1
|
Cabana VC, Lussier MP. RNF13 variants L311S and L312P associated with developmental epileptic encephalopathy alter dendritic organization in hippocampal neurons. IBRO Neurosci Rep 2025; 18:559-573. [PMID: 40276023 PMCID: PMC12018061 DOI: 10.1016/j.ibneur.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Developmental and epileptic encephalopathy (DEE) is a group of rare and serious neurological disorders where seizures exacerbate developmental impairment. Recently, genetic mutations in the RNF13 gene were reported to cause DEE73. Specifically, two leucines from the ubiquitin E3 ligase RNF13 are converted to serine or proline (L311S and L312P). These mutations are located within a dileucine motif, which impairs RNF13's capacity to interact with AP-3. A second motif allows RNF13 to interact with AP-1 when the dileucine sorting motif is altered. The present study demonstrates that RNF13 variants L311S and L312P are trafficked through an AP-1-dependent pathway in HeLa cells. In cultures of primary rat hippocampal neurons, the protein level of the variants is significantly higher in dendrites than for wild-type protein. L311S and L312P variants alter dendritic components similarly to an RNF13 AP-3-defective binding variant or a dominant negative for RNF13's ubiquitin ligase activity. Compared to non-transfected neurons, the variants change the distribution of EEA1-positive early endosomes throughout the dendrites. While the WT alters the distribution of lysosomes (Lamp1-positive) in dendrites, the variants only decrease their presence in proximal dendrites. Unlike the variants, RNF13 WT increases the abundance of PSD-95 in distal dendrites. Interestingly, only the variants with altered dileucine motifs decrease the total number of postsynaptic inhibitory protein Gephyrin puncta. This study reports that genetic variants L311S and L312P mainly act as a dominant negative protein. This research provides valuable insights into the dendritic defects that occur when DEE73-associated genetic variants of RNF13 are present.
Collapse
Affiliation(s)
- Valérie C. Cabana
- Department of Chemistry, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- CERMO-FC - The Center of Excellence in Research on Ophan Diseases - Fondation Courtois, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- PROTEO - The Quebec Network for Research on Protein Function, Engineering and Applications, Montréal, QC H3C 3P8, Canada
| | - Marc P. Lussier
- Department of Chemistry, Université du Québec à Montréal, 2101, rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada
- CERMO-FC - The Center of Excellence in Research on Ophan Diseases - Fondation Courtois, Université du Québec à Montréal, Montréal, QC H2X 3Y7, Canada
- PROTEO - The Quebec Network for Research on Protein Function, Engineering and Applications, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Szíber Z, Drouet A, Mondin M, Levet F, Thoumine O. Neuroligin-1 dependent phosphotyrosine signaling in excitatory synapse differentiation. Front Mol Neurosci 2024; 17:1359067. [PMID: 38813439 PMCID: PMC11133670 DOI: 10.3389/fnmol.2024.1359067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The synaptic adhesion molecule neuroligin-1 (NLGN1) is involved in the differentiation of excitatory synapses, but the precise underlying molecular mechanisms are still debated. Here, we explored the role of NLGN1 tyrosine phosphorylation in this process, focusing on a subset of receptor tyrosine kinases (RTKs), namely FGFR1 and Trks, that were previously described to phosphorylate NLGN1 at a unique intracellular residue (Y782). Methods We used pharmacological inhibitors and genetic manipulation of those RTKs in dissociated hippocampal neurons, followed by biochemical measurement of NLGN1 phosphorylation and immunocytochemical staining of excitatory synaptic scaffolds. Results This study shows that: (i) the accumulation of PSD-95 at de novo NLGN1 clusters induced by neurexin crosslinking is reduced by FGFR and Trk inhibitors; (ii) the increase in PSD-95 puncta caused by NLGN1 over-expression is impaired by FGFR and Trk inhibitors; (iii) TrkB activation by BDNF increases NLGN1 phosphorylation; and (iv) TrkB knock-down impairs the increase of PSD-95 puncta caused by NLGN1 over-expression, an effect which is not seen with the NLGN1 Y782A mutant. Discussion Together, our data identify TrkB as one of the major RTKs responsible for NLGN1 tyrosine phosphorylation, and reveal that TrkB activity is necessary for the synaptogenic effects of NLGN1.
Collapse
Affiliation(s)
- Zsófia Szíber
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Adèle Drouet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Magali Mondin
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, Bordeaux, France
| | - Florian Levet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
3
|
Chen Y, Liu S, Jacobi AA, Jeng G, Ulrich JD, Stein IS, Patriarchi T, Hell JW. Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses. Front Synaptic Neurosci 2024; 16:1291262. [PMID: 38660466 PMCID: PMC11039796 DOI: 10.3389/fnsyn.2024.1291262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.
Collapse
Affiliation(s)
- Yucui Chen
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Shangming Liu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Ariel A. Jacobi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Jason D. Ulrich
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Ivar S. Stein
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Lee SE, Chang S. nArgBP2 together with GKAP and SHANK3 forms a dynamic layered structure. Front Cell Neurosci 2024; 18:1354900. [PMID: 38440150 PMCID: PMC10909995 DOI: 10.3389/fncel.2024.1354900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
nArgBP2, a protein whose disruption is implicated in intellectual disability, concentrates in excitatory spine-synapses. By forming a triad with GKAP and SHANK, it regulates spine structural rearrangement. We here find that GKAP and SHANK3 concentrate close to the synaptic contact, whereas nArgBP2 concentrates more centrally in the spine. The three proteins collaboratively form biomolecular condensates in living fibroblasts, exhibiting distinctive layered localizations. nArgBP2 concentrates in the inner phase, SHANK3 in the outer phase, and GKAP partially in both. Upon co-expression of GKAP and nArgBP2, they evenly distribute within condensates, with a notable peripheral localization of SHANK3 persisting when co-expressed with either GKAP or nArgBP2. Co-expression of SHANK3 and GKAP with CaMKIIα results in phase-in-phase condensates, with CaMKIIα at the central locus and SHANK3 and GKAP exhibiting peripheral localization. Additional co-expression of nArgBP2 maintains the layered organizational structure within condensates. Subsequent CaMKIIα activation disperses a majority of the condensates, with an even distribution of all proteins within the extant deformed condensates. Our findings suggest that protein segregation via phase separation may contribute to establishing layered organization in dendritic spines.
Collapse
Affiliation(s)
- Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Li J, Miramontes TG, Czopka T, Monk KR. Synaptic input and Ca 2+ activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. Nat Neurosci 2024; 27:219-231. [PMID: 38216650 DOI: 10.1038/s41593-023-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca2+ activity in OPCs predict where a subset of myelin sheaths forms in differentiated oligodendrocytes. Further analyses reveal that spontaneous synaptic release is integral to OPC Ca2+ activity, while evoked synaptic release contributes only in early development. Finally, disruption of the synaptic genes dlg4a/dlg4b, gphnb and nlgn3b impairs OPC differentiation and myelination. Together, we propose that neuron-OPC synapses are dynamically assembled and can predetermine myelination patterns through Ca2+ signaling.
