplay orchestrates the transcriptional program in the early stages of proprioceptive neuron development. PLoS Genet 2024; 20:e1011401. [PMID: 39715266 PMCID: PMC11729954 DOI: 10.1371/journal.pgen.1011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/13/2025] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The development and diversification of sensory proprioceptive neurons, which reside in the dorsal root ganglia (DRG) and express the tropomyosin receptor kinase C (TrkC), depend on the transcription factor (TF) Runx3. Runx3-deficient mice develop severe limb ataxia due to TrkC neuron cell death. Two additional TFs Pou4f1 (also called Brn3a) and Isl1 also play an important role in sensory neuron development. Thus, we aimed to unravel the chromatin state of early-developing TrkC neurons and decipher the Runx3 high-confidence target genes (HCT) and the possible cooperation between Runx3, Brn3a and Isl1 in the regulation of these genes. METHODS Runx3 expression is driven by the gene proximal P2 promoter. Transcriptome analysis was conducted by RNA-seq on RNA isolated from heterozygous (P2+/-) vs. homozygous (P2-/-) TrkC neurons and differentially expressed genes (DEGs) were determined. Genome-wide occupancy of Runx3, Brn3a, Isl1 and histone H3 acetylated on lysine 27 (H3K27Ac) was determined using CUT&RUN. The landscape of Transposase-accessible chromatin was analyzed via ATAC-seq. FINDINGS The intersection of Runx3 genomic occupancy-associated genes and DEG data discovered 244 Runx3 HCT. Brn3a and Isl1 were found to bind to numerous genomic loci, some of which overlapped with Runx3. Most genomic regions bound by each of these three TFs or co-bound by them resided in distantly located enhancer regions rather than in gene promoters. In activated and suppressed neuronal Runx3 HCT, Runx3 cooperated mainly with Brn3a to regulate expression through distantly located enhancers. Interestingly, suppression of non-neuronal immune genes was mainly managed via Runx3 without Brn3a. The distribution of ATAC and H3K27Ac marked regions in Runx3 peaks containing at least one RUNX binding site (Runx3_RBS) revealed that while most promoter regions were marked by ATAC, a prominent fraction of intron/intergenic regions occupied by Runx3, Brn3a or Isl1 were unmarked by ATAC and/or H3K27Ac. CONCLUSIONS These analyses shed new light on the interplay of Runx3, Brn3a, Isl1, and open chromatin regions in regulating the Runx3 HCT in the early developmental stages of TrkC neurons.
Collapse
Affiliation(s)
- Kira Orlovsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Appel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shay Hantisteanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
de Nooij JC, Zampieri N. The making of a proprioceptor: a tale of two identities. Trends Neurosci 2023; 46:1083-1094. [PMID: 37858440 DOI: 10.1016/j.tins.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Proprioception, the sense of body position in space, has a critical role in the control of posture and movement. Aside from skin and joint receptors, the main sources of proprioceptive information in tetrapods are mechanoreceptive end organs in skeletal muscle: muscle spindles (MSs) and Golgi tendon organs (GTOs). The sensory neurons that innervate these receptors are divided into subtypes that detect discrete aspects of sensory information from muscles with different biomechanical functions. Despite the importance of proprioceptive neurons in motor control, the developmental mechanisms that control the acquisition of their distinct functional properties and positional identity are not yet clear. In this review, we discuss recent findings on the development of mouse proprioceptor subtypes and challenges in defining them at the molecular and functional level.
Collapse
Affiliation(s)
- Joriene C de Nooij
- Department of Neurology, Division of Translational Neurobiology, Vagelos College of Physicians and Surgeons, 650 West 168th Street, New York, NY 10032, USA; Columbia University Motor Neuron Center, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| | - Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
5
|
Rozen EJ, Ozeroff CD, Allen MA. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome. Hum Genomics 2023; 17:83. [PMID: 37670378 PMCID: PMC10481493 DOI: 10.1186/s40246-023-00531-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND RUNX1 is a transcription factor and a master regulator for the specification of the hematopoietic lineage during embryogenesis and postnatal megakaryopoiesis. Mutations and rearrangements on RUNX1 are key drivers of hematological malignancies. In humans, this gene is localized to the 'Down syndrome critical region' of chromosome 21, triplication of which is necessary and sufficient for most phenotypes that characterize Trisomy 21. MAIN BODY Individuals with Down syndrome show a higher predisposition to leukemias. Hence, RUNX1 overexpression was initially proposed as a critical player on Down syndrome-associated leukemogenesis. Less is known about the functions of RUNX1 in other tissues and organs, although growing reports show important implications in development or homeostasis of neural tissues, muscle, heart, bone, ovary, or the endothelium, among others. Even less is understood about the consequences on these tissues of RUNX1 gene dosage alterations in the context of Down syndrome. In this review, we summarize the current knowledge on RUNX1 activities outside blood/leukemia, while suggesting for the first time their potential relation to specific Trisomy 21 co-occurring conditions. CONCLUSION Our concise review on the emerging RUNX1 roles in different tissues outside the hematopoietic context provides a number of well-funded hypotheses that will open new research avenues toward a better understanding of RUNX1-mediated transcription in health and disease, contributing to novel potential diagnostic and therapeutic strategies for Down syndrome-associated conditions.
Collapse
Affiliation(s)
- Esteban J Rozen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| | - Christopher D Ozeroff
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave., Boulder, CO, 80309, USA
| | - Mary Ann Allen
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Shrestha BR, Wu L, Goodrich LV. Runx1 controls auditory sensory neuron diversity in mice. Dev Cell 2023; 58:306-319.e5. [PMID: 36800995 PMCID: PMC10202259 DOI: 10.1016/j.devcel.2023.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Sound stimulus is encoded in mice by three molecularly and physiologically diverse subtypes of sensory neurons, called Ia, Ib, and Ic spiral ganglion neurons (SGNs). Here, we show that the transcription factor Runx1 controls SGN subtype composition in the murine cochlea. Runx1 is enriched in Ib/Ic precursors by late embryogenesis. Upon the loss of Runx1 from embryonic SGNs, more SGNs take on Ia rather than Ib or Ic identities. This conversion was more complete for genes linked to neuronal function than to connectivity. Accordingly, synapses in the Ib/Ic location acquired Ia properties. Suprathreshold SGN responses to sound were enhanced in Runx1CKO mice, confirming the expansion of neurons with Ia-like functional properties. Runx1 deletion after birth also redirected Ib/Ic SGNs toward Ia identity, indicating that SGN identities are plastic postnatally. Altogether, these findings show that diverse neuronal identities essential for normal auditory stimulus coding arise hierarchically and remain malleable during postnatal development.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.
| | - Lorna Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
The RUNX Family Defines Trk Phenotype and Aggressiveness of Human Neuroblastoma through Regulation of p53 and MYCN. Cells 2023; 12:cells12040544. [PMID: 36831211 PMCID: PMC9954111 DOI: 10.3390/cells12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The Runt-related transcription factor (RUNX) family, which is essential for the differentiation of cells of neural crest origin, also plays a potential role in neuroblastoma tumorigenesis. Consecutive studies in various tumor types have demonstrated that the RUNX family can play either pro-tumorigenic or anti-tumorigenic roles in a context-dependent manner, including in response to chemotherapeutic agents. However, in primary neuroblastomas, RUNX3 acts as a tumor-suppressor, whereas RUNX1 bifunctionally regulates cell proliferation according to the characterized genetic and epigenetic backgrounds, including MYCN oncogenesis. In this review, we first highlight the current knowledge regarding the mechanism through which the RUNX family regulates the neurotrophin receptors known as the tropomyosin-related kinase (Trk) family, which are significantly associated with neuroblastoma aggressiveness. We then focus on the possible involvement of the RUNX family in functional alterations of the p53 family members that execute either tumor-suppressive or dominant-negative functions in neuroblastoma tumorigenesis. By examining the tripartite relationship between the RUNX, Trk, and p53 families, in addition to the oncogene MYCN, we endeavor to elucidate the possible contribution of the RUNX family to neuroblastoma tumorigenesis for a better understanding of potential future molecular-based therapies.
