1
|
Castilla‐Ibeas A, Zdral S, Oberg KC, Ros MA. The limb dorsoventral axis: Lmx1b's role in development, pathology, evolution, and regeneration. Dev Dyn 2024; 253:798-814. [PMID: 38288855 PMCID: PMC11656695 DOI: 10.1002/dvdy.695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 12/20/2024] Open
Abstract
The limb anatomy displays well-defined dorsal and ventral compartments, housing extensor, and flexor muscles, which play a crucial role in facilitating limb locomotion and manipulation. Despite its importance, the study of limb dorsoventral patterning has been relatively neglected compared to the other two axes leaving many crucial questions about the genes and developmental processes implicated unanswered. This review offers a thorough overview of the current understanding of limb dorsoventral patterning, synthesizing classical literature with recent research. It covers the specification of dorsal fate in the limb mesoderm and its subsequent translation into dorsal morphologies-a process directed by the transcription factor Lmx1b. We also discuss the potential role of dorsoventral patterning in the evolution of paired appendages and delve into the involvement of LMX1B in Nail-Patella syndrome, discussing the molecular and genetic aspects underlying this condition. Finally, the potential role of dorsoventral polarity in digit tip regeneration, a prominent instance of multi-tissue regeneration in mammals is also considered. We anticipate that this review will renew interest in a process that is critical to limb function and evolutionary adaptations but has nonetheless been overlooked.
Collapse
Affiliation(s)
- Alejandro Castilla‐Ibeas
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Sofía Zdral
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| | - Kerby C. Oberg
- Department of Pathology and Human AnatomyLoma Linda University, School of MedicineLoma LindaCaliforniaUSA
| | - Marian A. Ros
- Department of Cellular and Molecular SignallingInstituto de Biotecnología y Biomedicina de Cantabria (IBBTEC), CSIC‐SODERCAN‐University of Cantabria)SantanderSpain
| |
Collapse
|
2
|
Spitaleri G, Trillo Aliaga P, Attili I, Del Signore E, Corvaja C, Pellizzari G, Katrini J, Passaro A, de Marinis F. Non-Small-Cell Lung Cancers (NSCLCs) Harboring RET Gene Fusion, from Their Discovery to the Advent of New Selective Potent RET Inhibitors: "Shadows and Fogs". Cancers (Basel) 2024; 16:2877. [PMID: 39199650 PMCID: PMC11352804 DOI: 10.3390/cancers16162877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
RET fusions are relatively rare in Non-Small-Cell Lung Cancers (NSCLCs), being around 1-2% of all NSCLCs. They share the same clinical features as the other fusion-driven NSCLC patients, as follows: younger age, adenocarcinoma histology, low exposure to tobacco, and high risk of spreading to the brain. Chemotherapy and immunotherapy have a low impact on the prognosis of these patients. Multitargeted RET inhibitors have shown modest activity jeopardized by high toxicity. New potent and selective RET inhibitors (RET-Is) (pralsetinib and selpercatinib) have achieved a higher efficacy minimizing the known toxicities of the multitargeted agents. This review will describe the sensitivity of immune-checkpoint inhibitors (ICIs) in RET fusion + NSCLC patients, as well their experiences with the 'old' multi-targeted RET inhibitors. This review will focus on the advent of new potent and selective RET-Is. We will describe their efficacy as well as the main mechanisms of resistance to them. We will further proceed to deal with the new drugs and strategies proposed to overcome the resistance to RET-Is. In the last section, we will also focus on the safety profile of RET-Is, dealing with the main toxicities as well as the rare but severe adverse events.
Collapse
Affiliation(s)
- Gianluca Spitaleri
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Gloria Pellizzari
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Jalissa Katrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
3
|
Gauberg J, Moreno KB, Jayaraman K, Abumeri S, Jenkins S, Salazar AM, Meharena HS, Glasgow SM. Spinal motor neuron development and metabolism are transcriptionally regulated by Nuclear Factor IA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600888. [PMID: 38979382 PMCID: PMC11230388 DOI: 10.1101/2024.06.26.600888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Neural circuits governing all motor behaviors in vertebrates rely on the proper development of motor neurons and their precise targeting of limb muscles. Transcription factors are essential for motor neuron development, regulating their specification, migration, and axonal targeting. While transcriptional regulation of the early stages of motor neuron specification is well-established, much less is known about the role of transcription factors in the later stages of maturation and terminal arborization. Defining the molecular mechanisms of these later stages is critical for elucidating how motor circuits are constructed. Here, we demonstrate that the transcription factor Nuclear Factor-IA (NFIA) is required for motor neuron positioning, axonal branching, and neuromuscular junction formation. Moreover, we find that NFIA is required for proper mitochondrial function and ATP production, providing a new and important link between transcription factors and metabolism during motor neuron development. Together, these findings underscore the critical role of NFIA in instructing the assembly of spinal circuits for movement.
Collapse
|
4
|
Hernandez-Morato I, Koss S, Honzel E, Pitman MJ. Netrin-1 as A neural guidance protein in development and reinnervation of the larynx. Ann Anat 2024; 254:152247. [PMID: 38458575 DOI: 10.1016/j.aanat.2024.152247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Neural guidance proteins participate in motor neuron migration, axonal projection, and muscle fiber innervation during development. One of the guidance proteins that participates in axonal pathfinding is Netrin-1. Despite the well-known role of Netrin-1 in embryogenesis of central nervous tissue, it is still unclear how the expression of this guidance protein contributes to primary innervation of the periphery, as well as reinnervation. This is especially true in the larynx where Netrin-1 is upregulated within the intrinsic laryngeal muscles after nerve injury and where blocking of Netrin-1 alters the pattern of reinnervation of the intrinsic laryngeal muscles. Despite this consistent finding, it is unknown how Netrin-1 expression contributes to guidance of the axons towards the larynx. Improved knowledge of Netrin-1's role in nerve regeneration and reinnervation post-injury in comparison to its role in primary innervation during embryological development, may provide insights in the search for therapeutics to treat nerve injury. This paper reviews the known functions of Netrin-1 during the formation of the central nervous system and during cranial nerve primary innervation. It also describes the role of Netrin-1 in the formation of the larynx and during recurrent laryngeal reinnervation following nerve injury in the adult.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States; Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid, Madrid, Madrid, Spain.
| | - Shira Koss
- ENT Associates of Nassau County, Levittown, NY, United States
| | - Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, The Center for Voice and Swallowing, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
5
|
Lee Y, Yeo IS, Kim N, Lee DK, Kim KT, Yoon J, Yi J, Hong YB, Choi BO, Kosodo Y, Kim D, Park J, Song MR. Transcriptional control of motor pool formation and motor circuit connectivity by the LIM-HD protein Isl2. eLife 2023; 12:e84596. [PMID: 37869988 PMCID: PMC10637776 DOI: 10.7554/elife.84596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
The fidelity of motor control requires the precise positional arrangement of motor pools and the establishment of synaptic connections between them. During neural development in the spinal cord, motor nerves project to specific target muscles and receive proprioceptive input from these muscles via the sensorimotor circuit. LIM-homeodomain transcription factors are known to play a crucial role in successively restricting specific motor neuronal fates. However, their exact contribution to limb-based motor pools and locomotor circuits has not been fully understood. To address this, we conducted an investigation into the role of Isl2, a LIM-homeodomain transcription factor, in motor pool organization. We found that deletion of Isl2 led to the dispersion of motor pools, primarily affecting the median motor column (MMC) and lateral motor column (LMC) populations. Additionally, hindlimb motor pools lacked Etv4 expression, and we observed reduced terminal axon branching and disorganized neuromuscular junctions in Isl2-deficient mice. Furthermore, we performed transcriptomic analysis on the spinal cords of Isl2-deficient mice and identified a variety of downregulated genes associated with motor neuron (MN) differentiation, axon development, and synapse organization in hindlimb motor pools. As a consequence of these disruptions, sensorimotor connectivity and hindlimb locomotion were impaired in Isl2-deficient mice. Taken together, our findings highlight the critical role of Isl2 in organizing motor pool position and sensorimotor circuits in hindlimb motor pools. This research provides valuable insights into the molecular mechanisms governing motor control and its potential implications for understanding motor-related disorders in humans.