Collapse
Affiliation(s)
- Jiaxing Li
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | | | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Bustos FJ, Pandian S, Haensgen H, Zhao JP, Strouf H, Heidenreich M, Swiech L, Deverman BE, Gradinaru V, Zhang F, Constantine-Paton M. Removal of a partial genomic duplication restores synaptic transmission and behavior in the MyosinVA mutant mouse Flailer. BMC Biol 2023; 21:232. [PMID: 37957716 PMCID: PMC10644554 DOI: 10.1186/s12915-023-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies. RESULTS Using the ASD and anxiety mouse model Flailer, which contains a partial genomic duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700 bp genomic region in vitro and in vivo. Importantly, DN-CRISPRs have not been used to remove genomic regions using sgRNA with an offset greater than 300 bp. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene editing. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescue some of the mutant behaviors, while intracerebroventricular delivery, completely recovers the Flailer animal phenotype associated to anxiety and ASD. CONCLUSIONS Our results demonstrate the potential of DN-CRISPR to efficiently remove larger genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernando J Bustos
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile.
| | - Swarna Pandian
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Henny Haensgen
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Jian-Ping Zhao
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haley Strouf
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Lukasz Swiech
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin E Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Feng Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Bustos FJ, Pandian S, Haensgen H, Zhao JP, Strouf H, Heidenreich M, Swiech L, Deverman B, Gradinaru V, Zhang F, Constantine-Paton M. Removal of a genomic duplication by double-nicking CRISPR restores synaptic transmission and behavior in the MyosinVA mutant mouse Flailer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538685. [PMID: 37163068 PMCID: PMC10168395 DOI: 10.1101/2023.04.28.538685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies. Using the ASD and anxiety mouse model Flailer, that contains a duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700bp genomic duplication in vitro and in vivo . Importantly, DN-CRISPRs have not been used to remove more gene regions <100bp successfully and with high efficiency. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene edition. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescues some of the mutant behaviors, while intracerebroventricular delivery, completely recovers Flailer animal phenotype associated to anxiety and ASD. Our results demonstrate the potential of DN-CRISPR to efficiently (>60% editing in vivo) remove large genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.
Collapse
|
8
|
Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, Chamma I, Vennekens K, Vanderlinden J, Sainlos M, de Wit J, Choquet D, Thoumine O. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. eLife 2022; 11:75233. [PMID: 35532105 PMCID: PMC9084894 DOI: 10.7554/elife.75233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.
Collapse
Affiliation(s)
- Andrea Toledo
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Mathieu Letellier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Giorgia Bimbi
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Béatrice Tessier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Sophie Daburon
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Alexandre Favereaux
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Ingrid Chamma
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Kristel Vennekens
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Matthieu Sainlos
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Joris de Wit
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Daniel Choquet
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
- University of Bordeaux, CNRS UAR 3420, INSERM, Bordeaux Imaging Center
| | - Olivier Thoumine
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| |
Collapse
|
9
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
10
|
Ganguly A, Sharma R, Boyer NP, Wernert F, Phan S, Boassa D, Parra L, Das U, Caillol G, Han X, Yates JR, Ellisman MH, Leterrier C, Roy S. Clathrin packets move in slow axonal transport and deliver functional payloads to synapses. Neuron 2021; 109:2884-2901.e7. [PMID: 34534453 PMCID: PMC8457040 DOI: 10.1016/j.neuron.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022]
Abstract
In non-neuronal cells, clathrin has established roles in endocytosis, with clathrin cages enclosing plasma membrane infoldings, followed by rapid disassembly and reuse of monomers. However, in neurons, clathrin is conveyed in slow axonal transport over days to weeks, and the underlying transport/targeting mechanisms, mobile cargo structures, and even its precise presynaptic localization and physiologic role are unclear. Combining live imaging, photobleaching/conversion, mass spectrometry, electron microscopy, and super-resolution imaging, we found that unlike in dendrites, where clathrin cages rapidly assemble and disassemble, in axons, clathrin and related proteins organize into stable "transport packets" that are unrelated to endocytosis and move intermittently on microtubules, generating an overall slow anterograde flow. At synapses, multiple clathrin packets abut synaptic vesicle (SV) clusters, and clathrin packets also exchange between synaptic boutons in a microtubule-dependent "superpool." Within synaptic boundaries, clathrin is surprisingly dynamic, continuously exchanging between local clathrin assemblies, and its depletion impairs SV recycling. Our data provide a conceptual framework for understanding clathrin trafficking and presynaptic targeting that has functional implications.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Rohan Sharma
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas P Boyer
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Florian Wernert
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Sébastien Phan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Daniela Boassa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Leonardo Parra
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Utpal Das
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ghislaine Caillol
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Xuemei Han
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mark H Ellisman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Zhao W, Hou Y, Song X, Wang L, Zhang F, Zhang H, Yu H, Zhou Y. Estrogen Deficiency Induces Mitochondrial Damage Prior to Emergence of Cognitive Deficits in a Postmenopausal Mouse Model. Front Aging Neurosci 2021; 13:713819. [PMID: 34335235 PMCID: PMC8319728 DOI: 10.3389/fnagi.2021.713819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Estrogen deficiency contributes to the development of Alzheimer's disease (AD) in menopausal women. In the current study, we examined the impact of estrogen deficiency on mitochondrial function and cognition using a postmenopausal mouse model. Methods: Bilateral ovariectomy was conducted in adult females C57BL/6J. Cognitive function was examined using the Morris water maze (MWM) test at 2 weeks, 1, 2, and 3 months after ovariectomy. Neurodegeneration was assessed using an immunofluorescence assay of microtubule-associated protein 2 (MAP2) in the hippocampus and immunoblotting against postsynaptic density-95 (PSD95). Mitochondrial function in the hippocampus was assessed using immunoblotting for NDUFB8, SDHB, UQCRC2, MTCO1, and ATP5A1. Mitochondrial biogenesis was examined using immunoblotting for PGC-1α, NRF1, and mtTFA. Mitochondrion fission was assessed with immunoblotting for Drp1, whereas mitochondrion fusion was analyzed with immunoblotting for OPA1 and Mfn2. Mitophagy was examined with immunoblotting for PINK1 and LC3B. Mice receiving sham surgery were used as controls. Results: Ovariectomy resulted in significant learning and memory deficits in the MWM test at 3 months, but not at any earlier time points. At 2 weeks after ovariectomy, levels of Drp1 phosphorylated at Ser637 decreased in the hippocampus. At 1 month after ovariectomy, hippocampal levels of NDUFB8, SDHB, PGC-1α, mtTFA, OPA1, and Mfn2 were significantly reduced. At 2 months after ovariectomy, hippocampal levels of MAP2, PSD95, MTCO1, NRF1, and Pink1 were also reduced. At 3 months, levels of LC3B-II were reduced. Conclusions: The cognitive decline associated with estrogen deficiency is preceded by mitochondrial dysfunction, abnormal mitochondrial biogenesis, irregular mitochondrial dynamics, and decreased mitophagy. Thus, mitochondrial damage may contribute to cognitive impairment associated with estrogen deficiency.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinxin Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Lei Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Fangfang Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Hanting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
12
|
Spatiotemporal Patterns of Menin Localization in Developing Murine Brain: Co-Expression with the Elements of Cholinergic Synaptic Machinery. Cells 2021; 10:cells10051215. [PMID: 34065662 PMCID: PMC8156519 DOI: 10.3390/cells10051215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Menin, a product of MEN1 (multiple endocrine neoplasia type 1) gene is an important regulator of tissue development and maintenance; its perturbation results in multiple tumors—primarily of the endocrine tissue. Despite its abundance in the developing central nervous system (CNS), our understanding of menin’s role remains limited. Recently, we discovered menin to play an important role in cholinergic synaptogenesis in the CNS, whereas others have shown its involvement in learning, memory, depression and apoptosis. For menin to play these important roles in the CNS, its expression patterns must be corroborated with other components of the synaptic machinery imbedded in the learning and memory centers; this, however, remains to be established. Here, we report on the spatio-temporal expression patterns of menin, which we found to exhibit dynamic distribution in the murine brain from early development, postnatal period to a fully-grown adult mouse brain. We demonstrate here that menin expression is initially widespread in the brain during early embryonic stages, albeit with lower intensity, as determined by immunohistochemistry and gene expression. With the progression of development, however, menin expression became highly localized to learning, memory and cognition centers in the CNS. In addition to menin expression patterns throughout development, we provide the first direct evidence for its co-expression with nicotinic acetylcholine, glutamate and GABA (gamma aminobutyric acid) receptors—concomitant with the expression of both postsynaptic (postsynaptic density protein PSD-95) and presynaptic (synaptotagamin) proteins. This study is thus the first to provide detailed analysis of spatio-temporal patterns of menin expression from initial CNS development to adulthood. When taken together with previously published studies, our data underscore menin’s importance in the cholinergic neuronal network assembly underlying learning, memory and cognition.