Collapse
|
8
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
9
|
Zhao H, Chen Y, Shen P, Gong L. Prognostic value and immune characteristics of RUNX gene family in human cancers: a pan-cancer analysis. Aging (Albany NY) 2022; 14:4014-4035. [PMID: 35522574 PMCID: PMC9134966 DOI: 10.18632/aging.204065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Background: Runt-related transcription factors (RUNX) are involved in numerous fundamental biological processes and play crucial parts in tumorigenesis and metastasis both directly and indirectly. However, the pan-cancer evidence of the RUNX gene family is not available. Methods: In this study, we analyzed the potential association between RUNX gene family expression and patient’s prognosis, immune cell infiltration, drug response, and genetic mutation data across different types of tumors using based on The Cancer Genome Atlas, Gene Expression Omnibus, and Oncomine database. Results: The results showed that the expression of the RUNX gene family varied among different cancer types, revealing its heterogeneity in cancers and that expression of RUNX2 was lower than that of RUNX1 and RUNX3 across all cancer types. RUNX gene family gene expression was related to prognosis in several cancers. Furthermore, our study revealed a clear association between RUNX gene family expression and ESTIMATE score, RNA stemness, and DNA stemness scores. Compared with RUNX1 and RUNX2, RUNX3 showed relatively low levels of genetic alterations. RUNX gene family genes had clear associations with immune infiltrate subtypes, and their expression was positively related to immune checkpoint genes and drug sensitivity in most cases. Two immunotherapy cohorts confirm that the expression of RUNX was correlated with the clinical response of immunotherapy. Conclusions: These findings will help to elucidate the potential oncogenic roles of RUNX gene family genes in different types of cancer and it can function as a prognostic marker in various malignant tumors.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai 200000, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, Shanghai, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Peijun Shen
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai 200000, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, Shanghai, China
| |
Collapse
|
10
|
Haag N, Lampert A. Nociception, Transcriptomics ET CETERA: NOCICEPTRA. Pflugers Arch 2022; 474:483-484. [PMID: 35211814 PMCID: PMC8993772 DOI: 10.1007/s00424-022-02673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Natja Haag
- Institute of Human Genetics, Uniklinik RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
11
|
Abstract
Proper innervation of peripheral organs helps to maintain physiological homeostasis and elicit responses to external stimuli. Disruptions to normal function can result in pathophysiological consequences. The establishment of connections and communication between the central nervous system and the peripheral organs is accomplished through the peripheral nervous system. Neuronal connections with target tissues arise from ganglia partitioned throughout the body. Organ innervation is initiated during development with stimuli being conducted through several types of neurons including sympathetic, parasympathetic, and sensory. While the physiological modulation of mature organs by these nerves is largely understood, their role in mammalian development is only beginning to be uncovered. Interactions with cells in target tissues can affect the development and eventual function of several organs, highlighting their significance. This chapter will cover the origin of peripheral neurons, factors mediating organ innervation, and the composition and function of organ-specific nerves during development. This emerging field aims to identify the functional contribution of innervation to development which will inform future investigations of normal and abnormal mammalian organogenesis, as well as contribute to regenerative and organ replacement efforts where nerve-derived signals may have significant implications for the advancement of such studies.
Collapse
Affiliation(s)
- Samuel E Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
12
|
Ma Q. A functional subdivision within the somatosensory system and its implications for pain research. Neuron 2022; 110:749-769. [PMID: 35016037 PMCID: PMC8897275 DOI: 10.1016/j.neuron.2021.12.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Somatosensory afferents are traditionally classified by soma size, myelination, and their response specificity to external and internal stimuli. Here, we propose the functional subdivision of the nociceptive somatosensory system into two branches. The exteroceptive branch detects external threats and drives reflexive-defensive reactions to prevent or limit injury. The interoceptive branch senses the disruption of body integrity, produces tonic pain with strong aversive emotional components, and drives self-caring responses toward to the injured region to reduce suffering. The central thesis behind this functional subdivision comes from a reflection on the dilemma faced by the pain research field, namely, the use of reflexive-defensive behaviors as surrogate assays for interoceptive tonic pain. The interpretation of these assays is now being challenged by the discovery of distinct but interwoven circuits that drive exteroceptive versus interoceptive types of behaviors, with the conflation of these two components contributing partially to the poor translation of therapies from preclinical studies.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
de Nooij JC. Influencers in the Somatosensory System: Extrinsic Control of Sensory Neuron Phenotypes. Neuroscientist 2022:10738584221074350. [DOI: 10.1177/10738584221074350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Somatosensory neurons in dorsal root ganglia (DRG) comprise several main subclasses: high threshold nociceptors/thermoceptors, high- and low-threshold mechanoreceptors, and proprioceptors. Recent years have seen an explosion in the identification of molecules that underlie the functional diversity of these sensory modalities. They also have begun to reveal the developmental mechanisms that channel the emergence of this subtype diversity, solidifying the importance of peripheral instructive signals. Somatic sensory neurons collectively serve numerous essential physiological and protective roles, and as such, an increased understanding of the processes that underlie the specialization of these sensory subtypes is not only biologically interesting but also clinically relevant.
Collapse
|
14
|
Closser M, Guo Y, Wang P, Patel T, Jang S, Hammelman J, De Nooij JC, Kopunova R, Mazzoni EO, Ruan Y, Gifford DK, Wichterle H. An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity. Neuron 2022; 110:70-85.e6. [PMID: 34727520 PMCID: PMC8738133 DOI: 10.1016/j.neuron.2021.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
Proper assembly and function of the nervous system requires the generation of a uniquely diverse population of neurons expressing a cell-type-specific combination of effector genes that collectively define neuronal morphology, connectivity, and function. How countless partially overlapping but cell-type-specific patterns of gene expression are controlled at the genomic level remains poorly understood. Here we show that neuronal genes are associated with highly complex gene regulatory systems composed of independent cell-type- and cell-stage-specific regulatory elements that reside in expanded non-coding genomic domains. Mapping enhancer-promoter interactions revealed that motor neuron enhancers are broadly distributed across the large chromatin domains. This distributed regulatory architecture is not a unique property of motor neurons but is employed throughout the nervous system. The number of regulatory elements increased dramatically during the transition from invertebrates to vertebrates, suggesting that acquisition of new enhancers might be a fundamental process underlying the evolutionary increase in cellular complexity.
Collapse
Affiliation(s)
- Michael Closser
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yuchun Guo
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Tulsi Patel
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumin Jang
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jennifer Hammelman
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Joriene C De Nooij
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel Kopunova
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
15
|
Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports 2021; 17:14-34. [PMID: 34971564 PMCID: PMC8758946 DOI: 10.1016/j.stemcr.2021.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a “one-glove-fits-all” approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell St-Clair Glover
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
16
|
Muzyka VV, Badea TC. Genetic interplay between transcription factor Pou4f1/Brn3a and neurotrophin receptor Ret in retinal ganglion cell type specification. Neural Dev 2021; 16:5. [PMID: 34548095 PMCID: PMC8454062 DOI: 10.1186/s13064-021-00155-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background While the transcriptional code governing retinal ganglion cell (RGC) type specification begins to be understood, its interplay with neurotrophic signaling is largely unexplored. In mice, the transcription factor Brn3a/Pou4f1 is expressed in most RGCs, and is required for the specification of RGCs with small dendritic arbors. The Glial Derived Neurotrophic Factor (GDNF) receptor Ret is expressed in a subset of RGCs, including some expressing Brn3a, but its role in RGC development is not defined. Methods Here we use combinatorial genetic experiments using conditional knock-in reporter alleles at the Brn3a and Ret loci, in combination with retina- or Ret specific Cre drivers, to generate complete or mosaic genetic ablations of either Brn3a or Ret in RGCs. We then use sparse labelling to investigate Brn3a and Ret gene dosage effects on RGC dendritic arbor morphology. In addition, we use immunostaining and/or gene expression profiling by RNASeq to identify transcriptional targets relevant for the potential Brn3a-Ret interaction in RGC development. Results We find that mosaic gene dosage manipulation of the transcription factor Brn3a/Pou4f1 in neurotrophic receptor Ret heterozygote RGCs results in altered cell fate decisions and/or morphological dendritic defects. Specific RGC types are lost if Brn3a is ablated during embryogenesis and only mildly affected by postnatal Brn3a ablation. Sparse but not complete Brn3a heterozygosity combined with complete Ret heterozygosity has striking effects on RGC type distribution. Brn3a only mildly modulates Ret transcription, while Ret knockouts exhibit slightly skewed Brn3a and Brn3b expression during development that is corrected by adult age. Brn3a loss of function modestly but significantly affects distribution of Ret co-receptors GFRα1-3, and neurotrophin receptors TrkA and TrkC in RGCs. Conclusions Based on these observations, we propose that Brn3a and Ret converge onto developmental pathways that control RGC type specification, potentially through a competitive mechanism requiring signaling from the surrounding tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-021-00155-z.