Collapse
Affiliation(s)
- Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - In Seo Yeo
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Namhee Kim
- Fermentation Regulation Technology Research Group, World Institute of KimchiGwangjuRepublic of Korea
| | - Dong-Keun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Kyung-Tai Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of ToxicologyJeongeup-siRepublic of Korea
| | - Jiyoung Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Young Bin Hong
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Biochemistry, College of Medicine, Dong-A UniversityBusanRepublic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Yoichi Kosodo
- Korea Brain Research InstituteDaeguRepublic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-guGwangjuRepublic of Korea
| |
Collapse
|
6
|
Blount Q, Hernandez-Morato I, Moayedi Y, Pitman MJ. Expression of Glial Cell-Derived Neurotrophic Factor Receptors Within Nucleus Ambiguus During Rat Development. Laryngoscope 2023; 133:2240-2247. [PMID: 36271908 PMCID: PMC10121972 DOI: 10.1002/lary.30440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The nucleus ambiguus (NAmb) is a column of neurons in the medulla oblongata, involved in bulbar functions. Expression of Glial Cell-Derived Neurotrophic Factor (GDNF) and its receptors (GDNFR) is observed within the cell bodies during reinnervation following recurrent laryngeal nerve (RLN) injury. Little is known regarding GDNFR expression in the formation of the NAmb and the laryngeal innervation during embryogenesis. Understanding the timing and pattern of GDNFR expression in embryogenesis versus after RLN injury may provide insights into therapeutic targets for regeneration after RLN injury. STUDY DESIGN Laboratory experiment. METHODS Rat brainstems at E14.5/E16.5/E18.5/E20.5/adult were stained for GDNFR: GFRα-1/GFRα-2/GFRα-3/Ret. Islet1 and choline acetyltransferase were used as cell body markers. Sections were observed using fluorescent microscopy and quantified through manual cell counting. RESULTS Expression of GFRα-1, GFRα-3, and Ret was identified within the NAmb, hypoglossal, and facial nuclei of the adult medulla. During development, GFRα-1 immunoreactivity was seen at E20.5. GFRα-2 expression was not observed at any timepoint. GFRα-3 expression began at E16.5. Ret expression within nerve fibers in the NAmb were observed beginning at E14.5, but never in the cell bodies. CONCLUSION Embryonic GDNFR expression in the NAmb differs from that of the adult after RLN injury. The developing brainstem experienced upregulation at discrete timepoints with signaling sustained through adulthood. In contrast, adult RLN-transected rats experienced patterns of up and down regulation. GFRα-1 may contribute to muscle targeting and neuromuscular junction maturation, GFRα-3 may contribute to both, as well as axon guidance. It is likely that GDNF is functioning via a Ret-independent pathway. LEVEL OF EVIDENCE NA Laryngoscope, 133:2240-2247, 2023.
Collapse
Affiliation(s)
- Quinton Blount
- Mercer University School of Medicine, Columbus, USA
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
| | - Yalda Moayedi
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
- Department of Neurology, Columbia University, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University College of Physicians and Surgeons, New York, U.S.A
- Principal Investigator
| |
Collapse
|
7
|
Stansberry WM, Pierchala BA. Neurotrophic factors in the physiology of motor neurons and their role in the pathobiology and therapeutic approach to amyotrophic lateral sclerosis. Front Mol Neurosci 2023; 16:1238453. [PMID: 37692101 PMCID: PMC10483118 DOI: 10.3389/fnmol.2023.1238453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
The discovery of the neurotrophins and their potent survival and trophic effects led to great enthusiasm about their therapeutic potential to rescue dying neurons in neurodegenerative diseases. The further discovery that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) had potent survival-promoting activity on motor neurons led to the proposal for their use in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). In this review we synthesize the literature pertaining to the role of NGF, BDNF, CNTF and GDNF on the development and physiology of spinal motor neurons, as well as the preclinical studies that evaluated their potential for the treatment of ALS. Results from the clinical trials of these molecules will also be described and, with the aid of decades of hindsight, we will discuss what can reasonably be concluded and how this information can inform future clinical development of neurotrophic factors for ALS.
Collapse
Affiliation(s)
- Wesley M. Stansberry
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian A. Pierchala
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Walker LJ, Guevara C, Kawakami K, Granato M. Target-selective vertebrate motor axon regeneration depends on interaction with glial cells at a peripheral nerve plexus. PLoS Biol 2023; 21:e3002223. [PMID: 37590333 PMCID: PMC10464982 DOI: 10.1371/journal.pbio.3002223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/29/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from 3 nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real-time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J. Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Walker LJ, Guevara C, Kawakami K, Granato M. A glia cell dependent mechanism at a peripheral nerve plexus critical for target-selective axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522786. [PMID: 36712008 PMCID: PMC9881934 DOI: 10.1101/2023.01.05.522786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from three nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Papalampropoulou-Tsiridou M, Shiers S, Wang F, Godin AG, Price TJ, De Koninck Y. Distribution of acid-sensing ion channel subunits in human sensory neurons contrasts with that in rodents. Brain Commun 2022; 4:fcac256. [PMID: 36337346 PMCID: PMC9629378 DOI: 10.1093/braincomms/fcac256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/27/2022] [Accepted: 10/26/2022] [Indexed: 11/28/2022] Open
Abstract
Acid-sensing ion channels (ASICs) play a critical role in nociception in human sensory neurons. Four genes (ASIC1, ASIC2, ASIC3, and ASIC4) encoding multiple subunits through alternative splicing have been identified in humans. Real time-PCR experiments showed strong expression of three subunits ASIC1, ASIC2, and ASIC3 in human dorsal root ganglia; however, their detailed expression pattern in different neuronal populations has not been investigated yet. In the current study, using an in situ hybridization approach (RNAscope), we examined the presence of ASIC1, ASIC2, and ASIC3 mRNA in three subpopulations of human dorsal root ganglia neurons. Our results revealed that ASIC1 and ASIC3 were present in the vast majority of dorsal root ganglia neurons, while ASIC2 was only expressed in less than half of dorsal root ganglia neurons. The distribution pattern of the three ASIC subunits was the same across the three populations of dorsal root ganglia neurons examined, including neurons expressing the REarranged during Transfection (RET) receptor tyrosine kinase, calcitonin gene-related peptide, and a subpopulation of nociceptors expressing Transient Receptor Potential Cation Channel Subfamily V Member 1. These results strongly contrast the expression pattern of Asics in mice since our previous study demonstrated differential distribution of Asics among the various subpopulation of dorsal root ganglia neurons. Given the distinct acid-sensitivity and activity dynamics among different ASIC channels, the expression differences between human and rodents should be taken under consideration when evaluating the translational potential and efficiency of drugs targeting ASICs in rodent studies.