Collapse
|
13
|
Myosin Va Brain-Specific Mutation Alters Mouse Behavior and Disrupts Hippocampal Synapses. eNeuro 2020; 7:ENEURO.0284-20.2020. [PMID: 33229412 PMCID: PMC7769881 DOI: 10.1523/eneuro.0284-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Myosin Va (MyoVa) is a plus-end filamentous-actin motor protein that is highly and broadly expressed in the vertebrate body, including in the nervous system. In excitatory neurons, MyoVa transports cargo toward the tip of the dendritic spine, where the postsynaptic density (PSD) is formed and maintained. MyoVa mutations in humans cause neurologic dysfunction, intellectual disability, hypomelanation, and death in infancy or childhood. Here, we characterize the Flailer (Flr) mutant mouse, which is homozygous for a myo5a mutation that drives high levels of mutant MyoVa (Flr protein) specifically in the CNS. Flr protein functions as a dominant-negative MyoVa, sequestering cargo and blocking its transport to the PSD. Flr mice have early seizures and mild ataxia but mature and breed normally. Flr mice display several abnormal behaviors known to be associated with brain regions that show high expression of Flr protein. Flr mice are defective in the transport of synaptic components to the PSD and in mGluR-dependent long-term depression (LTD) and have a reduced number of mature dendritic spines. The synaptic and behavioral abnormalities of Flr mice result in anxiety and memory deficits similar to that of other mouse mutants with obsessive-compulsive disorder and autism spectrum disorder (ASD). Because of the dominant-negative nature of the Flr protein, the Flr mouse offers a powerful system for the analysis of how the disruption of synaptic transport and lack of LTD can alter synaptic function, development and wiring of the brain and result in symptoms that characterize many neuropsychiatric disorders.
Collapse
|
14
|
Santuy A, Tomás-Roca L, Rodríguez JR, González-Soriano J, Zhu F, Qiu Z, Grant SGN, DeFelipe J, Merchan-Perez A. Estimation of the number of synapses in the hippocampus and brain-wide by volume electron microscopy and genetic labeling. Sci Rep 2020; 10:14014. [PMID: 32814795 PMCID: PMC7438319 DOI: 10.1038/s41598-020-70859-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
Determining the number of synapses that are present in different brain regions is crucial to understand brain connectivity as a whole. Membrane-associated guanylate kinases (MAGUKs) are a family of scaffolding proteins that are expressed in excitatory glutamatergic synapses. We used genetic labeling of two of these proteins (PSD95 and SAP102), and Spinning Disc confocal Microscopy (SDM), to estimate the number of fluorescent puncta in the CA1 area of the hippocampus. We also used FIB-SEM, a three-dimensional electron microscopy technique, to calculate the actual numbers of synapses in the same area. We then estimated the ratio between the three-dimensional densities obtained with FIB-SEM (synapses/µm3) and the bi-dimensional densities obtained with SDM (puncta/100 µm2). Given that it is impractical to use FIB-SEM brain-wide, we used previously available SDM data from other brain regions and we applied this ratio as a conversion factor to estimate the minimum density of synapses in those regions. We found the highest densities of synapses in the isocortex, olfactory areas, hippocampal formation and cortical subplate. Low densities were found in the pallidum, hypothalamus, brainstem and cerebellum. Finally, the striatum and thalamus showed a wide range of synapse densities.
Collapse
Affiliation(s)
- Andrea Santuy
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Laura Tomás-Roca
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - José-Rodrigo Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain
| | - Juncal González-Soriano
- Departamento de Anatomía y Embriología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Fei Zhu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain. .,Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
15
|
Shank3 contributes to neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95. Neurosci Res 2020; 166:34-41. [PMID: 32454040 DOI: 10.1016/j.neures.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023]
Abstract
Neuropathic pain is a very complex chronic pain state, the detailed molecular mechanisms of which remain unclear. In the present study, Shank3 was found to play an important role in neuropathic pain in rats following spared nerve injury (SNI). Shank3 was upregulated in the spinal dorsal horn of rats subjected to SNI, and mechanical hypersensitivity to noxious stimuli in these rats could be alleviated by knock down of Shank3. Shank3 also interacted with hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and promoted the expression of HCN2 in central neurons of the spinal dorsal. Together with the SNI-dependent increase of HCN2, we also found that the postsynaptic protein of excitatory synapse (PSD95) was increased in rats following SNI. Taken together, our results showed that Shank3 modulated neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95 in spinal dorsal horn neurons. Our findings revealed new synaptic remodeling mechanisms linking Shank3 with neuropathic pain.
Collapse
|
16
|
Culotta L, Penzes P. Exploring the mechanisms underlying excitation/inhibition imbalance in human iPSC-derived models of ASD. Mol Autism 2020; 11:32. [PMID: 32393347 PMCID: PMC7216514 DOI: 10.1186/s13229-020-00339-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders characterized by impaired social interaction and communication, and repetitive or restricted behaviors. ASD subjects exhibit complex genetic and clinical heterogeneity, thus hindering the discovery of pathophysiological mechanisms. Considering that several ASD-risk genes encode proteins involved in the regulation of synaptic plasticity, neuronal excitability, and neuronal connectivity, one hypothesis that has emerged is that ASD arises from a disruption of the neuronal network activity due to perturbation of the synaptic excitation and inhibition (E/I) balance. The development of induced pluripotent stem cell (iPSC) technology and recent advances in neuronal differentiation techniques provide a unique opportunity to model complex neuronal connectivity and to test the E/I hypothesis of ASD in human-based models. Here, we aim to review the latest advances in studying the different cellular and molecular mechanisms contributing to E/I balance using iPSC-based in vitro models of ASD.
Collapse
Affiliation(s)
- Lorenza Culotta
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Omelchenko A, Menon H, Donofrio SG, Kumar G, Chapman HM, Roshal J, Martinez-Montes ER, Wang TL, Spaller MR, Firestein BL. Interaction Between CRIPT and PSD-95 Is Required for Proper Dendritic Arborization in Hippocampal Neurons. Mol Neurobiol 2020; 57:2479-2493. [PMID: 32157575 PMCID: PMC7176523 DOI: 10.1007/s12035-020-01895-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
CRIPT, the cysteine-rich PDZ-binding protein, binds to the third PDZ domain of PSD-95 (postsynaptic density protein 95) family proteins and directly binds microtubules, linking PSD-95 family proteins to the neuronal cytoskeleton. Here, we show that overexpression of a full-length CRIPT leads to a modest decrease, and knockdown of CRIPT leads to an increase in dendritic branching in cultured rat hippocampal neurons. Overexpression of truncated CRIPT lacking the PDZ domain-binding motif, which does not bind to PSD-95, significantly decreases dendritic arborization. Conversely, overexpression of a full-length CRIPT significantly increases the number of immature and mature dendritic spines, and this effect is not observed when CRIPT∆PDZ is overexpressed. Competitive inhibition of CRIPT binding to the third PDZ domain of PSD-95 with PDZ3-binding peptides resulted in differential effects on dendritic arborization based on the origin of respective peptide sequence. These results highlight multifunctional roles of CRIPT during development and underscore the significance of the interaction between CRIPT and the third PDZ domain of PSD-95.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
- Neuroscience Graduate Program, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Harita Menon
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Sarah G Donofrio
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Gaurav Kumar
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Heidi M Chapman
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Joshua Roshal
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Eduardo R Martinez-Montes
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Tiffany L Wang
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Mark R Spaller
- Geisel School of Medicine, Department of Medical Education and Norris Cotton Cancer Center, Dartmouth College, Lebanon, NH, 03756, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
18
|
Naik AS, Lin JM, Taroc EZM, Katreddi RR, Frias JA, Lemus AA, Sammons MA, Forni PE. Smad4-dependent morphogenic signals control the maturation and axonal targeting of basal vomeronasal sensory neurons to the accessory olfactory bulb. Development 2020; 147:147/8/dev184036. [PMID: 32341026 PMCID: PMC7197725 DOI: 10.1242/dev.184036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
The vomeronasal organ (VNO) contains two main types of vomeronasal sensory neurons (VSNs) that express distinct vomeronasal receptor (VR) genes and localize to specific regions of the neuroepithelium. Morphogenic signals are crucial in defining neuronal identity and network formation; however, if and what signals control maturation and homeostasis of VSNs is largely unexplored. Here, we found transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) signal transduction in postnatal mice, with BMP signaling being restricted to basal VSNs and at the marginal zones of the VNO: the site of neurogenesis. Using different Smad4 conditional knockout mouse models, we disrupted canonical TGFβ/BMP signaling in either maturing basal VSNs (bVSNs) or all mature VSNs. Smad4 loss of function in immature bVSNs compromises dendritic knob formation, pheromone induced activation, correct glomeruli formation in the accessory olfactory bulb (AOB) and survival. However, Smad4 loss of function in all mature VSNs only compromises correct glomeruli formation in the posterior AOB. Our results indicate that Smad4-mediated signaling drives the functional maturation and connectivity of basal VSNs. Summary: Genetic disruption of TGFβ/BMP signaling in maturing basal vomeronasal sensory neurons (VSNs) or in all mature VSNs indicates that Smad4 signaling drives maturation and connectivity of basal VSNs.