Collapse
Affiliation(s)
- Vladimir Vladimirovich Muzyka
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, USA. .,Institute of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia.
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, USA. .,Research and Development Institute, School of Medicine, Transilvania University of Brasov, Brasov, Romania.
| |
Collapse
|
17
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. The Neurotrophin Receptor TrkC as a Novel Molecular Target of the Antineuroblastoma Action of Valproic Acid. Int J Mol Sci 2021; 22:ijms22157790. [PMID: 34360553 PMCID: PMC8346142 DOI: 10.3390/ijms22157790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotrophins and their receptors are relevant factors in controlling neuroblastoma growth and progression. The histone deacetylase (HDAC) inhibitor valproic acid (VPA) has been shown to downregulate TrkB and upregulate the p75NTR/sortilin receptor complex. In the present study, we investigated the VPA effect on the expression of the neurotrophin-3 (NT-3) receptor TrkC, a favorable prognostic marker of neuroblastoma. We found that VPA induced the expression of both full-length and truncated (TrkC-T1) isoforms of TrkC in human neuroblastoma cell lines without (SH-SY5Y) and with (Kelly, BE(2)-C and IMR 32) MYCN amplification. VPA enhanced cell surface expression of the receptor and increased Akt and ERK1/2 activation by NT-3. The HDAC inhibitors entinostat, romidepsin and vorinostat also increased TrkC in SH-SY5Y, Kelly and BE(2)-C but not IMR 32 cells. TrkC upregulation by VPA involved induction of RUNX3, stimulation of ERK1/2 and JNK, and ERK1/2-mediated Egr1 expression. In SH-SY5Y cell monolayers and spheroids the exposure to NT-3 enhanced the apoptotic cascade triggered by VPA. Gene silencing of both TrkC-T1 and p75NTR prevented the NT-3 proapoptotic effect. Moreover, NT-3 enhanced p75NTR/TrkC-T1 co-immunoprecipitation. The results indicate that VPA upregulates TrkC by activating epigenetic mechanisms and signaling pathways, and sensitizes neuroblastoma cells to NT-3-induced apoptosis.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, University of Cagliari, 09042 Monserrato, Italy; (S.D.); (M.C.O.)
| | - Luisa Marras
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (L.M.); (A.I.)
| | - Maria C. Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, University of Cagliari, 09042 Monserrato, Italy; (S.D.); (M.C.O.)
| | - Angela Ingianni
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (L.M.); (A.I.)
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, University of Cagliari, 09042 Monserrato, Italy; (S.D.); (M.C.O.)
- Correspondence:
| |
Collapse
|
18
|
Quinn RK, Drury HR, Lim R, Callister RJ, Tadros MA. Differentiation of Sensory Neuron Lineage During the Late First and Early Second Trimesters of Human Foetal Development. Neuroscience 2021; 467:28-38. [PMID: 34033872 DOI: 10.1016/j.neuroscience.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 09/30/2022]
Abstract
Sensory neurons within DRGs are broadly divided into three types that transmit nociceptive, mechanical, and proprioceptive signals. These subtypes are established during in utero development when sensory neurons differentiate into distinct categories according to a complex developmental plan. Most of what we know about this developmental plan comes from studies in rodents and little is known about this process in humans. The present study documents the expression of key genes involved in human sensory neuron development during the late first and early second trimesters (9-16WG). We observed a decrease in the expression of SOX10 and BRN3A, factors associated with migration and proliferation of sensory neurons, towards the end of the first trimester. Small and large sensory neuron populations also emerged at the end of the first trimester, as well as the transcription factors responsible for defining distinct sensory neuron types. NTRK1, which is expressed in nociceptive neurons, emerged first at ~11 WG followed by NTRK2 in mechanoreceptors at ~12 WG, with NTRK3 for proprioceptors peaking at ~14 WG. These peaks were followed by increased expression of their respective neurotrophic factors. Our results show significant differences in the expression of key signalling molecules for human DRG development versus that of rodents, most notably the expression of neurotrophins that promote the survival of sensory neuron types. This highlights the importance of examining molecular changes in humans to better inform the application of data collected in pre-clinical models.
Collapse
Affiliation(s)
- Rikki K Quinn
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Hannah R Drury
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Rebecca Lim
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Robert J Callister
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia.
| |
Collapse
|
19
|
Landy MA, Goyal M, Casey KM, Liu C, Lai HC. Loss of Prdm12 during development, but not in mature nociceptors, causes defects in pain sensation. Cell Rep 2021; 34:108913. [PMID: 33789102 PMCID: PMC8048104 DOI: 10.1016/j.celrep.2021.108913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
Prdm12 is a key transcription factor in nociceptor neurogenesis. Mutations of Prdm12 cause congenital insensitivity to pain (CIP) from failure of nociceptor development. However, precisely how deletion of Prdm12 during development or adulthood affects nociception is unknown. Here, we employ tissue- and temporal-specific knockout mouse models to test the function of Prdm12 during development and in adulthood. We find that constitutive loss of Prdm12 causes deficiencies in proliferation during sensory neurogenesis. We also demonstrate that conditional knockout from dorsal root ganglia (DRGs) during embryogenesis causes defects in nociception. In contrast, we find that, in adult DRGs, Prdm12 is dispensable for most pain-sensation and injury-induced hypersensitivity. Using transcriptomic analysis, we find mostly unique changes in adult Prdm12 knockout DRGs compared with embryonic knockout and that PRDM12 is likely a transcriptional activator in the adult. Overall, we find that the function of PRDM12 changes over developmental time.
Collapse
Affiliation(s)
- Mark A Landy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Goyal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine M Casey
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chen Liu
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Hypothalamic Research Center, Dallas, TX 75390, USA
| | - Helen C Lai
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nat Commun 2021; 12:1451. [PMID: 33649316 PMCID: PMC7977083 DOI: 10.1038/s41467-021-21880-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Proprioceptive feedback mainly derives from groups Ia and II muscle spindle (MS) afferents and group Ib Golgi tendon organ (GTO) afferents, but the molecular correlates of these three afferent subtypes remain unknown. We performed single cell RNA sequencing of genetically identified adult proprioceptors and uncovered five molecularly distinct neuronal clusters. Validation of cluster-specific transcripts in dorsal root ganglia and skeletal muscle demonstrates that two of these clusters correspond to group Ia MS afferents and group Ib GTO afferent proprioceptors, respectively, and suggest that the remaining clusters could represent group II MS afferents. Lineage analysis between proprioceptor transcriptomes at different developmental stages provides evidence that proprioceptor subtype identities emerge late in development. Together, our data provide comprehensive molecular signatures for groups Ia and II MS afferents and group Ib GTO afferents, enabling genetic interrogation of the role of individual proprioceptor subtypes in regulating motor output. Coordinated movement critically depends on sensory feedback from muscle spindles (MSs) and Golgi tendon organs (GTOs) but the afferents supplying this proprioceptive feedback have remained genetically inseparable. Here the authors use single cell transcriptome analysis to reveal the molecular basis of MS (groups Ia and II) and GTO (group Ib) afferent identities in the mouse.