Collapse
Affiliation(s)
- Melina Papalampropoulou-Tsiridou
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC G1J 2G3, Canada,Graduate Program in Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stephanie Shiers
- Center for Advanced Pain Studies and Department of Neuroscience, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Feng Wang
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC G1J 2G3, Canada
| | - Antoine G Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec, QC G1J 2G3, Canada,Graduate Program in Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada
| | - Theodore J Price
- Center for Advanced Pain Studies and Department of Neuroscience, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Yves De Koninck
- Correspondence to: Yves De Koninck 2601 Chemin de la Canardière Québec G1J 2G3 Canada. E-mail:
| |
Collapse
|
11
|
Genç B, Jara JH, Sanchez SS, Lagrimas AKB, Gözütok Ö, Koçak N, Zhu Y, Hande Özdinler P. Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons. Gene Ther 2022; 29:178-192. [PMID: 34853443 PMCID: PMC9018479 DOI: 10.1038/s41434-021-00303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
There are no effective cures for upper motor neuron (UMN) diseases, such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and hereditary spastic paraplegia. Here, we show UMN loss occurs independent of spinal motor neuron degeneration and that UMNs are indeed effective cellular targets for gene therapy, which offers a potential solution especially for UMN disease patients. UCHL1 (ubiquitin C-terminal hydrolase-L1) is a deubiquitinating enzyme crucial for maintaining free ubiquitin levels. Corticospinal motor neurons (CSMN, a.k.a UMNs in mice) show early, selective, and profound degeneration in Uchl1nm3419 (UCHL1-/-) mice, which lack all UCHL1 function. When UCHL1 activity is ablated only from spinal motor neurons, CSMN remained intact. However, restoring UCHL1 specifically in CSMN of UCHL1-/- mice via directed gene delivery was sufficient to improve CSMN integrity to the healthy control levels. In addition, when UCHL1 gene was delivered selectively to CSMN that are diseased due to misfolded SOD1 toxicity and TDP-43 pathology via AAV-mediated retrograde transduction, the disease causing misfolded SOD1 and mutant human TDP-43 were reduced in hSOD1G93A and prpTDP-43A315T models, respectively. Diseased CSMN retained their neuronal integrity and cytoarchitectural stability in two different mouse models that represent two distinct causes of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Santana S Sanchez
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amiko K B Lagrimas
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Öge Gözütok
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nuran Koçak
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - P Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Hordyjewska-Kowalczyk E, Nowosad K, Jamsheer A, Tylzanowski P. Genotype-phenotype correlation in clubfoot (talipes equinovarus). J Med Genet 2021; 59:209-219. [PMID: 34782442 DOI: 10.1136/jmedgenet-2021-108040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Clubfoot (talipes equinovarus) is a congenital malformation affecting muscles, bones, connective tissue and vascular or neurological structures in limbs. It has a complex aetiology, both genetic and environmental. To date, the most important findings in clubfoot genetics involve PITX1 variants, which were linked to clubfoot phenotype in mice and humans. Additionally, copy number variations encompassing TBX4 or single nucleotide variants in HOXC11, the molecular targets of the PITX1 transcription factor, were linked to the clubfoot phenotype. In general, genes of cytoskeleton and muscle contractile apparatus, as well as components of the extracellular matrix and connective tissue, are frequently linked with clubfoot aetiology. Last but not least, an equally important element, that brings us closer to a better understanding of the clubfoot genotype/phenotype correlation, are studies on the two known animal models of clubfoot-the pma or EphA4 mice. This review will summarise the current state of knowledge of the molecular basis of this congenital malformation.
Collapse
Affiliation(s)
- Ewa Hordyjewska-Kowalczyk
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Karol Nowosad
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Wielkopolskie, Poland
| | - Przemko Tylzanowski
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland .,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
13
|
Peng WH, Liao ML, Huang WC, Liu PK, Levi SR, Tseng YJ, Lee CY, Yeh LK, Chen KJ, Chien CL, Wang NK. Conditional Deletion of Activating Rearranged During Transfection Receptor Tyrosine Kinase Leads to Impairment of Photoreceptor Ribbon Synapses and Disrupted Visual Function in Mice. Front Neurosci 2021; 15:728905. [PMID: 34803580 PMCID: PMC8602685 DOI: 10.3389/fnins.2021.728905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The rearranged during transfection (RET) receptor tyrosine kinase plays a key role in transducing signals related to cell growth and differentiation. Ret mutant mice show abnormal retinal activity and abnormal levels and morphology of bipolar cells, yet die on the 21st day after birth as a result of renal underdevelopment. To extend the observation period, we generated the Ret conditional knockout Chx10-Cre;C-Ret lx/lx mouse model and analyzed the retinal function and morphological changes in mature and aging Chx10-Cre;C-Ret lx/lx mice. Methods: Retina-specific depletion of Ret was achieved using mice with floxed alleles of the Ret gene with CHX10-driven Cre recombinase; floxed mice without Cre expression were used as controls. Retinal function was examined using electroretinography (ERG), and 2-, 4-, 12-, and 24-month-old mice were analyzed by hematoxylin staining and immunohistochemistry to evaluate retinal morphological alterations. The ultrastructure of photoreceptor synapses was evaluated using electron microscopy. Results: The results of the ERG testing showed that b-wave amplitudes were reduced in Chx10-Cre;C-Ret lx/lx mice, whereas a-waves were not affected. A histopathological analysis revealed a thinner and disorganized outer plexiform layer at the ages of 12 and 24 months in Chx10-Cre;C-Ret lx/lx mice. Moreover, the data provided by immunohistochemistry showed defects in the synapses of photoreceptor cells. This result was confirmed at the ultrastructural level, thus supporting the participation of Ret in the morphological changes of the synaptic ribbon. Conclusion: Our results provide evidence of the role of Ret in maintaining the function of the retina, which was essential for preserving the structure of the synaptic ribbon and supporting the integrity of the outer plexiform layer.