Collapse
Affiliation(s)
- Ankana S Naik
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jennifer M Lin
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M Taroc
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Raghu R Katreddi
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jesus A Frias
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alex A Lemus
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E Forni
- Department of Biological Sciences; The RNA Institute; University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
19
|
Svirsky S, Henchir J, Li Y, Ma X, Carlson S, Dixon CE. Neurogranin Protein Expression Is Reduced after Controlled Cortical Impact in Rats. J Neurotrauma 2020; 37:939-949. [PMID: 31691647 PMCID: PMC7175627 DOI: 10.1089/neu.2019.6759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is known to cause short- and long-term synaptic changes in the brain, possibly underlying downstream cognitive impairments. Neuronal levels of neurogranin, a calcium-sensitive calmodulin-binding protein essential for synaptic plasticity and postsynaptic signaling, are correlated with cognitive function. This study aims to understand the effect of TBI on neurogranin by characterizing changes in protein expression at various time points after injury. Adult, male rats were subjected to either controlled cortical impact (CCI) or control surgery. Expression of neurogranin and post-synaptic density 95 (PSD-95) were evaluated by Western blot in the cortex and hippocampus at 24 h and 1, 2, and 4 weeks post-injury. We hypothesized that CCI reduces neurogranin levels in the cortex and hippocampus, and demonstrate different expression patterns from PSD-95. Neurogranin levels were reduced in the ipsilateral cortex and hippocampus up to 2 weeks after injury but recovered to sham levels by 4 weeks. The contralateral cortex and hippocampus were relatively resistant to changes in neurogranin expression post-injury. Qualitative immunohistochemical assessment corroborated the immunoblot findings. Particularly, the pericontusional cortex and ipsilateral Cornu Ammonis (CA)3 region showed marked reduction in immunoreactivity. PSD-95 demonstrated similar expression patterns to neurogranin in the cortex; however, in the hippocampus, protein expression was increased compared with sham at the 2 and 4 week time points. Our results indicate that CCI lowers neurogranin expression with temporal and regional specificity and that this occurs independently of dendritic loss. Further understanding of the role of neurogranin in synaptic biology after TBI will elucidate pathological mechanisms contributing to cognitive dysfunction.
Collapse
Affiliation(s)
- Sarah Svirsky
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Youming Li
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xiecheng Ma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Shaun Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Loomis C, Stephens A, Janicot R, Baqai U, Drebushenko L, Round J. Identification of MAGUK scaffold proteins as intracellular binding partners of synaptic adhesion protein Slitrk2. Mol Cell Neurosci 2020; 103:103465. [DOI: 10.1016/j.mcn.2019.103465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
|
21
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
22
|
Mardones MD, Jorquera PV, Herrera-Soto A, Ampuero E, Bustos FJ, van Zundert B, Varela-Nallar L. PSD95 regulates morphological development of adult-born granule neurons in the mouse hippocampus. J Chem Neuroanat 2019; 98:117-123. [PMID: 31047946 DOI: 10.1016/j.jchemneu.2019.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 11/29/2022]
Abstract
In the adult hippocampus new neurons are generated in the dentate gyrus from neural progenitor cells. Adult-born neurons integrate into the hippocampal circuitry and contribute to hippocampal function. PSD95 is a major postsynaptic scaffold protein that is crucial for morphological maturation and synaptic development of hippocampal neurons. Here we study the function of PSD95 in adult hippocampal neurogenesis by downregulating PSD95 expression in newborn cells using retroviral-mediated RNA interference. Retroviruses coding for a control shRNA or an shRNA targeting PSD95 (shPSD95) were stereotaxically injected into the dorsal dentate gyrus of 2-month-old C57BL/6 mice. PSD95 knockdown did not affect neuronal differentiation of newborn cells into neurons, or migration of newborn neurons into the granule cell layer. Morphological analysis revealed that newborn neurons expressing shPSD95 showed increased dendritic length and increased number of high-order dendrites. Concomitantly, dendrites from shPSD95-expressing newborn granule neurons showed a reduction in the density of dendritic spines. These results suggest that PSD95 is required for proper dendritic and spine maturation of adult-born neurons, but not for early stages of neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Muriel D Mardones
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Patricia V Jorquera
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Estibaliz Ampuero
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Fernando J Bustos
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; McGovern Institute for Brain Research, MIT, Cambridge, MA, United States
| | - Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Centro de Envejecimiento y Regeneración (CARE), P. Universidad Católica de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
23
|
Dynamics, nanoscale organization, and function of synaptic adhesion molecules. Mol Cell Neurosci 2018; 91:95-107. [DOI: 10.1016/j.mcn.2018.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
|
24
|
The Adhesion-GPCR BAI1 Promotes Excitatory Synaptogenesis by Coordinating Bidirectional Trans-synaptic Signaling. J Neurosci 2018; 38:8388-8406. [PMID: 30120207 DOI: 10.1523/jneurosci.3461-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Excitatory synapses are specialized cell-cell contacts located on actin-rich dendritic spines that mediate information flow and storage in the brain. The postsynaptic adhesion-G protein-coupled receptor (A-GPCR) BAI1 is a critical regulator of excitatory synaptogenesis, which functions in part by recruiting the Par3-Tiam1 polarity complex to spines, inducing local Rac1 GTPase activation and actin cytoskeletal remodeling. However, a detailed mechanistic understanding of how BAI1 controls synapse and spine development remains elusive. Here, we confirm that BAI1 is required in vivo for hippocampal spine development, and we identify three distinct signaling mechanisms mediating BAI1's prosynaptogenic functions. Using in utero electroporation to sparsely knock down BAI1 expression in hippocampal pyramidal neurons, we show that BAI1 cell-autonomously promotes spinogenesis in the developing mouse brain. BAI1 appears to function as a receptor at synapses, as its extracellular N-terminal segment is required for both its prospinogenic and prosynaptogenic functions. Moreover, BAI1 activation with a Stachel-derived peptide, which mimics a tethered agonist motif found in A-GPCRs, drives synaptic Rac1 activation and subsequent spine and synapse development. We also reveal, for the first time, a trans-synaptic function for BAI1, demonstrating in a mixed-culture assay that BAI1 induces the clustering of presynaptic vesicular glutamate transporter 1 (vGluT1) in contacting axons, indicative of presynaptic differentiation. Finally, we show that BAI1 forms a receptor complex with the synaptogenic cell-adhesion molecule Neuroligin-1 (NRLN1) and mediates NRLN1-dependent spine growth and synapse development. Together, these findings establish BAI1 as an essential postsynaptic A-GPCR that regulates excitatory synaptogenesis by coordinating bidirectional trans-synaptic signaling in cooperation with NRLN1.SIGNIFICANCE STATEMENT Adhesion-G protein-coupled receptors are cell-adhesion receptors with important roles in nervous system development, function, and neuropsychiatric disorders. The postsynaptic adhesion-G protein-coupled receptor BAI1 is a critical regulator of dendritic spine and excitatory synapse development. However, the mechanism by which BAI1 controls these functions remains unclear. Our study identifies three distinct signaling paradigms for BAI1, demonstrating that it mediates forward, reverse, and lateral signaling in spines. Activation of BAI1 by a Stachel-dependent mechanism induces local Rac1 activation and subsequent spinogenesis/synaptogenesis. BAI1 also signals trans-synaptically to promote presynaptic differentiation. Furthermore, BAI1 interacts with the postsynaptic cell-adhesion molecule Neuroligin-1 (NRLN1) and facilitates NRLN1-dependent spine growth and excitatory synaptogenesis. Thus, our findings establish BAI1 as a functional synaptogenic receptor that promotes presynaptic and postsynaptic development in cooperation with synaptic organizer NRLN1.