Collapse
|
21
|
Zampieri N, de Nooij JC. Regulating muscle spindle and Golgi tendon organ proprioceptor phenotypes. CURRENT OPINION IN PHYSIOLOGY 2021; 19:204-210. [PMID: 33381667 PMCID: PMC7769215 DOI: 10.1016/j.cophys.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proprioception is an essential part of motor control. The main sensory subclasses that underlie this feedback control system - muscle spindle and Golgi tendon organ afferents - have been extensively characterized at a morphological and physiological level. More recent studies are beginning to reveal the molecular foundation for distinct proprioceptor subtypes, offering new insights into their developmental ontogeny and phenotypic diversity. This review intends to highlight some of these new findings.
Collapse
Affiliation(s)
- Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Joriene C. de Nooij
- Dept. of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Columbia University Motor Neuron Center, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Corresponding author:
| |
Collapse
|
22
|
Holt E, Stanton-Turcotte D, Iulianella A. Development of the Vertebrate Trunk Sensory System: Origins, Specification, Axon Guidance, and Central Connectivity. Neuroscience 2021; 458:229-243. [PMID: 33460728 DOI: 10.1016/j.neuroscience.2020.12.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022]
Abstract
Crucial to an animal's movement through their environment and to the maintenance of their homeostatic physiology is the integration of sensory information. This is achieved by axons communicating from organs, muscle spindles and skin that connect to the sensory ganglia composing the peripheral nervous system (PNS), enabling organisms to collect an ever-constant flow of sensations and relay it to the spinal cord. The sensory system carries a wide spectrum of sensory modalities - from sharp pain to cool refreshing touch - traveling from the periphery to the spinal cord via the dorsal root ganglia (DRG). This review covers the origins and development of the DRG and the cells that populate it, and focuses on how sensory connectivity to the spinal cord is achieved by the diverse developmental and molecular processes that control axon guidance in the trunk sensory system. We also describe convergences and differences in sensory neuron formation among different vertebrate species to gain insight into underlying developmental mechanisms.
Collapse
Affiliation(s)
- Emily Holt
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Danielle Stanton-Turcotte
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, and Brain Repair Centre, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia B3H-4R2, Canada.
| |
Collapse
|
23
|
Wang D, Lu J, Xu X, Yuan Y, Zhang Y, Xu J, Chen H, Liu J, Shen Y, Zhang H. Satellite Glial Cells Give Rise to Nociceptive Sensory Neurons. Stem Cell Rev Rep 2021; 17:999-1013. [PMID: 33389681 DOI: 10.1007/s12015-020-10102-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Dorsal root ganglia (DRG) sensory neurons can transmit information about noxious stimulus to cerebral cortex via spinal cord, and play an important role in the pain pathway. Alterations of the pain pathway lead to CIPA (congenital insensitivity to pain with anhidrosis) or chronic pain. Accumulating evidence demonstrates that nerve damage leads to the regeneration of neurons in DRG, which may contribute to pain modulation in feedback. Therefore, exploring the regeneration process of DRG neurons would provide a new understanding to the persistent pathological stimulation and contribute to reshape the somatosensory function. It has been reported that a subpopulation of satellite glial cells (SGCs) express Nestin and p75, and could differentiate into glial cells and neurons, suggesting that SGCs may have differentiation plasticity. Our results in the present study show that DRG-derived SGCs (DRG-SGCs) highly express neural crest cell markers Nestin, Sox2, Sox10, and p75, and differentiate into nociceptive sensory neurons in the presence of histone deacetylase inhibitor VPA, Wnt pathway activator CHIR99021, Notch pathway inhibitor RO4929097, and FGF pathway inhibitor SU5402. The nociceptive sensory neurons express multiple functionally-related genes (SCN9A, SCN10A, SP, Trpv1, and TrpA1) and are able to generate action potentials and voltage-gated Na+ currents. Moreover, we found that these cells exhibited rapid calcium transients in response to capsaicin through binding to the Trpv1 vanilloid receptor, confirming that the DRG-SGC-derived cells are nociceptive sensory neurons. Further, we show that Wnt signaling promotes the differentiation of DRG-SGCs into nociceptive sensory neurons by regulating the expression of specific transcription factor Runx1, while Notch and FGF signaling pathways are involved in the expression of SCN9A. These results demonstrate that DRG-SGCs have stem cell characteristics and can efficiently differentiate into functional nociceptive sensory neurons, shedding light on the clinical treatment of sensory neuron-related diseases.
Collapse
Affiliation(s)
- Dongyan Wang
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Junhou Lu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaojing Xu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Ye Yuan
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Huanhuan Chen
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Jinming Liu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Huanxiang Zhang
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
24
|
Pavlinkova G. Molecular Aspects of the Development and Function of Auditory Neurons. Int J Mol Sci 2020; 22:ijms22010131. [PMID: 33374462 PMCID: PMC7796308 DOI: 10.3390/ijms22010131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- BIOCEV, Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
25
|
Abstract
Primary nociceptors are a heterogeneous class of peripheral somatosensory neurons, responsible for detecting noxious, pruriceptive, and thermal stimuli. These neurons are further divided into several molecularly defined subtypes that correlate with their functional sensory modalities and morphological features. During development, all nociceptors arise from a common pool of embryonic precursors, and then segregate progressively into their mature specialized phenotypes. In this review, we summarize the intrinsic transcriptional programs and extrinsic trophic factor signaling mechanisms that interact to control nociceptor diversification. We also discuss how recent transcriptome profiling studies have significantly advanced the field of sensory neuron development.
Collapse
Affiliation(s)
- Suna L Cranfill
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
26
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
27
|
Faure L, Wang Y, Kastriti ME, Fontanet P, Cheung KKY, Petitpré C, Wu H, Sun LL, Runge K, Croci L, Landy MA, Lai HC, Consalez GG, de Chevigny A, Lallemend F, Adameyko I, Hadjab S. Single cell RNA sequencing identifies early diversity of sensory neurons forming via bi-potential intermediates. Nat Commun 2020; 11:4175. [PMID: 32826903 PMCID: PMC7442800 DOI: 10.1038/s41467-020-17929-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Somatic sensation is defined by the existence of a diversity of primary sensory neurons with unique biological features and response profiles to external and internal stimuli. However, there is no coherent picture about how this diversity of cell states is transcriptionally generated. Here, we use deep single cell analysis to resolve fate splits and molecular biasing processes during sensory neurogenesis in mice. Our results identify a complex series of successive and specific transcriptional changes in post-mitotic neurons that delineate hierarchical regulatory states leading to the generation of the main sensory neuron classes. In addition, our analysis identifies previously undetected early gene modules expressed long before fate determination although being clearly associated with defined sensory subtypes. Overall, the early diversity of sensory neurons is generated through successive bi-potential intermediates in which synchronization of relevant gene modules and concurrent repression of competing fate programs precede cell fate stabilization and final commitment.
Collapse
Affiliation(s)
- Louis Faure
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Yiqiao Wang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kylie K Y Cheung
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Haohao Wu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lynn Linyu Sun
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karen Runge
- INMED INSERM U1249, Aix-Marseille University, Marseille, France
| | - Laura Croci
- Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Mark A Landy
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Helen C Lai
- Department of Neuroscience, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | | | | | - François Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Ming-Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Shin MM, Catela C, Dasen J. Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit. eLife 2020; 9:56374. [PMID: 32808924 PMCID: PMC7467731 DOI: 10.7554/elife.56374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Relay of muscle-derived sensory information to the CNS is essential for the execution of motor behavior, but how proprioceptive sensory neurons (pSNs) establish functionally appropriate connections is poorly understood. A prevailing model of sensory-motor circuit assembly is that peripheral, target-derived, cues instruct pSN identities and patterns of intraspinal connectivity. To date no known intrinsic determinants of muscle-specific pSN fates have been described in vertebrates. We show that expression of Hox transcription factors defines pSN subtypes, and these profiles are established independently of limb muscle. The Hoxc8 gene is expressed by pSNs and motor neurons (MNs) targeting distal forelimb muscles, and sensory-specific depletion of Hoxc8 in mice disrupts sensory-motor synaptic matching, without affecting pSN survival or muscle targeting. These results indicate that the diversity and central specificity of pSNs and MNs are regulated by a common set of determinants, thus linking early rostrocaudal patterning to the assembly of limb control circuits.