Collapse
Affiliation(s)
- Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Meng-Lin Liao
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chun Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Sarah R. Levi
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Yun-Ju Tseng
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Chia-Ying Lee
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nan-Kai Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| |
Collapse
|
14
|
Saha D, Ryan KR, Lakkaniga NR, Acharya B, Garcia NG, Smith EL, Frett B. Targeting Rearranged during Transfection in Cancer: A Perspective on Small-Molecule Inhibitors and Their Clinical Development. J Med Chem 2021; 64:11747-11773. [PMID: 34402300 DOI: 10.1021/acs.jmedchem.0c02167] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rearranged during transfection (RET) is a receptor tyrosine kinase essential for the normal development and maturation of a diverse range of tissues. Aberrant RET signaling in cancers, due to RET mutations, gene fusions, and overexpression, results in the activation of downstream pathways promoting survival, growth, and metastasis. Pharmacological manipulation of RET is effective in treating RET-driven cancers, and efforts toward developing RET-specific therapies have increased over the last 5 years. In 2020, RET-selective inhibitors pralsetinib and selpercatinib achieved clinical approval, which marked the first approvals for kinase inhibitors specifically developed to target the RET oncoprotein. This Perspective discusses current development and clinical applications for RET precision medicine by providing an overview of the incremental improvement of kinase inhibitors for use in RET-driven malignancies.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Noemi Garcia Garcia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Erica Lane Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| |
Collapse
|
15
|
De Vincenti AP, Alsina FC, Ferrero Restelli F, Hedman H, Ledda F, Paratcha G. Lrig1 and Lrig3 cooperate to control Ret receptor signaling, sensory axonal growth and epidermal innervation. Development 2021; 148:271159. [PMID: 34338291 DOI: 10.1242/dev.197020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 07/05/2021] [Indexed: 11/20/2022]
Abstract
Negative feedback loops represent a regulatory mechanism that guarantees that signaling thresholds are compatible with a physiological response. Previously, we established that Lrig1 acts through this mechanism to inhibit Ret activity. However, it is unclear whether other Lrig family members play similar roles. Here, we show that Lrig1 and Lrig3 are co-expressed in Ret-positive mouse dorsal root ganglion (DRG) neurons. Lrig3, like Lrig1, interacts with Ret and inhibits GDNF/Ret signaling. Treatment of DRG neurons with GDNF ligands induces a significant increase in the expression of Lrig1 and Lrig3. Our findings show that, whereas a single deletion of either Lrig1 or Lrig3 fails to promote Ret-mediated axonal growth, haploinsufficiency of Lrig1 in Lrig3 mutants significantly potentiates Ret signaling and axonal growth of DRG neurons in response to GDNF ligands. We observe that Lrig1 and Lrig3 act redundantly to ensure proper cutaneous innervation of nonpeptidergic axons and behavioral sensitivity to cold, which correlates with a significant increase in the expression of the cold-responsive channel TrpA1. Together, our findings provide insights into the in vivo functions through which Lrig genes control morphology, connectivity and function in sensory neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| | - Fernando C Alsina
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| | - Facundo Ferrero Restelli
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| | - Håkan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, Umeå, 901 87, Sweden
| | - Fernanda Ledda
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, C1405, Argentina
| | - Gustavo Paratcha
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, CP1121, Argentina
| |
Collapse
|
16
|
Tsou YS, Wang CY, Chang MY, Hsu TI, Wu MT, Wu YH, Tsai WL, Chuang JY, Kao TJ. Vav2 is required for Netrin-1 receptor-class-specific spinal motor axon guidance. Dev Dyn 2021; 251:444-458. [PMID: 34374463 DOI: 10.1002/dvdy.409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.
Collapse
Affiliation(s)
- Yi-Syue Tsou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ting Wu
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan.,Ph.D. Program of Electrical and Communications Engineering, Feng Chia University, Taichung, Taiwan
| | - Yi-Hsin Wu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ling Tsai
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Elimination of glutamatergic transmission from Hb9 interneurons does not impact treadmill locomotion. Sci Rep 2021; 11:16008. [PMID: 34362940 PMCID: PMC8346588 DOI: 10.1038/s41598-021-95143-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022] Open
Abstract
The spinal cord contains neural circuits that can produce the rhythm and pattern of locomotor activity. It has previously been postulated that a population of glutamatergic neurons, termed Hb9 interneurons, contributes to locomotor rhythmogenesis. These neurons were identified by their expression of the homeobox gene, Hb9, which is also expressed in motor neurons. We developed a mouse line in which Cre recombinase activity is inducible in neurons expressing Hb9. We then used this line to eliminate vesicular glutamate transporter 2 from Hb9 interneurons, and found that there were no deficits in treadmill locomotion. We conclude that glutamatergic neurotransmission by Hb9 interneurons is not required for locomotor behaviour. The role of these neurons in neural circuits remains elusive.
Collapse
|
18
|
Hirasawa T, Cupello C, Brito PM, Yabumoto Y, Isogai S, Hoshino M, Uesugi K. Development of the Pectoral Lobed Fin in the Australian Lungfish Neoceratodus forsteri. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.679633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolutionary transition from paired fins to limbs involved the establishment of a set of limb muscles as an evolutionary novelty. In parallel, there was a change in the topography of the spinal nerves innervating appendicular muscles, so that distinct plexuses were formed at the bases of limbs. However, the key developmental changes that brought about this evolutionary novelty have remained elusive due to a lack of data on the development of lobed fins in sarcopterygian fishes. Here, we observed the development of the pectoral fin in the Australian lungfish Neoceratodus forsteri (Sarcopterygii) through synchrotron radiation X-ray microtomography. Neoceratodus forsteri is a key taxon for understanding the fin-to-limb transition due to its close phylogenetic relationships to tetrapods and well-developed lobed fins. At the onset of the fin bud in N. forsteri, there is no mesenchyme at the junction between the axial body wall and the fin bud, which corresponds to the embryonic position of the brachial plexus formed in the mesenchyme in tetrapods. Later, concurrent with the cartilage formation in the fin skeleton, the fin adductor and abductor muscles become differentiated within the surface ectoderm of the fin bud. Subsequently, the girdle muscle, which is homologous to the tetrapod serratus muscle, newly develops at the junction between the axial body wall and the fin. Our study suggests that the acquisition of embryonic mesenchyme at the junction between the axial body wall and the appendicular bud opened the door to the formation of the brachial plexus and the specialization of individual muscles in the lineage that gave rise to tetrapods.
Collapse
|
19
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
20
|
Paxillin Is Required for Proper Spinal Motor Axon Growth into the Limb. J Neurosci 2021; 41:3808-3821. [PMID: 33727334 DOI: 10.1523/jneurosci.2863-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.
Collapse
|
21
|
Short CA, Onesto MM, Rempel SK, Catlett TS, Gomez TM. Familiar growth factors have diverse roles in neural network assembly. Curr Opin Neurobiol 2021; 66:233-239. [PMID: 33477094 PMCID: PMC8058242 DOI: 10.1016/j.conb.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.
Collapse
Affiliation(s)
- Caitlin A Short
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Massimo M Onesto
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States; Stanford University School of Medicine, United States
| | - Sarah K Rempel
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy S Catlett
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Timothy M Gomez
- Department of Neuroscience and Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
22
|
Abeynayake N, Arthur A, Gronthos S. Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone 2021; 142:115645. [PMID: 32949783 DOI: 10.1016/j.bone.2020.115645] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Emerging evidence in the literature describes a physical and functional association between the neural and skeletal systems that forms a neuro-osteogenic network. This communication between bone cells and neural tissues within the skeleton is important in facilitating bone skeletal growth, homeostasis and repair. The growth and repair of the skeleton is dependent on correct neural innervation for correct skeletal developmental growth and fracture repair, while pathological conditions such as osteoporosis are accelerated by disruptions to sympathetic innervation. To date, different molecular mechanisms have been reported to mediate communication between bone and neural populations. This review highlights the important role of various cell surface receptors, cytokines and associated ligands as potential regulators of skeletal development, homeostasis, and repair, by mediating interactions between the skeletal and nervous systems. Specifically, this review describes how Bone Morphogenetic Proteins (BMPs), Eph/ephrin, Chemokine CXCL12, Calcitonin Gene-related Peptide (CGRP), Netrins, Neurotrophins (NTs), Slit/Robo and the Semaphorins (Semas) contribute to the cross talk between bone cells and peripheral nerves, and the importance of these interactions in maintaining skeletal health.