Collapse
|
25
|
Ponna SK, Ruskamo S, Myllykoski M, Keller C, Boeckers TM, Kursula P. Structural basis for PDZ domain interactions in the post-synaptic density scaffolding protein Shank3. J Neurochem 2018; 145:449-463. [DOI: 10.1111/jnc.14322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Srinivas Kumar Ponna
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Corinna Keller
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
26
|
Mossa A, Giona F, Pagano J, Sala C, Verpelli C. SHANK genes in autism: Defining therapeutic targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:416-423. [PMID: 29175319 DOI: 10.1016/j.pnpbp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Adele Mossa
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Giona
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Jessica Pagano
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Sala
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
27
|
Ali Rodriguez R, Joya C, Hines RM. Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:132. [PMID: 29740280 PMCID: PMC5928253 DOI: 10.3389/fnmol.2018.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The term neurodevelopmental disorder (NDD) is an umbrella term used to group together a heterogeneous class of disorders characterized by disruption in cognition, emotion, and behavior, early in the developmental timescale. These disorders are heterogeneous, yet they share common behavioral symptomatology as well as overlapping genetic contributors, including proteins involved in the formation, specialization, and function of synaptic connections. Advances may arise from bridging the current knowledge on synapse related factors indicated from both human studies in NDD populations, and in animal models. Mounting evidence has shown a link to inhibitory synapse formation, specialization, and function among Autism, Angelman, Rett and Dravet syndromes. Inhibitory signaling is diverse, with numerous subtypes of inhibitory interneurons, phasic and tonic modes of inhibition, and the molecular and subcellular diversity of GABAA receptors. We discuss common ribs of inhibitory synapse dysfunction in the umbrella of NDD, highlighting alterations in the developmental switch to inhibitory GABA, dysregulation of neuronal activity patterns by parvalbumin-positive interneurons, and impaired tonic inhibition. Increasing our basic understanding of inhibitory synapses, and their role in NDDs is likely to produce significant therapeutic advances in behavioral symptom alleviation for interrelated NDDs.
Collapse
Affiliation(s)
- Rachel Ali Rodriguez
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Christina Joya
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rochelle M Hines
- Neuroscience Emphasis, Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
28
|
Ribeiro LF, Verpoort B, de Wit J. Trafficking mechanisms of synaptogenic cell adhesion molecules. Mol Cell Neurosci 2018; 91:34-47. [PMID: 29631018 DOI: 10.1016/j.mcn.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
Abstract
Nearly every aspect of neuronal function, from wiring to information processing, critically depends on the highly polarized architecture of neurons. Establishing and maintaining the distinct molecular composition of axonal and dendritic compartments requires precise control over the trafficking of the proteins that make up these cellular domains. Synaptic cell adhesion molecules (CAMs), membrane proteins with a critical role in the formation, differentiation and plasticity of synapses, require targeting to the correct pre- or postsynaptic compartment for proper functioning of neural circuits. However, the mechanisms that control the polarized trafficking, synaptic targeting, and synaptic abundance of CAMs are poorly understood. Here, we summarize current knowledge about the sequential trafficking events along the secretory pathway that control the polarized surface distribution of synaptic CAMs, and discuss how their synaptic targeting and abundance is additionally influenced by post-secretory determinants. The identification of trafficking-impairing mutations in CAMs associated with various neurodevelopmental disorders underscores the importance of correct protein trafficking for normal brain function.
Collapse
Affiliation(s)
- Luís F Ribeiro
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Ben Verpoort
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
29
|
Stroke promotes survival of nearby transplanted neural stem cells by decreasing their activation of caspase 3 while not affecting their differentiation. Neurosci Lett 2017; 666:111-119. [PMID: 29278729 DOI: 10.1016/j.neulet.2017.12.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023]
Abstract
Although transplantation of stem cells improves recovery of the nervous tissue, little is known about the influence of different brain regions on transplanted cells. After we confirmed that cells with uniform differentiation potential can be generated in independent experiments, one million of neural stem cells isolated from B6.Cg-Tg(Thy1-YFP)16Jrs/J mouse embryos were transplanted into the brain 24 h after induction of stroke. The lateral ventricles, the corpus callosum and the striatum were tested. Two and four weeks after the transplantation, the cells transplanted in all three regions have been attracted to the ischemic core. The largest number of attracted cells has been observed after transplantation into the striatum. Their differentiation pattern and expression of neuroligin 1, SynCAM 1, postsynaptic density protein 95 and synapsin 1 followed the same pattern observed during in vitro cultivation and it did not differ among the tested regions. Differentiation pattern of the cells transplanted in the stroke-affected and healthy animals was the same. On the other hand, neural stem cells transplanted in the striatum of the animals affected by stroke exhibited significantly increased survival rates reaching 260 ± 19%, when compared to cells transplanted in their wild type controls. Surprisingly, improved survival two and four weeks after transplantation was not due to increased proliferation of the grafted cells and it was accompanied by decreased levels of activity of Casp3 (19.56 ± 3.1% in the stroke-affected vs. 30.14 ± 2.4% in healthy animals after four weeks). We assume that the decreased levels of Casp3 in cells transplanted near the ischemic region was linked to increased vasculogenesis, synaptogenesis, astrocytosis and axonogenesis detected in the host tissue affected by ischemia.
Collapse
|
30
|
Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins. J Neurosci 2017; 37:11127-11139. [PMID: 29030434 DOI: 10.1523/jneurosci.1153-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions.SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for maintaining the correct balance between excitation and inhibition in neuronal dendrites. These findings reveal a new mechanism by which E/I balance is controlled in neurons and may bear relevance to synaptic dysfunction in autism.
Collapse
|
31
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.).
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
32
|
The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity. J Neurosci 2017; 37:6606-6627. [PMID: 28576939 DOI: 10.1523/jneurosci.3775-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations and deletions of the interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene, located on the X chromosome, are associated with intellectual disability (ID) and autism spectrum disorder (ASD). IL1RAPL1 protein is located at the postsynaptic compartment of excitatory synapses and plays a role in synapse formation and stabilization. Here, using primary neuronal cultures and Il1rapl1-KO mice, we characterized the role of IL1RAPL1 in regulating dendrite morphology. In Il1rapl1-KO mice we identified an increased number of dendrite branching points in CA1 and CA2 hippocampal neurons associated to hippocampal cognitive impairment. Similarly, induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of the IL1RAPL1 gene had more dendrites. In hippocampal neurons, the overexpression of full-length IL1RAPL1 and mutants lacking part of C-terminal domains leads to simplified neuronal arborization. This effect is abolished when we overexpressed mutants lacking part of N-terminal domains, indicating that the IL1RAPL1 extracellular domain is required for regulating dendrite development. We also demonstrate that PTPδ interaction is not required for this activity, while IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.SIGNIFICANCE STATEMENT Abnormalities in the architecture of dendrites have been observed in a variety of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Here we show that the X-linked intellectual disability protein interleukin-1 receptor accessory protein like 1 (IL1RAPL1) regulates dendrite morphology of mice hippocampal neurons and induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of IL1RAPL1 gene. We also found that the extracellular domain of IL1RAPL1 is required for this effect, independently of the interaction with PTPδ, but IL1RAPL1 mediates the activity of IL-1β on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.