Collapse
Affiliation(s)
- Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| | - Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jeremy Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| |
Collapse
|
29
|
Xing Y, Chen J, Hilley H, Steele H, Yang J, Han L. Molecular Signature of Pruriceptive MrgprA3 + Neurons. J Invest Dermatol 2020; 140:2041-2050. [PMID: 32234460 DOI: 10.1016/j.jid.2020.03.935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
Itch, initiated by the activation of sensory neurons, is associated frequently with dermatological diseases. MrgprA3+ sensory neurons have been identified as one of the major itch-sensing neuronal populations. Mounting evidence has demonstrated that peripheral pathological conditions induce physiological regulation of sensory neurons, which is critical for the maintenance of chronic itch sensation. However, the underlying molecular mechanisms are not clear. Here, we performed RNA sequencing of genetically labeled MrgprA3+ neurons under both naïve and allergic contact dermatitis conditions. Our results revealed the unique molecular signature of itch-sensing neurons and the distinct transcriptional profile changes that result in response to dermatitis. We found enrichment of nine Mrgpr family members and two histamine receptors in MrgprA3+ neurons, suggesting that MrgprA3+ neurons are a direct neuronal target for histamine and Mrgpr agonists. In addition, PTPN6 and PCDH12 were identified as highly selective markers of MrgprA3+ neurons. We also discovered that MrgprA3+ neurons respond to skin dermatitis in a way that is unique from other sensory neurons by regulating a combination of transcriptional factors, ion channels, and key molecules involved in synaptic transmission. These results significantly increase our knowledge of itch transmission and uncover potential targets for combating itch.
Collapse
Affiliation(s)
- Yanyan Xing
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Junyu Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Henry Hilley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Haley Steele
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jingjing Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
30
|
Qi L, Yin G, Zhang Y, Tao Y, Wu X, Gronostajski RM, Qiu M, Liu Y. Nuclear Factor I/A Controls A-fiber Nociceptor Development. Neurosci Bull 2020; 36:685-695. [PMID: 32221845 PMCID: PMC7340684 DOI: 10.1007/s12264-020-00486-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Noxious mechanical information is transmitted through molecularly distinct nociceptors, with pinprick-evoked sharp sensitivity via A-fiber nociceptors marked by developmental expression of the neuropeptide Y receptor 2 (Npy2r) and von Frey filament-evoked punctate pressure information via unmyelinated C fiber nociceptors marked by MrgprD. However, the molecular programs controlling their development are only beginning to be understood. Here we demonstrate that Npy2r-expressing sensory neurons are in fact divided into two groups, based on transient or persistent Npy2r expression. Npy2r-transient neurons are myelinated, likely including A-fiber nociceptors, whereas Npy2r-persistent ones belong to unmyelinated pruriceptors that co-express Nppb. We then showed that the transcription factors NFIA and Runx1 are necessary for the development of Npy2r-transient A-fiber nociceptors and MrgprD+ C-fiber nociceptors, respectively. Behaviorally, mice with conditional knockout of Nfia, but not Runx1 showed a marked attenuation of pinprick-evoked nocifensive responses. Our studies therefore identify a transcription factor controlling the development of myelinated nociceptors.
Collapse
Affiliation(s)
- Lu Qi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guangjuan Yin
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yongchao Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yeqi Tao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaohua Wu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mengsheng Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Yang Liu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
31
|
Wang Y, Wu H, Zelenin P, Fontanet P, Wanderoy S, Petitpré C, Comai G, Bellardita C, Xue-Franzén Y, Huettl RE, Huber AB, Tajbakhsh S, Kiehn O, Ernfors P, Deliagina TG, Lallemend F, Hadjab S. Muscle-selective RUNX3 dependence of sensorimotor circuit development. Development 2019; 146:dev.181750. [PMID: 31575648 PMCID: PMC6826036 DOI: 10.1242/dev.181750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.
Collapse
Affiliation(s)
- Yiqiao Wang
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Haohao Wu
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Pavel Zelenin
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Simone Wanderoy
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Glenda Comai
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, Paris 75015, France
| | - Carmelo Bellardita
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Rosa-Eva Huettl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg 85764, Germany
| | - Andrea B Huber
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg 85764, Germany
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, Paris 75015, France
| | - Ole Kiehn
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.,Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - François Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden .,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm 17177, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
32
|
Wang Y, Wu H, Fontanet P, Codeluppi S, Akkuratova N, Petitpré C, Xue-Franzén Y, Niederreither K, Sharma A, Da Silva F, Comai G, Agirman G, Palumberi D, Linnarsson S, Adameyko I, Moqrich A, Schedl A, La Manno G, Hadjab S, Lallemend F. A cell fitness selection model for neuronal survival during development. Nat Commun 2019; 10:4137. [PMID: 31515492 PMCID: PMC6742664 DOI: 10.1038/s41467-019-12119-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/16/2019] [Indexed: 01/14/2023] Open
Abstract
Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.
Collapse
Affiliation(s)
- Yiqiao Wang
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Haohao Wu
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Simone Codeluppi
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, Inserm U964, Université de Strasbourg, Illkirch, France
| | - Anil Sharma
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fabio Da Silva
- Université Côte d'Azur, Inserm, CNRS, iBV, 06108, Nice, France
| | - Glenda Comai
- Stem Cells & Development - Institut Pasteur - CNRS UMR3738, 75015, Paris, France
| | - Gulistan Agirman
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Domenico Palumberi
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sten Linnarsson
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM), UMR 7288, 13288, Marseille, France
| | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, iBV, 06108, Nice, France
| | - Gioele La Manno
- Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - François Lallemend
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
33
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
34
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Downregulation of TrkB Expression and Signaling by Valproic Acid and Other Histone Deacetylase Inhibitors. J Pharmacol Exp Ther 2019; 370:490-503. [PMID: 31308194 DOI: 10.1124/jpet.119.258129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/14/2019] [Indexed: 01/27/2023] Open
Abstract
Valproic acid (VPA) has been shown to regulate the levels of brain-derived neurotrophic factor (BDNF), but it is not known whether this drug can affect the neuronal responses to BDNF. In the present study, we show that in retinoic acid-differentiated SH-SY5Y human neuroblastoma cells, prolonged exposure to VPA reduces the expression of the BDNF receptor TrkB at the protein and mRNA levels and inhibits the intracellular signaling, neurotrophic activity, and prosurvival function of BDNF. VPA downregulates TrkB and curtails BDNF-induced signaling also in differentiated Kelly and LAN-1 neuroblastoma cells and primary mouse cortical neurons. The VPA effect is mimicked by several histone deacetylase (HDAC) inhibitors, including the class I HDAC inhibitors entinostat and romidepsin. Conversely, the class II HDAC inhibitor MC1568, the HDAC6 inhibitor tubacin, the HDAC8 inhibitor PCI-34051, and the VPA derivative valpromide have no effect. In neuroblastoma cells and primary neurons both VPA and entinostat increase the cellular levels of the transcription factor RUNX3, which negatively regulates TrkB gene expression. Treatment with RUNX3 siRNA attenuates VPA-induced RUNX3 elevation and TrkB downregulation. VPA, entinostat, HDAC1 depletion by siRNA, and 3-deazaneplanocin A (DZNep), an inhibitor of the polycomb repressor complex 2 (PRC2), decrease the PRC2 core component EZH2, a RUNX3 suppressor. Like VPA, HDAC1 depletion and DZNep increase RUNX3 and decrease TrkB expression. These results indicate that VPA downregulates TrkB through epigenetic mechanisms involving the EZH2/RUNX3 axis and provide evidence that this effect implicates relevant consequences with regard to BDNF efficacy in stimulating intracellular signaling and functional responses. SIGNIFICANCE STATEMENT: The tropomyosin-related kinase receptor B (TrkB) mediates the stimulatory effects of brain-derived neurotrophic factor (BDNF) on neuronal growth, differentiation, and survival and is highly expressed in aggressive neuroblastoma and other tumors. Here we show that exposure to valproic acid (VPA) downregulates TrkB expression and functional activity in retinoic acid-differentiated human neuroblastoma cell lines and primary mouse cortical neurons. The effects of VPA are mimicked by other histone deacetylase (HDAC) inhibitors and HDAC1 knockdown and appear to be mediated by an epigenetic mechanism involving the upregulation of RUNX3, a suppressor of TrkB gene expression. TrkB downregulation may have relevance for the use of VPA as a potential therapeutic agent in neuroblastoma and other pathologies characterized by an excessive BDNF/TrkB signaling.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Luisa Marras
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Angela Ingianni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences (S.D., M.C.O., P.O.) and Section of Microbiology, Department of Biomedical Sciences (L.M., A.I.), University of Cagliari, Cagliari, Italy
| |
Collapse
|
35
|
Abstract
The molecular mechanisms regulating sympathetic innervation of the heart during embryogenesis and its importance for cardiac development and function remain to be fully elucidated. We generated mice in which conditional knockout (CKO) of the Hif1a gene encoding the transcription factor hypoxia-inducible factor 1α (HIF-1α) is mediated by an Islet1-Cre transgene expressed in the cardiac outflow tract, right ventricle and atrium, pharyngeal mesoderm, peripheral neurons, and hindlimbs. These Hif1aCKO mice demonstrate significantly decreased perinatal survival and impaired left ventricular function. The absence of HIF-1α impaired the survival and proliferation of preganglionic and postganglionic neurons of the sympathetic system, respectively. These defects resulted in hypoplasia of the sympathetic ganglion chain and decreased sympathetic innervation of the Hif1aCKO heart, which was associated with decreased cardiac contractility. The number of chromaffin cells in the adrenal medulla was also decreased, indicating a broad dependence on HIF-1α for development of the sympathetic nervous system.