Collapse
Affiliation(s)
- Nethmi Abeynayake
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
23
|
Luria V, Laufer E. The Geometry of Limb Motor Innervation is Controlled by the Dorsal-Ventral Compartment Boundary in the Chick Limbless Mutant. Neuroscience 2020; 450:29-47. [PMID: 33038447 PMCID: PMC9922539 DOI: 10.1016/j.neuroscience.2020.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
Precise control of limb muscles, and ultimately of limb movement, requires accurate motor innervation. Motor innervation of the vertebrate limb is established by sequential selection of trajectories at successive decision points. Motor axons of the lateral motor column (LMC) segregate at the base of the limb into two groups that execute a choice between dorsal and ventral tissue: medial LMC axons innervate the ventral limb, whereas lateral LMC axons innervate the dorsal limb. We investigated how LMC axons are targeted to the limb using the chick mutant limbless (ll), which has a dorsal transformation of the ventral limb mesenchyme. In ll the spatial pattern of motor projections to the limb is abnormal while their targeting is normal. While extensive, the dorsal transformation of the ll ventral limb mesenchyme is incomplete whereas the generation, specification and targeting of spinal motor neurons are apparently unaffected. Thus, the dorsal-ventral motor axon segregation is an active choice that is independent of the ratio between dorsal and ventral tissue but dependent on the presence of both tissues. Therefore, the fidelity of the motor projections to the limb depends on the presence of both dorsal and ventral compartments, while the geometry of motor projections is controlled by the position of limb dorsal-ventral compartment boundary.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Ed Laufer
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
Mahato AK, Sidorova YA. Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell Tissue Res 2020; 382:147-160. [PMID: 32556722 PMCID: PMC7529621 DOI: 10.1007/s00441-020-03227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Rearranged during transfection (RET), in complex with glial cell line-derived (GDNF) family receptor alpha (GFRα), is the canonical signaling receptor for GDNF family ligands (GFLs) expressed in both central and peripheral parts of the nervous system and also in non-neuronal tissues. RET-dependent signaling elicited by GFLs has an important role in the development, maintenance and survival of dopamine and sensory neurons. Both Parkinson's disease and neuropathic pain are devastating disorders without an available cure, and at the moment are only treated symptomatically. GFLs have been studied extensively in animal models of Parkinson's disease and neuropathic pain with remarkable outcomes. However, clinical trials with recombinant or viral vector-encoded GFL proteins have produced inconclusive results. GFL proteins are not drug-like; they have poor pharmacokinetic properties and activate multiple receptors. Targeting RET and/or GFRα with small molecules may resolve the problems associated with using GFLs as drugs and can result in the development of therapeutics for disease-modifying treatments against Parkinson's disease and neuropathic pain.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland
| | - Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.
| |
Collapse
|
25
|
Conway JA, Ince S, Black S, Kramer ER. GDNF/RET signaling in dopamine neurons in vivo. Cell Tissue Res 2020; 382:135-146. [PMID: 32870383 DOI: 10.1007/s00441-020-03268-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal both in tandem and separately to exert many vital functions in the midbrain dopamine system. It is known that Ret has effects on maintenance, physiology, protection and regeneration in the midbrain dopamine system, with the physiological functions of GDNF still somewhat unclear. Notwithstanding, Ret ligands, such as GDNF, are considered as promising candidates for neuroprotection and/or regeneration in Parkinson's disease, although data from clinical trials are so far inconclusive. In this review, we discuss the current knowledge of GDNF/Ret signaling in the dopamine system in vivo as well as crosstalk with pathology-associated proteins and their signaling in mammals.
Collapse
Affiliation(s)
- James A Conway
- Peninsula Medical School, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Selvi Ince
- Peninsula Medical School, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth, UK
| | | | - Edgar R Kramer
- Peninsula Medical School, Institute of Translational and Stratified Medicine, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
26
|
Ferrero Restelli F, Fontanet PA, De Vincenti AP, Falzone TL, Ledda F, Paratcha G. Tetraspanin1 promotes NGF signaling by controlling TrkA receptor proteostasis. Cell Mol Life Sci 2020; 77:2217-2233. [PMID: 31440771 PMCID: PMC11104797 DOI: 10.1007/s00018-019-03282-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms that control the biosynthetic trafficking, surface delivery, and degradation of TrkA receptor are essential for proper nerve growth factor (NGF) function, and remain poorly understood. Here, we identify Tetraspanin1 (Tspan1) as a critical regulator of TrkA signaling and neuronal differentiation induced by NGF. Tspan1 is expressed by developing TrkA-positive dorsal root ganglion (DRG) neurons and its downregulation in sensory neurons inhibits NGF-mediated axonal growth. In addition, our data demonstrate that Tspan1 forms a molecular complex with the immature form of TrkA localized in the endoplasmic reticulum (ER). Finally, knockdown of Tspan1 reduces the surface levels of TrkA by promoting its preferential sorting towards the autophagy/lysosomal degradation pathway. Together, these data establish a novel homeostatic role of Tspan1, coordinating the biosynthetic trafficking and degradation of TrkA, regardless the presence of NGF.
Collapse
Affiliation(s)
- Facundo Ferrero Restelli
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Paula Aldana Fontanet
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Ana Paula De Vincenti
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Tomás Luis Falzone
- Laboratorio de Transporte Axonal y Enfermedades Neurodegenerativas, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Fernanda Ledda
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J Clin Oncol 2020; 38:1209-1221. [PMID: 32083997 DOI: 10.1200/jco.19.02551] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activating receptor tyrosine kinase RET (rarranged during transfection) gene alterations have been identified as oncogenic in multiple malignancies. RET gene rearrangements retaining the kinase domain are oncogenic drivers in papillary thyroid cancer, non-small-cell lung cancer, and multiple other cancers. Activating RET mutations are associated with different phenotypes of multiple endocrine neoplasia type 2 as well as sporadic medullary thyroid cancer. RET is thus an attractive therapeutic target in patients with oncogenic RET alterations. Multikinase inhibitors with RET inhibitor activity, such as cabozantinib and vandetanib, have been explored in the clinic for tumors with activating RET gene alterations with modest clinical efficacy. As a result of the nonselective nature of these multikinase inhibitors, patients had off-target adverse effects, such as hypertension, rash, and diarrhea. This resulted in a narrow therapeutic index of these drugs, limiting ability to dose for clinically effective RET inhibition. In contrast, the recent discovery and clinical validation of highly potent selective RET inhibitors (pralsetinib, selpercatinib) demonstrating improved efficacy and a more favorable toxicity profile are poised to alter the landscape of RET-dependent cancers. These drugs appear to have broad activity across tumors with activating RET alterations. The mechanisms of resistance to these next-generation highly selective RET inhibitors is an area of active research. This review summarizes the current understanding of RET alterations and the state-of-the-art treatment strategies in RET-dependent cancers.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX.,MD Anderson Cancer Network, Houston, TX
| | - Dong Yang
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Alexander Drilon
- Thoracic Oncology Service, Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Hoyer N, Zielke P, Hu C, Petersen M, Sauter K, Scharrenberg R, Peng Y, Kim CC, Han C, Parrish JZ, Soba P. Ret and Substrate-Derived TGF-β Maverick Regulate Space-Filling Dendrite Growth in Drosophila Sensory Neurons. Cell Rep 2020; 24:2261-2272.e5. [PMID: 30157422 DOI: 10.1016/j.celrep.2018.07.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/17/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
Dendrite morphogenesis is a highly regulated process that gives rise to stereotyped receptive fields, which are required for proper neuronal connectivity and function. Specific classes of neurons, including Drosophila class IV dendritic arborization (C4da) neurons, also feature complete space-filling growth of dendrites. In this system, we have identified the substrate-derived TGF-β ligand maverick (mav) as a developmental signal promoting space-filling growth through the neuronal Ret receptor. Both are necessary for radial spreading of C4da neuron dendrites, and Ret is required for neuronal uptake of Mav. Moreover, local changes in Mav levels result in directed dendritic growth toward regions with higher ligand availability. Our results suggest that Mav acts as a substrate-derived secreted signal promoting dendrite growth within not-yet-covered areas of the receptive field to ensure space-filling dendritic growth.