Collapse
|
33
|
Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, Li X, Xu C, Huang X, Wang Y, Shi YS, Liu JJ. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. eLife 2017; 6. [PMID: 28134614 PMCID: PMC5323044 DOI: 10.7554/elife.20991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/28/2017] [Indexed: 11/14/2022] Open
Abstract
SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI:http://dx.doi.org/10.7554/eLife.20991.001 Neurons are the building blocks of the nervous system. These cells generally consist of a round portion called the cell body and a long cable-like axon. The cell body bears numerous branches called dendrites, which are in turn covered in spines. Neurons communicate with one another at junctions – or synapses – that typically form between the end of the axon of one cell and a dendritic spine on another. Specialized proteins stabilize the dendritic spines and enable the cells to exchange messages across the synapse. However, it is the cell body – rather than the dendrites – that produces most of these proteins. Structures called molecular motors transport proteins to their destinations within the cell along fixed tracks, similar to how a freight train carries cargo over the rail network. One of the key molecular motors within neurons is called dynein‒dynactin. This in turn interacts with other proteins called adaptors, enabling it to transport specific types of cargo. Niu, Dai, Liu et al. have now examined the role of SNX6, an adaptor protein for the dynein‒dynactin motor. Mice that have been genetically modified to lack SNX6 in their brains have fewer spines on their dendrites compared with normal mice. This was particularly true for dendrites that contain AMPAR, a protein that receives signals sent across synapses. Niu, Dai, Liu et al. showed that SNX6 interacts with another protein called Homer1b/c and is responsible for distributing this protein in dendrites far from the cell body. The Homer1b/c protein helps to stabilize dendritic spines and to regulate the number of AMPAR proteins within them. Mice that lack SNX6 therefore have less Homer1b/c in the dendrites furthest from the cell body, and fewer spines on these dendrites too. These mice also have fewer AMPAR proteins at their synapses than control mice. Mice that lack SNX6 show impaired learning and memory compared to control mice. This is consistent with the fact that changes in the strength of synapses that possess AMPAR proteins are thought to underlie learning and memory. Additional experiments are required to explore these relationships further, and to determine whether SNX6 helps to localize any other proteins that also contribute to changes in the strength of synapses. DOI:http://dx.doi.org/10.7554/eLife.20991.002
Collapse
Affiliation(s)
- Yang Niu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenxue Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, China
| | - Cheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Chenchang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun S Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Mitrović N, Zarić M, Drakulić D, Martinović J, Sévigny J, Stanojlović M, Nedeljković N, Grković I. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes. J Mol Neurosci 2016; 61:412-422. [PMID: 27981418 DOI: 10.1007/s12031-016-0877-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada
| | - Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Nadežda Nedeljković
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11000, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia.
| |
Collapse
|
35
|
Wierenga CJ. Live imaging of inhibitory axons: Synapse formation as a dynamic trial-and-error process. Brain Res Bull 2016; 129:43-49. [PMID: 27720814 DOI: 10.1016/j.brainresbull.2016.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
In this review I discuss recent live imaging studies that demonstrate that synapses, and in particular inhibitory synapses, are highly dynamic structures. The ongoing changes of presynaptic boutons within axons emphasize the stochastic aspect of inhibitory synapse formation and paint a picture of a dynamic trial-and-error process. Furthermore, I discuss recent and previous insights in the molecular and mechanistic pathways that underlie synapse formation, with a specific focus on the formation of inhibitory presynaptic boutons.
Collapse
Affiliation(s)
- Corette J Wierenga
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
36
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Wee KSL, Tan FCK, Cheong YP, Khanna S, Low CM. Ontogenic Profile and Synaptic Distribution of GluN3 Proteins in the Rat Brain and Hippocampal Neurons. Neurochem Res 2015; 41:290-7. [DOI: 10.1007/s11064-015-1794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 12/01/2022]
|
38
|
Depolarization of Hippocampal Neurons Induces Formation of Nonsynaptic NMDA Receptor Islands Resembling Nascent Postsynaptic Densities. eNeuro 2015; 2:eN-NWR-0066-15. [PMID: 26665164 PMCID: PMC4672205 DOI: 10.1523/eneuro.0066-15.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023] Open
Abstract
Depolarization of neurons in 3-week-old rat hippocampal cultures promotes a rapid increase in the density of surface NMDA receptors (NRs), accompanied by transient formation of nonsynaptic NMDA receptor clusters or NR islands. Islands exhibit cytoplasmic dense material resembling that at postsynaptic densities (PSDs), and contain typical PSD components, including MAGUKS (membrane-associated guanylate kinases), GKAP, Shank, Homer, and CaMKII detected by pre-embedding immunogold electron microscopy. In contrast to mature PSDs, islands contain more NMDA than AMPA receptors, and more SAP102 than PSD-95, features that are shared with nascent PSDs in developing synapses. Islands do not appear to be exocytosed or endocytosed directly as preformed packages because neurons lacked intracellular vacuoles containing island-like structures. Islands form and disassemble upon depolarization of neurons on a time scale of 2-3 min, perhaps representing an initial stage in synaptogenesis.
Collapse
|
39
|
Bender J, Engeholm M, Ederer MS, Breu J, Møller TC, Michalakis S, Rasko T, Wanker EE, Biel M, Martinez KL, Wurst W, Deussing JM. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. PLoS One 2015; 10:e0136768. [PMID: 26352593 PMCID: PMC4564177 DOI: 10.1371/journal.pone.0136768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/07/2015] [Indexed: 01/24/2023] Open
Abstract
The corticotropin-releasing hormone receptor type 1 (CRHR1) plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK) family: postsynaptic density protein 95 (PSD95), synapse-associated protein 97 (SAP97), SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2). CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1) binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function.
Collapse
Affiliation(s)
- Julia Bender
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Marion S. Ederer
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Thor C. Møller
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tamas Rasko
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Erich E. Wanker
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karen L. Martinez
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Neurodegenerative Diseases within the Helmholtz Association, Munich, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
- * E-mail:
| |
Collapse
|
40
|
Sala C, Vicidomini C, Bigi I, Mossa A, Verpelli C. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem 2015; 135:849-58. [PMID: 26338675 DOI: 10.1111/jnc.13232] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/01/2023]
Abstract
Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations.
Collapse
Affiliation(s)
- Carlo Sala
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Cinzia Vicidomini
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Bigi
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Adele Mossa
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
41
|
Lee CC, Huang CC, Hsu KS. The phospholipid-binding protein SESTD1 negatively regulates dendritic spine density by interfering with Rac1-Trio8 signaling pathway. Sci Rep 2015; 5:13250. [PMID: 26272757 PMCID: PMC4536496 DOI: 10.1038/srep13250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/22/2015] [Indexed: 11/09/2022] Open
Abstract
Dendritic spines are actin-rich protrusions from neuronal dendrites that harbor the majority of excitatory synapses. The balance of spine formation and retraction may influence dendritic integrity. While knowledge of the molecular mechanisms that promote dendritic spine formation has accumulated, little is known about the factors that limit spine formation. Here, we show that SESTD1, a phospholipid-binding protein containing a lipid-binding SEC14-like domain and two spectrin-repeat cytoskeleton interaction domains, negatively regulates dendritic spine density in cultured hippocampal neurons. Overexpression of SESTD1 decreases dendritic spine density in neurons by interfering with the interaction between Rac1 and its guanine nucleotide exchange factor (GEF) Trio8. Conversely, knockdown of SESTD1 increases dendritic spine density. Further analysis reveals that the SPEC1 domain-mediated interaction with Rac1 is required for SESTD1 activity toward a decrease in dendritic spine density. Transfection of GEF domain of Trio8 into neurons rescues SESTD1-mediated decrease in dendritic spine density. More importantly, overexpression of SESTD1 results in a decrease in the frequency of miniature excitatory postsynaptic currents (mEPSCs), whereas SESTD1 knockdown increases the mEPSC frequency. These results suggest that SESTD1 may act as a negative regulator of the Rac1-Trio8 signaling pathway to reduce dendritic spine density and lower excitatory synaptic transmission in hippocampal neurons.