Collapse
|
36
|
Virtuoso A, Herrera-Rincon C, Papa M, Panetsos F. Dependence of Neuroprosthetic Stimulation on the Sensory Modality of the Trigeminal Neurons Following Nerve Injury. Implications in the Design of Future Sensory Neuroprostheses for Correct Perception and Modulation of Neuropathic Pain. Front Neurosci 2019; 13:389. [PMID: 31118880 PMCID: PMC6504809 DOI: 10.3389/fnins.2019.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/04/2019] [Indexed: 12/02/2022] Open
Abstract
Amputation of a sensory peripheral nerve induces severe anatomical and functional changes along the afferent pathway as well as perception alterations and neuropathic pain. In previous studies we showed that electrical stimulation applied to a transected infraorbital nerve protects the somatosensory cortex from the above-mentioned sensory deprivation-related changes. In the present study we focus on the initial tract of the somatosensory pathway and we investigate the way weak electrical stimulation modulates the neuroprotective-neuroregenerative and functional processes of trigeminal ganglia primary sensory neurons by studying the expression of neurotrophins (NTFs) and Glia-Derived Neurotrophic Factors (GDNFs) receptors. Neurostimulation was applied to the proximal stump of a transected left infraorbitary nerve using a neuroprosthetic micro-device 12 h/day for 4 weeks in freely behaving rats. Neurons were studied by in situ hybridization and immunohistochemistry against RET (proto-oncogene tyrosine kinase "rearranged during transfection"), tropomyosin-related kinases (TrkA, TrkB, TrkC) receptors and IB4 (Isolectin B4 from Griffonia simplicifolia). Intra-group (left vs. right ganglia) and inter-group comparisons (between Control, Axotomization and Stimulation-after-axotomization groups) were performed using the mean percentage change of the number of positive cells per section [100∗(left-right)/right)]. Intra-group differences were studied by paired t-tests. For inter-group comparisons ANOVA test followed by post hoc LSD test (when P < 0.05) were used. Significance level (α) was set to 0.05 in all cases. Results showed that (i) neurostimulation has heterogeneous effects on primary nociceptive and mechanoceptive/proprioceptive neurons; (ii) neurostimulation affects RET-expressing small and large neurons which include thermo-nociceptors and mechanoceptors, as well as on the IB4- and TrkB-positive populations, which mainly correspond to non-peptidergic thermo-nociceptive cells and mechanoceptors respectively. Our results suggest (i) electrical stimulation differentially affects modality-specific primary sensory neurons (ii) artificial input mainly acts on specific nociceptive and mechanoceptive neurons (iii) neuroprosthetic stimulation could be used to modulate peripheral nerve injuries-induced neuropathic pain. These could have important functional implications in both, the design of effective clinical neurostimulation-based protocols and the development of neuroprosthetic devices, controlling primary sensory neurons through selective neurostimulation.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Division of Human Anatomy – Neuronal Networks Morphology Lab, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Celia Herrera-Rincon
- Neuro-computing & Neuro-robotics Research Group, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos, Hospital San Carlos de Madrid (IdISSC), Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy – Neuronal Networks Morphology Lab, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fivos Panetsos
- Neuro-computing & Neuro-robotics Research Group, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos, Hospital San Carlos de Madrid (IdISSC), Madrid, Spain
- Silk Biomed, Madrid, Spain
| |
Collapse
|
37
|
A Role for Sensory end Organ-Derived Signals in Regulating Muscle Spindle Proprioceptor Phenotype. J Neurosci 2019; 39:4252-4267. [PMID: 30926747 DOI: 10.1523/jneurosci.2671-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 01/09/2023] Open
Abstract
Proprioceptive feedback from Group Ia/II muscle spindle afferents and Group Ib Golgi tendon afferents is critical for the normal execution of most motor tasks, yet how these distinct proprioceptor subtypes emerge during development remains poorly understood. Using molecular genetic approaches in mice of either sex, we identified 24 transcripts that have not previously been associated with a proprioceptor identity. Combinatorial expression analyses of these markers reveal at least three molecularly distinct proprioceptor subtypes. In addition, we find that 12 of these transcripts are expressed well after proprioceptors innervate their respective sensory receptors, and expression of three of these markers, including the heart development molecule Heg1, is significantly reduced in mice that lack muscle spindles. These data reveal Heg1 as a putative marker for proprioceptive muscle spindle afferents. Moreover, they suggest that the phenotypic specialization of functionally distinct proprioceptor subtypes depends, in part, on extrinsic sensory receptor organ-derived signals.SIGNIFICANCE STATEMENT Sensory feedback from muscle spindle (MS) and Golgi tendon organ (GTO) sensory end organs is critical for normal motor control, but how distinct MS and GTO afferent sensory neurons emerge during development remains poorly understood. Using (bulk) transcriptome analysis of genetically identified proprioceptors, this work reveals molecular markers for distinct proprioceptor subsets, including some that appear selectively expressed in MS afferents. Detailed analysis of the expression of these transcripts provides evidence that MS/GTO afferent subtype phenotypes may, at least in part, emerge through extrinsic, sensory end organ-derived signals.
Collapse
|
38
|
Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA. Cell Rep 2019; 26:3522-3536.e5. [DOI: 10.1016/j.celrep.2019.02.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
|
39
|
Angelim MKSC, Maia LMSDS, Mouffle C, Ginhoux F, Low D, Amancio-Dos-Santos A, Makhoul J, Le Corronc H, Mangin JM, Legendre P. Embryonic macrophages and microglia ablation alter the development of dorsal root ganglion sensory neurons in mouse embryos. Glia 2018; 66:2470-2486. [PMID: 30252950 DOI: 10.1002/glia.23499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Microglia are known to regulate several aspects of the development of the central nervous system. When microglia colonize the spinal cord, from E11.5 in the mouse embryo, they interact with growing central axons of dorsal root ganglion sensory neurons (SNs), which suggests that they may have some functions in SN development. To address this issue, we analyzed the effects of embryonic macrophage ablation on the early development of SNs using mouse embryo lacking embryonic macrophages (PU.1 knock-out mice) and immune cell ablation. We discovered that, in addition to microglia, embryonic macrophages contact tropomyosin receptor kinase (Trk) C+ SN, TrkB+ SN, and TrkA+ SN peripheral neurites from E11.5. Deprivation of immune cells resulted in an initial reduction of TrkC+ SN and TrkB+ SN populations at E11.5 that was unlikely to be related to an alteration in their developmental cell death (DCD), followed by a transitory increase in their number at E12.5. It also resulted in a reduction of TrkA+ SN number during the developmental period analyzed (E11.5-E15.5), although we did not observe any change in their DCD. Proliferation of cells negative for brain fatty acid-binding protein (BFABP- ), which likely correspond to neuronal progenitors, was increased at E11.5, while their proliferation was decreased at E12.5, which could partly explain the alterations of SN subtype production observed from E11.5. In addition, we observed alterations in the proliferation of glial cell progenitors (BFABP+ cells) in the absence of embryonic macrophages. Our data indicate that embryonic macrophages and microglia ablation alter the development of SNs.