Collapse
Affiliation(s)
- Nina Hoyer
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Philip Zielke
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Chun Hu
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Meike Petersen
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kathrin Sauter
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Robin Scharrenberg
- Research Group Neuronal Development, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yun Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
29
|
Baaske MK, Kramer ER, Meka DP, Engler G, Engel AK, Moll CKE. Parkin deficiency perturbs striatal circuit dynamics. Neurobiol Dis 2020; 137:104737. [PMID: 31923460 DOI: 10.1016/j.nbd.2020.104737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 01/09/2023] Open
Abstract
Loss-of-function mutations in the parkin-encoding PARK2 gene are a frequent cause of young-onset, autosomal recessive Parkinson's disease (PD). Parkin knockout mice have no nigro-striatal neuronal loss but exhibit abnormalities of striatal dopamine transmission and cortico-striatal synaptic function. How these predegenerative changes observed in vitro affect neural dynamics at the intact circuit level, however, remains hitherto elusive. Here, we recorded from motor cortex, striatum and globus pallidus (GP) of anesthetized parkin-deficient mice to assess cortex-basal ganglia circuit dynamics and to dissect cell type-specific functional connectivity in the presymptomatic phase of genetic PD. While ongoing activity of presumed striatal spiny projection neurons and their downstream counterparts in the GP was not different from controls, parkin deficiency had a differential impact on striatal interneurons: In parkin-mutant mice, tonically active neurons displayed elevated activity levels. Baseline firing rates of transgenic striatal fast spiking interneurons (FSI), on the contrary, were reduced and the correlational structure of the FSI microcircuitry was disrupted. The entire transgenic striatal microcircuit showed enhanced and phase-shifted phase coupling to slow (1-3 Hz) cortical population oscillations. Unexpectedly, local field potentials recorded from striatum and GP of parkin-mutant mice robustly displayed amplified beta oscillations (~22 Hz), phase-coupled to cortex. Parkin deficiency selectively increased spike-field coupling of FSIs to beta oscillations. Our findings suggest that loss of parkin function leads to amplifications of synchronized cortico-striatal oscillations and an intrastriatal reconfiguration of interneuronal circuits. This presymptomatic disarrangement of dynamic functional connectivity may precede nigro-striatal neurodegeneration and predispose to imbalance of striatal outflow accompanying symptomatic PD.
Collapse
Affiliation(s)
- Magdalena K Baaske
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; Department of Neurology, University of Lübeck, 23538 Lübeck, Germany.
| | - Edgar R Kramer
- Center of Molecular Neurobiology, 20251 Hamburg, Germany; Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth PL6 8BU, UK
| | | | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
30
|
Ephrin-A5 potentiates netrin-1 axon guidance by enhancing Neogenin availability. Sci Rep 2019; 9:12009. [PMID: 31427645 PMCID: PMC6700147 DOI: 10.1038/s41598-019-48519-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023] Open
Abstract
Axonal growth cones are guided by molecular cues in the extracellular environment. The mechanisms of combinatorial integration of guidance signals at the growth cone cell membrane are still being unravelled. Limb-innervating axons of vertebrate spinal lateral motor column (LMC) neurons are attracted to netrin-1 via its receptor, Neogenin, and are repelled from ephrin-A5 through its receptor EphA4. The presence of both cues elicits synergistic guidance of LMC axons, but the mechanism of this effect remains unknown. Using fluorescence immunohistochemistry, we show that ephrin-A5 increases LMC growth cone Neogenin protein levels and netrin-1 binding. This effect is enhanced by overexpressing EphA4 and is inhibited by blocking ephrin-A5-EphA4 binding. These effects have a functional consequence on LMC growth cone responses since bath addition of ephrin-A5 increases the responsiveness of LMC axons to netrin-1. Surprisingly, the overexpression of EphA4 lacking its cytoplasmic tail, also enhances Neogenin levels at the growth cone and potentiates LMC axon preference for growth on netrin-1. Since netrins and ephrins participate in a wide variety of biological processes, the enhancement of netrin-1 signalling by ephrins may have broad implications.
Collapse
|
31
|
Hernandez-Morato I, Tian L, Montalbano M, Pitman MJ. Expression of trophic factors receptors during reinnervation after recurrent laryngeal nerve injury. Laryngoscope 2019; 129:2537-2542. [PMID: 30811036 DOI: 10.1002/lary.27649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/21/2018] [Accepted: 09/04/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVE An injury of the recurrent laryngeal nerve (RLN) triggers axonal regeneration but results in a poor functional recovery. Netrin-1 and glial cell-derived neurotrophic factor (GDNF) expression are up-regulated in laryngeal muscles during RLN regeneration, but the role of their receptors produced in the nucleus ambiguus is unknown. The aim of this work was to determine the timing of the production of Netrin-1 and GDNF receptors during RLN regeneration and correlate this with the previously identified timing of up-regulation of their trophic factors in the laryngeal muscles. STUDY DESIGN Laboratory experiment with rat model. METHODS The right RLN was transected and dextran amine tracer applied. At 7, 14, and 21 days postinjury (DPI), brainstems were removed and harvested. Immunostaining was performed for Netrin-1 (deleted in colorectal carcinoma [DCC], UNC5A) and GDNF receptors (rearranged during transfection [Ret], glycosylphosphatidylinositol-linked cell surface receptors [GFRα1, GFRα2, GFRα3]). The timing and type of receptor production relative to injury as well as their position in the nucleus ambiguus was analyzed. RESULTS Netrin-1 UNC5A receptors were minimal in the nucleus ambiguus during RLN regeneration. DCC, the receptor that plays an attract role, was immunopositive from 7 to 21 DPI. All GDNF receptors, except GFRα2, were clearly positive from 7 to 14 DPI. No differences of production were observed according to the position of the motor neurons in the nucleus ambiguus. CONCLUSION An injury of the RLN leads to a higher production of Netrin-1 DCC and GDNF receptors in the nucleus ambiguus. The timing of receptor production is similar to up-regulation of their trophic factors in the laryngeal muscles. LEVEL OF EVIDENCE NA. Laryngoscope, 129:2537-2542, 2019.