Collapse
Affiliation(s)
- Cheng-Che Lee
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
42
|
Espinosa F, Xuan Z, Liu S, Powell CM. Neuroligin 1 modulates striatal glutamatergic neurotransmission in a pathway and NMDAR subunit-specific manner. Front Synaptic Neurosci 2015; 7:11. [PMID: 26283958 PMCID: PMC4518159 DOI: 10.3389/fnsyn.2015.00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022] Open
Abstract
Together with its presynaptic partner Neurexin 1 (Nxn1), Neuroligin 1 (NL1) participates in synapse specification and synapse maintenance. We and others have shown that NL1 can also modulate glutamatergic synaptic function in the central nervous system of rodent models. These molecular/cellular changes can translate into altered animal behaviors that are thought to be analogous to symptomatology of neuropsychiatric disorders. For example, in dorsal striatum of NL1 deletion mice, we previously reported that the ratio N-methyl-D-aspartate receptor (NMDAR) mediated synaptic currents to α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) mediated synaptic currents (NMDA/AMPA) is reduced in medium spiny neuron (MSNs). Importantly, this reduction in NMDA/AMPA ratio correlated with increased repetitive grooming. The striatum is the input nucleus of the basal ganglia (BG). Classical models of this circuitry imply that there are two principal pathways that render distinct and somewhat opposite striatal outputs critical to the function of these nuclei in modulating motor behavior. Thus, we set out to better characterize the effects of NL1 deletion on direct and indirect pathways of the dorsal striatum by genetically labeling MSNs participating in the direct and indirect pathways. We demonstrate that a decrease in NMDAR-mediated currents is limited to MSNs of the direct pathway. Furthermore, the decrease in NMDAR-mediated currents is largely due to a reduction in function of NMDARs containing the GluN2A subunit. In contrast, indirect pathway MSNs in NL1 knockout (KO) mice showed a reduction in the frequency of miniature excitatory neurotransmission not observed in the direct pathway. Thus, NL1 deletion differentially affects direct and indirect pathway MSNs in dorsal striatum. These findings have potential implications for striatal function in NL1 KO mice.
Collapse
Affiliation(s)
- Felipe Espinosa
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Zhong Xuan
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Shunan Liu
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Craig M Powell
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA ; Neuroscience Graduate Program, The University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
43
|
Goyer D, Fensky L, Hilverling AM, Kurth S, Kuenzel T. Expression of the postsynaptic scaffold PSD-95 and development of synaptic physiology during giant terminal formation in the auditory brainstem of the chicken. Eur J Neurosci 2015; 41:1416-29. [PMID: 25903469 DOI: 10.1111/ejn.12902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
In the avian nucleus magnocellularis (NM) endbulb of Held giant synapses develop from temporary bouton terminals. The molecular regulation of this process is not well understood. Furthermore, it is unknown how the postsynaptic specialization of the endbulb synapses develops. We therefore analysed expression of the postsynaptic scaffold protein PSD-95 during the transition from bouton-to-endbulb synapses. PSD-95 has been implicated in the regulation of the strength of glutamatergic synapses and could accordingly be of functional relevance for giant synapse formation. PSD-95 protein was expressed at synaptic sites in embryonic chicken auditory brainstem and upregulated between embryonic days (E)12 and E16. We applied immunofluorescence staining and confocal microscopy to quantify pre-and postsynaptic protein signals during bouton-to-endbulb transition. Giant terminal formation progressed along the tonotopic axis in NM, but was absent in low-frequency NM. We found a tonotopic gradient of postsynaptic PSD-95 signals in NM. Furthermore, PSD-95 immunosignals showed the greatest increase between E12 and E15, temporally preceding the bouton-to-endbulb transition. We then applied whole-cell electrophysiology to measure synaptic currents elicited by synaptic terminals during bouton-to-endbulb transition. With progressing endbulb formation postsynaptic currents rose more rapidly and synapses were less susceptible to short-term depression, but currents were not different in amplitude or decay-time constant. We conclude that development of presynaptic specializations follows postsynaptic development and speculate that the early PSD-95 increase could play a functional role in endbulb formation.
Collapse
Affiliation(s)
- David Goyer
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Luisa Fensky
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Anna Maria Hilverling
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Stefanie Kurth
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Thomas Kuenzel
- Department of Zoology/Animal Physiology, Institute for Biology II, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| |
Collapse
|
44
|
Sellers KJ, Erli F, Raval P, Watson IA, Chen D, Srivastava DP. Rapid modulation of synaptogenesis and spinogenesis by 17β-estradiol in primary cortical neurons. Front Cell Neurosci 2015; 9:137. [PMID: 25926772 PMCID: PMC4396386 DOI: 10.3389/fncel.2015.00137] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/23/2015] [Indexed: 01/06/2023] Open
Abstract
In the mammalian forebrain, the majority of excitatory synapses occur on dendritic spines. Changes in the number of these structures is important for brain development, plasticity and the refinement of neuronal circuits. The formation of excitatory synapses involves the coordinated formation of dendritic spines and targeting of multi-protein complexes to nascent connections. Recent studies have demonstrated that the estrogen 17β-estradiol (E2) can rapidly increase the number of dendritic spines, an effect consistent with the ability of E2 to rapidly influence cognitive function. However, the molecular composition of E2-induced spines and whether these protrusions form synaptic connections has not been fully elucidated. Moreover, which estrogen receptor(s) (ER) mediate these spine-morphogenic responses are not clear. Here, we report that acute E2 treatment results in the recruitment of postsynaptic density protein 95 (PSD-95) to novel dendritic spines. In addition neuroligin 1 (Nlg-1) and the NMDA receptor subunit GluN1 are recruited to nascent synapses in cortical neurons. The presence of these synaptic proteins at nascent synapses suggests that the machinery to allow pre- and post-synapses to form connections are present in E2-induced spines. We further demonstrate that E2 treatment results in the rapid and transient activation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the mammalian target of rapamycin (mTOR) signaling pathways. However, only ERK1/2 and Akt are required for E2-mediated spinogenesis. Using synthetic receptor modulators, we further demonstrate that activation of the estrogen receptor beta (ERβ) but not alpha (ERα) mimics rapid E2-induced spinogenesis and synaptogenesis. Taken together these findings suggest that in primary cortical neurons, E2 signaling via ERβ, but not through ERα, is capable of remodeling neuronal circuits by increasing the number of excitatory synapses.