Collapse
Affiliation(s)
- Monara Kaélle Sérvulo Cruz Angelim
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Neurophysiology and pharmacology laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Luciana Maria Silva de Seixas Maia
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Neurophysiology and pharmacology laboratory, Federal University of Pernambuco, Pernambuco, Brazil
| | - Christine Mouffle
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Jennifer Makhoul
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Hervé Le Corronc
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France.,Université d'Angers, Angers, France
| | - Jean-Marie Mangin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| | - Pascal Legendre
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS, IBPS), Paris, France
| |
Collapse
|
40
|
Chen Z, Donnelly CR, Dominguez B, Harada Y, Lin W, Halim AS, Bengoechea TG, Pierchala BA, Lee KF. p75 Is Required for the Establishment of Postnatal Sensory Neuron Diversity by Potentiating Ret Signaling. Cell Rep 2018; 21:707-720. [PMID: 29045838 DOI: 10.1016/j.celrep.2017.09.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 07/14/2017] [Accepted: 09/10/2017] [Indexed: 01/17/2023] Open
Abstract
Producing the neuronal diversity required to adequately discriminate all elements of somatosensation is a complex task during organogenesis. The mechanisms guiding this process during dorsal root ganglion (DRG) sensory neuron specification remain poorly understood. Here, we show that the p75 neurotrophin receptor interacts with Ret and its GFRα co-receptor upon stimulation with glial cell line-derived neurotrophic factor (GDNF). Furthermore, we demonstrate that p75 is required for GDNF-mediated Ret activation, survival, and cell surface localization of Ret in DRG neurons. In mice in which p75 is deleted specifically within sensory neurons beginning at E12.5, we observe that approximately 20% of neurons are lost between P14 and adulthood, and these losses selectively occur within a subpopulation of Ret+ nonpeptidergic nociceptors, with neurons expressing low levels of Ret impacted most heavily. These results suggest that p75 is required for the development of the nonpeptidergic nociceptor lineage by fine-tuning Ret-mediated trophic support.
Collapse
Affiliation(s)
- Zhijiang Chen
- The Salk Institute, Peptide Biology Laboratories, La Jolla, CA 92037, USA
| | - Christopher R Donnelly
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bertha Dominguez
- The Salk Institute, Peptide Biology Laboratories, La Jolla, CA 92037, USA
| | - Yoshinobu Harada
- The Salk Institute, Peptide Biology Laboratories, La Jolla, CA 92037, USA; National Institute of Radiological Sciences and National Institutes for Quantum and Radiological Science and Technology, Chiba 243-8555, Japan
| | - Weichun Lin
- UT Southwestern Medical Center, Neuroscience, Dallas, TX 75390, USA
| | - Alan S Halim
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tasha G Bengoechea
- The Salk Institute, Peptide Biology Laboratories, La Jolla, CA 92037, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kuo-Fen Lee
- The Salk Institute, Peptide Biology Laboratories, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
D'Elia KP, Dasen JS. Development, functional organization, and evolution of vertebrate axial motor circuits. Neural Dev 2018; 13:10. [PMID: 29855378 PMCID: PMC5984435 DOI: 10.1186/s13064-018-0108-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
42
|
Imai F, Yoshida Y. Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord. Dev Dyn 2018; 247:581-587. [PMID: 29226492 DOI: 10.1002/dvdy.24611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Motor behaviors are precisely controlled by the integration of sensory and motor systems in the central nervous system (CNS). Proprioceptive sensory neurons, key components of the sensory system, are located in the dorsal root ganglia and project axons both centrally to the spinal cord and peripherally to muscles and tendons, communicating peripheral information about the body to the CNS. Changes in muscle length detected by muscle spindles, and tension variations in tendons conveyed by Golgi tendon organs, are communicated to the CNS through group Ia /II, and Ib proprioceptive sensory afferents, respectively. Group Ib proprioceptive sensory neurons connect with motor neurons indirectly through spinal interneurons, whereas group Ia/II axons form both direct (monosynaptic) and indirect connections with motor neurons. Although monosynaptic sensory-motor circuits between spindle proprioceptive sensory neurons and motor neurons have been extensively studied since 1950s, the molecular mechanisms underlying their formation and upkeep have only recently begun to be understood. We will discuss our current understanding of the molecular foundation of monosynaptic circuit development and maintenance involving proprioceptive sensory neurons and motor neurons in the mammalian spinal cord. Developmental Dynamics 247:581-587, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fumiyasu Imai
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yutaka Yoshida
- Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
43
|
Peng C, Furlan A, Zhang MD, Su J, Lübke M, Lönnerberg P, Abdo H, Sontheimer J, Sundström E, Ernfors P. Termination of cell-type specification gene programs by miR-183 cluster determines the population sizes of low threshold mechanosensitive neurons. Development 2018; 145:dev.165613. [DOI: 10.1242/dev.165613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
Abstract
Touch and mechanical sensations require the development of several different kinds of sensory neurons dedicated to respond to certain types of mechanical stimuli. The transcription factor Shox2 (short stature homeobox 2) is involved in the generation of TRKB+ low-threshold mechanoreceptors (LTMRs), but mechanisms terminating this program and allowing for alternative fates are unknown. Here, we show that the conditional loss of miR-183-96-182 cluster leads to a failure of extinction of Shox2 during development and an increase in the proportion of Aδ LTMRs (TRKB+/NECAB2+) neurons at the expense of Aβ slowly adapting (SA)-LTMRs (TRKC+/Runx3−) neurons. Conversely, overexpression of miR-183 cluster that represses Shox2 expression, or loss of Shox2, both increases the Aβ SA-LTMRs population at expense of Aδ LTMRs. Our results suggest that the miR-183 cluster determines the timing of Shox2 expression by direct targeting during development, and through this determines the population sizes of Aδ LTMRs and Aβ SA-LTMRs.
Collapse
Affiliation(s)
- Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 200029 Shanghai, China
| | - Alessandro Furlan
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jie Su
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Moritz Lübke
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peter Lönnerberg
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hind Abdo
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jana Sontheimer
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society. Karolinska Institutet, 171777 Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
44
|
Abstract
The sensation of touch is mediated by mechanosensory neurons that are embedded in skin and relay signals from the periphery to the central nervous system. During embryogenesis, axons elongate from these neurons to make contact with the developing skin. Concurrently, the epithelium of skin transforms from a homogeneous tissue into a heterogeneous organ that is made up of distinct layers and microdomains. Throughout this process, each neuronal terminal must form connections with an appropriate skin region to serve its function. This Review presents current knowledge of the development of the sensory microdomains in mammalian skin and the mechanosensory neurons that innervate them.
Collapse
Affiliation(s)
- Blair A Jenkins
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| | - Ellen A Lumpkin
- Department of Physiology & Cellular Biophysics and Department of Dermatology, Columbia University in the City of New York, New York, NY 10032, USA
| |
Collapse
|
45
|
Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat Commun 2017. [PMID: 28970527 DOI: 10.1038/s41467‐017‐01095‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gustatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory-related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding.Characterization of gustatory neural pathways has suffered due to a lack of molecular markers. Here, the authors report single cell RNA sequencing and unbiased transcriptome analyses to reveal major distinctions between gustatory and somatosensory neurons and subclusters of gustatory neurons with unique molecular and functional profiles.