Collapse
Affiliation(s)
- Ignacio Hernandez-Morato
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Likun Tian
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Michael Montalbano
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, U.S.A
| |
Collapse
|
32
|
Valko K, Ciesla L. Amyotrophic lateral sclerosis. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:63-117. [DOI: 10.1016/bs.pmch.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Guidance of motor axons: where do we stand? CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Sardana J, Organisti C, Grunwald Kadow IC. Eph Receptor Effector Ephexin Mediates Olfactory Dendrite Targeting in Drosophila. Dev Neurobiol 2018; 78:873-888. [PMID: 30019861 DOI: 10.1002/dneu.22624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/08/2022]
Abstract
Deciphering the mechanisms of sensory neural map formation is a central aim in neurosciences. Failure to form a correct map frequently leads to defects in sensory processing and perception. The olfactory map develops in subsequent steps initially forming a rough and later a precise map of glomeruli in the antennal lobe (AL), mainly consisting of olfactory receptor neuron (ORN) axons and projection neuron (PN) dendrites. The mechanisms underpinning the later stage of class-specific glomerulus formation are not understood. Recent studies have shown that the important guidance molecule Eph and its ligand ephrin play a role in class-specific PN targeting. Here, we reveal aspects of the mechanism downstream of Eph signaling during olfactory map formation. We show that the Eph-specific RhoGEF Ephexin (Exn) is required to fine tune PN dendrite patterning within specific glomeruli. We provide the first report showing an in vivo neurite guidance defect in an exn mutant. Interestingly, the quality of the phenotypes is different between eph and exn mutants; while loss of Eph leads to strong misprojections of DM3/Or47a neurons along the medial-lateral axis of the antennal lobe (AL), loss of Exn induces ventral ectopic innervation of a neighboring glomerulus. Genetic interaction experiments suggest that differential signaling of the small GTPases Rac1 and Cdc42 mediated by Exn-dependent and -independent Eph signaling fine tunes spatial targeting of PN dendrites within the olfactory map. We propose that their distinct activities on the actin cytoskeleton are required for precise navigation of PN dendrites within the olfactory map. Taken together, our results suggest that the precise connectivity of an individual neuron can depend on different modes of signaling downstream of a single guidance receptor. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Juhi Sardana
- Max Planck Institute of Neurobiology, Chemosensory Coding Research Group, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Cristina Organisti
- Max Planck Institute of Neurobiology, Chemosensory Coding Research Group, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Ilona C Grunwald Kadow
- Max Planck Institute of Neurobiology, Chemosensory Coding Research Group, Am Klopferspitz 18, Martinsried 82152, Germany.,Technical University Munich, School of Life Sciences, Liesel-Beckmann Str. 4, Freising 85354, Germany
| |
Collapse
|
35
|
Liu Y, Kaljunen H, Pavić A, Saarenpää T, Himanen JP, Nikolov DB, Goldman A. Binding of EphrinA5 to RET receptor tyrosine kinase: An in vitro study. PLoS One 2018; 13:e0198291. [PMID: 29889908 PMCID: PMC5995387 DOI: 10.1371/journal.pone.0198291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Eph/Ephrin signaling pathways are crucial in regulating a large variety of physiological processes during development, such as cell morphology, proliferation, migration and axonal guidance. EphrinA (efn-A) ligands, in particular, can be activated by EphA receptors at cell-cell interfaces and have been proposed to cause reverse signaling via RET receptor tyrosine kinase. Such association has been reported to mediate spinal motor axon navigation, but conservation of the interactive signaling pathway and the molecular mechanism of the interaction are unclear. Here, we found Danio rerio efn-A5b bound to Mus musculus EphA4 with high affinity, revealing structurally and functionally conserved EphA/efn-A signaling. Interestingly, we observed no interaction between efn-A5b and RET from zebrafish, unlike earlier cell-based assays. Their lack of association indicates how complex efn-A signaling is and suggests that there may be other molecules involved in efn-A5-induced RET signaling.
Collapse
Affiliation(s)
- Yixin Liu
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kaljunen
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ana Pavić
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tuulia Saarenpää
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha P. Himanen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - Adrian Goldman
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Stanga S, Brambilla L, Tasiaux B, Dang AH, Ivanoiu A, Octave JN, Rossi D, van Pesch V, Kienlen-Campard P. A Role for GDNF and Soluble APP as Biomarkers of Amyotrophic Lateral Sclerosis Pathophysiology. Front Neurol 2018; 9:384. [PMID: 29899726 PMCID: PMC5988896 DOI: 10.3389/fneur.2018.00384] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
The current inability of clinical criteria to accurately identify the "at-risk group" for Amyotrophic Lateral Sclerosis (ALS) development as well as its unknown etiology are fueling the interest in biomarkers aimed at completing clinical approaches for the diagnosis. The Glial cell line-derived neurotrophic factor (GDNF) is a diffusible peptide critically involved in neuronal differentiation and survival. GDNF is largely studied in various neurological and neuromuscular diseases, with a great interest in the peripheral nervous system (PNS). The recent discovery of Amyloid Precursor Protein (APP)-dependent GDNF regulation driving neuro-muscular junctions' formation in APP null transgenic mice, prompts to study whether neurodegeneration relies on loss or gain of APP function and suggests that it could affect peripheral processes. Here, we explored a brand-new aspect of the loss of trophic support in ALS by measuring GDNF, APP, soluble APP fragments and Aβ peptides levels in SOD1WT or SOD1G93A transgenic mouse models of ALS and in human biological fluids [i.e. serum and cerebrospinal fluid (CSF)] from ALS patients and control subjects. Our results show that both GDNF and soluble APP fragments levels are altered at the onset of motor deficits in mice and that their levels are also modified in patient samples. This study indicates that both GDNF and soluble APPα represent possible biomarkers for ALS.
Collapse
Affiliation(s)
- Serena Stanga
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB - IRCCS, Pavia, Italy
| | - Bernadette Tasiaux
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Anh H Dang
- Unité de Neurochimie, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Adrian Ivanoiu
- Neurology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Noël Octave
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri SpA SB - IRCCS, Pavia, Italy
| | - Vincent van Pesch
- Unité de Neurochimie, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.,Neurology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Helmbacher F. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biol 2018; 16:e2004734. [PMID: 29768404 PMCID: PMC5973635 DOI: 10.1371/journal.pbio.2004734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non-cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types.