Collapse
Affiliation(s)
- Katherine J Sellers
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Filippo Erli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK ; Department of Biotechnology and Biosciences, Univeristy of Milano-Bicocca Milano, Italy
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Iain A Watson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Ding Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| |
Collapse
|
45
|
Fekete CD, Chiou TT, Miralles CP, Harris RS, Fiondella CG, Loturco JJ, De Blas AL. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol 2015; 523:1359-78. [PMID: 25565602 DOI: 10.1002/cne.23740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 01/08/2023]
Abstract
We studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vesicular gamma-aminobutyric acid (GABA) transporter (vGAT) and glutamic acid decarboxylase (GAD)65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent. In contrast, overexpression of NL3 or NL2 after IUEP does not affect vesicular glutamate transporter 1 (vGlut1) in the glutamatergic contacts that the NL3 or NL2-overexpressing neurons receive. The NL3 or NL2-overexpressing neurons do not show increased innervation by parvalbumin-containing GABAergic terminals or increased parvalbumin in the same terminals that show increased vGAT. These results indicate that the observed increase in vGAT and GAD65 is not due to increased GABAergic innervation but to increased expression of vGAT and GAD65 in the GABAergic contacts that NL3 or NL2-overexpressing neurons receive. The majority of bright vGAT puncta contacting the NL3-overexpressing neurons have no gephyrin juxtaposed to them, indicating that many of these contacts are nonsynaptic. This contrasts with the majority of the NL2-overexpressing neurons, which show plenty of synaptic gephyrin clusters juxtaposed to vGAT. Besides having an effect on GABAergic contacts, overexpression of NL3 interferes with the neuronal radial migration, in the cerebral cortex, of the neurons overexpressing NL3.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim SK. Recent update of autism spectrum disorders. KOREAN JOURNAL OF PEDIATRICS 2015; 58:8-14. [PMID: 25729393 PMCID: PMC4342781 DOI: 10.3345/kjp.2015.58.1.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/20/2014] [Indexed: 01/25/2023]
Abstract
In patients with a language developmental delay, it is necessary to make a differential diagnosis for autism spectrum disorders (ASDs), specific language impairment, and mental retardation. It is important that pediatricians recognize the signs and symptoms of ASDs, as many patients with language developmental delays are ultimately diagnosed with ASDs. Pediatricians play an important role in the early recognition of ASDs, because they are usually the first point of contact for children with ASDs. A revision of the diagnostic criteria of ASDs was proposed in the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) that was released in May 2013. The autism spectrum describes a range of conditions classified as neurodevelopmental disorders in the fifth edition of the DSM. The new diagnostic criteria encompasses previous elements from the diagnosis of autistic disorder, Asperger disorder, childhood disintegrative disorder, and pervasive developmental disorder-not otherwise specified. An additional change to the DSM includes synthesizing the section on social and communication deficits into one domain. In ASD patients, the appropriate behavioral therapies and rehabilitation treatments significantly affect the prognosis. Therefore, this makes early diagnosis and treatment very important. In conclusion, pediatricians need to be able to recognize the signs and symptoms of ASDs and be attentive to them in order to make an early diagnosis and provide treatment.
Collapse
Affiliation(s)
- Sung Koo Kim
- Division of Pediatric Neurology, Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| |
Collapse
|
47
|
Perroy J, Moutin E. Scaffold remodeling in space and time controls synaptic transmission. BIOARCHITECTURE 2014; 2:29-32. [PMID: 22754626 PMCID: PMC3383718 DOI: 10.4161/bioa.20381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Scaffolding proteins that are associated with glutamate receptors in dendritic spines govern the location and function of receptors to control synaptic transmission. Unraveling the spatio-temporal dynamics of protein-protein interactions within components of the scaffolding complex will bring to light the function of these interactions. Combining bioluminescence resonance energy transfer (BRET) imaging to electrophysiological recordings, we have recently shown that GKAP, a core protein of the scaffolding complex, interacts with DLC2, a protein associated with molecular motors. Synaptic activity-induced GKAP-DLC2 interaction in spines stabilizes the scaffolding complex and enhances the NMDA currents. Interestingly, this work placed emphasis on the bioarchitectural dependence of protein-protein interaction dynamics. Depending on physiological conditions, the modulation in space and time of protein-protein interaction is acutely regulated, engendering a subtle control of synaptic transmission in the state of the individual synapse.
Collapse
|
48
|
Iasevoli F, Buonaguro EF, Sarappa C, Marmo F, Latte G, Rossi R, Eramo A, Tomasetti C, de Bartolomeis A. Regulation of postsynaptic plasticity genes' expression and topography by sustained dopamine perturbation and modulation by acute memantine: relevance to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:299-314. [PMID: 25025505 DOI: 10.1016/j.pnpbp.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/26/2014] [Accepted: 07/03/2014] [Indexed: 11/25/2022]
Abstract
A relevant role for dopamine-glutamate interaction has been reported in the pathophysiology and treatment of psychoses. Dopamine and glutamate may interact at multiple levels, including the glutamatergic postsynaptic density (PSD), an electron-dense thickening that has gained recent attention as a switchboard of dopamine-glutamate interactions and for its role in synaptic plasticity. Recently, glutamate-based strategies, such as memantine add-on to antipsychotics, have been proposed for refractory symptoms of schizophrenia, e.g. cognitive impairment. Both antipsychotics and memantine regulate PSD transcripts but sparse information is available on memantine's effects under dopamine perturbation. We tested gene expression changes of the Homer1 and PSD-95 PSD proteins in models of sustained dopamine perturbation, i.e. subchronic treatment by: a) GBR-12909, a dopamine receptor indirect agonist; b) haloperidol, a D2R antagonist; c) SCH-23390, a dopamine D1 receptor (D1R) antagonist; and d) SCH-23390+haloperidol. On the last day of treatment, rats were acutely treated with vehicle or memantine. The Homer1a immediate-early gene was significantly induced by haloperidol and by haloperidol+SCH-23390. The gene was not induced by SCH-23390 per se or by GBR-12909. Expression of the constitutive genes Homer1b/c and PSD-95 was less affected by these dopaminergic paradigms. Acute memantine administration significantly increased Homer1a expression by the dopaminergic compounds used herein. Both haloperidol and haloperidol+SCH-23390 shifted Homer1a/Homer1b/c ratio of expression toward Homer1a. This pattern was sharpened by acute memantine. Dopaminergic compounds and acute memantine also differentially affected topographic distribution of gene expression and coordinated expression of Homer1a among cortical-subcortical regions. These results indicate that dopaminergic perturbations may affect glutamatergic signaling in different directions. Memantine may help partially revert dopamine-mediated glutamatergic dysfunctions.
Collapse
Affiliation(s)
- Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Chiara Sarappa
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Anna Eramo
- Medical Affairs & Phase IV Clinical Affairs, Lundbeck Pharmaceutical Services LLC, Deerfield, IL, United States
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| |
Collapse
|
49
|
Neuroligins, synapse balance and neuropsychiatric disorders. Pharmacol Rep 2014; 66:830-5. [DOI: 10.1016/j.pharep.2014.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/19/2022]
|
50
|
Xu F, Luk CC, Wiersma-Meems R, Baehre K, Herman C, Zaidi W, Wong N, Syed NI. Neuronal somata and extrasomal compartments play distinct roles during synapse formation between Lymnaea neurons. J Neurosci 2014; 34:11304-15. [PMID: 25143611 PMCID: PMC6615512 DOI: 10.1523/jneurosci.1651-14.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/07/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022] Open
Abstract
Proper synapse formation is pivotal for all nervous system functions. However, the precise mechanisms remain elusive. Moreover, compared with the neuromuscular junction, steps regulating the synaptogenic program at central cholinergic synapses remain poorly defined. In this study, we identified different roles of neuronal compartments (somal vs extrasomal) in chemical and electrical synaptogenesis. Specifically, the electrically synapsed Lymnaea pedal dorsal A cluster neurons were used to study electrical synapses, whereas chemical synaptic partners, visceral dorsal 4 (presynaptic, cholinergic), and left pedal dorsal 1 (LPeD1; postsynaptic) were explored for chemical synapse formation. Neurons were cultured in a soma-soma or soma-axon configuration and synapses explored electrophysiologically. We provide the first direct evidence that electrical synapses develop in a soma-soma, but not soma-axon (removal of soma) configuration, indicating the requirement of gene transcription regulation in the somata of both synaptic partners. In addition, the soma-soma electrical coupling was contingent upon trophic factors present in Lymnaea brain-conditioned medium. Further, we demonstrate that chemical (cholinergic) synapses between soma-soma and soma-axon pairs were indistinguishable, with both exhibiting a high degree of contact site and target cell type specificity. We also provide direct evidence that presynaptic cell contact-mediated, clustering of postsynaptic cholinergic receptors at the synaptic site requires transmitter-receptor interaction, receptor internalization, and a protein kinase C-dependent lateral migration toward the contact site. This study provides novel insights into synaptogenesis between central neurons revealing both distinct and synergistic roles of cell-cell signaling and extrinsic trophic factors in executing the synaptogenic program.
Collapse
Affiliation(s)
- Fenglian Xu
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Collin C Luk
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Ryanne Wiersma-Meems
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Kelly Baehre
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Cameron Herman
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Wali Zaidi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Noelle Wong
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|