Collapse
|
46
|
Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat Commun 2017; 8:760. [PMID: 28970527 PMCID: PMC5624912 DOI: 10.1038/s41467-017-01095-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/18/2017] [Indexed: 01/30/2023] Open
Abstract
Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gustatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory-related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding. Characterization of gustatory neural pathways has suffered due to a lack of molecular markers. Here, the authors report single cell RNA sequencing and unbiased transcriptome analyses to reveal major distinctions between gustatory and somatosensory neurons and subclusters of gustatory neurons with unique molecular and functional profiles.
Collapse
|
47
|
Gau P, Curtright A, Condon L, Raible DW, Dhaka A. An ancient neurotrophin receptor code; a single Runx/Cbfβ complex determines somatosensory neuron fate specification in zebrafish. PLoS Genet 2017; 13:e1006884. [PMID: 28708822 PMCID: PMC5533457 DOI: 10.1371/journal.pgen.1006884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 07/28/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved. Our perception of the external world comes from our senses. Often overlooked the skin is our largest sensory organ. Specialized neurons located in the dorsal root ganglion (DRG), which innervate the body, and trigeminal ganglion (TG), which innervate the face, sense the somatosensory perceptions: light touch, temperature, pain (nociceptors) and muscle/limb position (proprioception) via nerve endings that project to the skin. These neurons receive and relay information from these diverse stimuli through distinct subclasses of neurons. Since these neurons arise from common lineages, they provide an excellent system to study how neurons develop and diversify into different subtypes. Runx transcription factors have been shown in terrestrial vertebrates (birds and mammals) to be instrumental in specifying nociceptor and proprioceptor populations by regulating the expression of a class of genes that code for the neurotrophin receptors, which are thought to be essential for specifying these neuronal fates. In our study we show that mechanisms by which Runx transcription factors regulate neurotrophin receptor expression are conserved between zebrafish and terrestrial vertebrates, yet the type of neuron specified by these genes are different such that in zebrafish the neurotrophin receptor TrkC is expressed in a nociceptor lineage instead of the proprioceptor/mechanoreceptor lineage as in terrestrial vertebrates. These data demonstrate that the specification of neuronal lineages is not fundamental to a given neurotrophin receptor but has adapted and evolved from the time fish and terrestrial vertebrates diverged 350 million years ago. Furthermore we show in fish that zebrafish Runx3 has properties that are divided between Runx1 and Runx3 in terrestrial vertebrates. Finally we show that the Runx co-factor Cbfβ is essential for its function, but the high level of Runx3 expression can overcome the loss of Cbfβ, demonstrating that Cbfβ in this context serves solely as a signal amplifier of Runx3 activity.
Collapse
Affiliation(s)
- Philia Gau
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Andrew Curtright
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Logan Condon
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Ajay Dhaka
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Neuroscience Graduate Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
48
|
Appel E, Weissmann S, Salzberg Y, Orlovsky K, Negreanu V, Tsoory M, Raanan C, Feldmesser E, Bernstein Y, Wolstein O, Levanon D, Groner Y. An ensemble of regulatory elements controls Runx3 spatiotemporal expression in subsets of dorsal root ganglia proprioceptive neurons. Genes Dev 2017; 30:2607-2622. [PMID: 28007784 PMCID: PMC5204353 DOI: 10.1101/gad.291484.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Appel et al. defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Then, using transgenic mice expressing BAC reporters spanning the Runx3 locus, they discovered three REs that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs—dubbed R1, R2, and R3—that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs’ ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.
Collapse
Affiliation(s)
- Elena Appel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarit Weissmann
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehuda Salzberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel.,Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kira Orlovsky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Bernstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orit Wolstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
49
|
Bernal Sierra YA, Haseleu J, Kozlenkov A, Bégay V, Lewin GR. Genetic Tracing of Ca v3.2 T-Type Calcium Channel Expression in the Peripheral Nervous System. Front Mol Neurosci 2017; 10:70. [PMID: 28360836 PMCID: PMC5350092 DOI: 10.3389/fnmol.2017.00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/01/2017] [Indexed: 02/01/2023] Open
Abstract
Characterizing the distinct functions of the T-type ion channel subunits Cav3.1, 3.2 or 3.3 has proven difficult due to their highly conserved amino-acid sequences and the lack of pharmacological blockers specific for each subunit. To precisely determine the expression pattern of the Cav3.2 channel in the nervous system we generated two knock-in mouse strains that express EGFP or Cre recombinase under the control of the Cav3.2 gene promoter. We show that in the brains of these animals, the Cav3.2 channel is predominantly expressed in the dentate gyrus of the hippocampus. In the peripheral nervous system, the activation of the promoter starts at E9.5 in neural crest cells that will give rise to dorsal root ganglia (DRG) neurons, but not sympathetic neurons. As development progresses the number of DRG cells expressing the Cav3.2 channel reaches around 7% of the DRG at E16.5, and remains constant until E18.5. Characterization of sensory neuron subpopulations at E18.5 showed that EGFP+ cells are a heterogeneous population consisting mainly of TrkB+ and TrkC+ cells, while only a small percentage of DRG cells were TrkA+. Genetic tracing of the sensory nerve end-organ innervation of the skin showed that the activity of the Cav3.2 channel promoter in sensory progenitors marks many mechanoreceptor and nociceptor endings, but spares slowly adapting mechanoreceptors with endings associated with Merkel cells. Our genetic analysis reveals for the first time that progenitors that express the Cav3.2 T-type calcium channel, defines a sensory specific lineage that populates a large proportion of the DRG. Using our Cav3.2-Cre mice together with AAV viruses containing a conditional fluorescent reporter (tdTomato) we could also show that Cre expression is largely restricted to two functionally distinct sensory neuron types in the adult ganglia. Cav3.2 positive neurons innervating the skin were found to only form lanceolate endings on hair follicles and are probably identical to D-hair receptors. A second population of nociceptive sensory neurons expressing the Cav3.2 gene was found to be positive for the calcitonin-gene related peptide but these neurons are deep tissue nociceptors that do not innervate the skin.
Collapse
Affiliation(s)
- Yinth A Bernal Sierra
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Julia Haseleu
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Alexey Kozlenkov
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Valérie Bégay
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
50
|
Wang JW, Stifani S. Roles of Runx Genes in Nervous System Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:103-116. [PMID: 28299654 DOI: 10.1007/978-981-10-3233-2_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Runt-related (Runx) transcription factors play essential roles during development and adult tissue homeostasis and are responsible for several human diseases. They regulate a variety of biological mechanisms in numerous cell lineages. Recent years have seen significant progress in our understanding of the functions performed by Runx proteins in the developing and postnatal mammalian nervous system. In both central and peripheral nervous systems, Runx1 and Runx3 display remarkably specific expression in mostly non-overlapping groups of postmitotic neurons. In the central nervous system, Runx1 is involved in the development of selected motor neurons controlling neural circuits mediating vital functions such as chewing, swallowing, breathing, and locomotion. In the peripheral nervous system, Runx1 and Runx3 play essential roles during the development of sensory neurons involved in circuits mediating pain, itch, thermal sensation and sense of relative position. Runx1 and Runx3 orchestrate complex gene expression programs controlling neuronal subtype specification and axonal connectivity. Runx1 is also important in the olfactory system, where it regulates the progenitor-to-neuron transition in undifferentiated neural progenitor cells in the olfactory epithelium as well as the proliferation and developmental maturation of specific glial cells termed olfactory ensheathing cells. Moreover, upregulated Runx expression is associated with brain injury and disease. Increasing knowledge of the functions of Runx proteins in the developing and postnatal nervous system is therefore expected to improve our understanding of nervous system development, homeostasis and disease.
Collapse
Affiliation(s)
- Jae Woong Wang
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A2B4, Canada
| | - Stefano Stifani
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A2B4, Canada.
| |
Collapse
|