Collapse
|
38
|
Collinson JM, Lindström NO, Neves C, Wallace K, Meharg C, Charles RH, Ross ZK, Fraser AM, Mbogo I, Oras K, Nakamoto M, Barker S, Duce S, Miedzybrodzka Z, Vargesson N. The developmental and genetic basis of 'clubfoot' in the peroneal muscular atrophy mutant mouse. Development 2018; 145:145/3/dev160093. [PMID: 29439133 DOI: 10.1242/dev.160093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
Genetic factors underlying the human limb abnormality congenital talipes equinovarus ('clubfoot') remain incompletely understood. The spontaneous autosomal recessive mouse 'peroneal muscular atrophy' mutant (PMA) is a faithful morphological model of human clubfoot. In PMA mice, the dorsal (peroneal) branches of the sciatic nerves are absent. In this study, the primary developmental defect was identified as a reduced growth of sciatic nerve lateral motor column (LMC) neurons leading to failure to project to dorsal (peroneal) lower limb muscle blocks. The pma mutation was mapped and a candidate gene encoding LIM-domain kinase 1 (Limk1) identified, which is upregulated in mutant lateral LMC motor neurons. Genetic and molecular analyses showed that the mutation acts in the EphA4-Limk1-Cfl1/cofilin-actin pathway to modulate growth cone extension/collapse. In the chicken, both experimental upregulation of Limk1 by electroporation and pharmacological inhibition of actin turnover led to defects in hindlimb spinal motor neuron growth and pathfinding, and mimicked the clubfoot phenotype. The data support a neuromuscular aetiology for clubfoot and provide a mechanistic framework to understand clubfoot in humans.
Collapse
Affiliation(s)
- J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Nils O Lindström
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Carlos Neves
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Karen Wallace
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Rebecca H Charles
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zoe K Ross
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amy M Fraser
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivan Mbogo
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kadri Oras
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Masaru Nakamoto
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Simon Barker
- Royal Aberdeen Children's Hospital, Foresterhill, Aberdeen AB25 2ZN, UK
| | - Suzanne Duce
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Zosia Miedzybrodzka
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
39
|
Ephexin1 Is Required for Eph-Mediated Limb Trajectory of Spinal Motor Axons. J Neurosci 2018; 38:2043-2056. [PMID: 29363583 DOI: 10.1523/jneurosci.2257-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 11/21/2022] Open
Abstract
The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo, suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection.SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been suggested to be involved in neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's disease. To dissect the mechanism of Eph signal relay, we studied ephexin1 gain of function and loss of function and found ephexin1 essential for the development of limb nerves toward their muscle targets, concluding that it functions as an intermediary to relay Eph signaling in this context. Our work could thus shed new light on the molecular mechanisms controlling neuromuscular connectivity during embryonic development.
Collapse
|
40
|
Hirasawa T, Kuratani S. Evolution of the muscular system in tetrapod limbs. ZOOLOGICAL LETTERS 2018; 4:27. [PMID: 30258652 PMCID: PMC6148784 DOI: 10.1186/s40851-018-0110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 05/16/2023]
Abstract
While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm. The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively. The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental processes, which should be studied from an evolutionary perspective in the future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
41
|
Cantisani MC, Parascandolo A, Perälä M, Allocca C, Fey V, Sahlberg N, Merolla F, Basolo F, Laukkanen MO, Kallioniemi OP, Santoro M, Castellone MD. A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability. Oncotarget 2017; 7:28510-22. [PMID: 27058903 PMCID: PMC5053742 DOI: 10.18632/oncotarget.8577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
RET, BRAF and other protein kinases have been identified as major molecular players in thyroid cancer. To identify novel kinases required for the viability of thyroid carcinoma cells, we performed a RNA interference screening in the RET/PTC1(CCDC6-RET)-positive papillary thyroid cancer cell line TPC1 using a library of synthetic small interfering RNAs (siRNAs) targeting the human kinome and related proteins. We identified 14 hits whose silencing was able to significantly reduce the viability and the proliferation of TPC1 cells; most of them were active also in BRAF-mutant BCPAP (papillary thyroid cancer) and 8505C (anaplastic thyroid cancer) and in RAS-mutant CAL62 (anaplastic thyroid cancer) cells. These included members of EPH receptor tyrosine kinase family as well as SRC and MAPK (mitogen activated protein kinases) families. Importantly, silencing of the identified hits did not affect significantly the viability of Nthy-ori 3-1 (hereafter referred to as NTHY) cells derived from normal thyroid tissue, suggesting cancer cell specificity. The identified proteins are worth exploring as potential novel druggable thyroid cancer targets.
Collapse
Affiliation(s)
| | - Alessia Parascandolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II, Naples, Italy
| | - Merja Perälä
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Center for Biotechnology, University of Turku, Turku, Finland
| | - Chiara Allocca
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II, Naples, Italy
| | - Vidal Fey
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Center for Biotechnology, University of Turku, Turku, Finland
| | - Niko Sahlberg
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.,Center for Biotechnology, University of Turku, Turku, Finland
| | - Francesco Merolla
- Dipartimento di Scienze Biomediche Avanzate, Università Federico II, Naples, Italy
| | - Fulvio Basolo
- Division of Pathology, Department of Surgery, University of Pisa, Pisa, Italy
| | | | - Olli Pekka Kallioniemi
- FIMM-Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' Federico II, Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" (IEOS), C.N.R., Naples, Italy
| | | |
Collapse
|
42
|
Abstract
Motor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance. The seemingly basic binary map established by genetically defined motor neuron subtypes that target muscles in the limb is directed by a surprisingly large number of directional cues. Rather than being simply redundant, these converging signaling pathways are hierarchically linked and cooperate to increase the fidelity of axon pathfinding decisions. A current priority is to determine how multiple guidance signals are integrated by individual growth cones and how they synergize to delineate class-specific axonal trajectories.
Collapse
Affiliation(s)
- Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
43
|
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 2017; 10:258. [PMID: 28878618 PMCID: PMC5572274 DOI: 10.3389/fnmol.2017.00258] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs). Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH), Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs), GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ) at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB) and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.
Collapse
Affiliation(s)
- Daniel Cortés
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - María José Castellanos-Montiel
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| |
Collapse
|
44
|
Barrecheguren PJ, Ros O, Cotrufo T, Kunz B, Soriano E, Ulloa F, Stoeckli ET, Araújo SJ. SNARE proteins play a role in motor axon guidance in vertebrates and invertebrates. Dev Neurobiol 2017; 77:963-974. [DOI: 10.1002/dneu.22481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Pablo José Barrecheguren
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
| | - Oriol Ros
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
- Vall d'Hebron Institute of Research (VHIR); Barcelona 08035 Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona 08010 Spain
| | - Fausto Ulloa
- Department of Cell Biology, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Madrid 28031 Spain
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences, University of Zurich; Zurich 8057 Switzerland
| | - Sofia J. Araújo
- Institut de Recerca Biomèdica de Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC); Barcelona 08028 Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology; University of Barcelona; Barcelona 08028 Spain
| |
Collapse
|
45
|
Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors — Relevance for disorders of the central nervous system. Neurobiol Dis 2017; 97:80-89. [DOI: 10.1016/j.nbd.2016.01.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 01/15/2023] Open
|
46
|
Morales D, Kania A. Cooperation and crosstalk in axon guidance cue integration: Additivity, synergy, and fine-tuning in combinatorial signaling. Dev Neurobiol 2016; 77:891-904. [PMID: 27739221 DOI: 10.1002/dneu.22463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Neural circuit development involves the coordinated growth and guidance of axons to their targets. Following the identification of many guidance cue molecules, recent experiments have focused on the interactions of their signaling cascades, which can be generally classified as additive or non-additive depending on the signal convergence point. While additive (parallel) signaling suggests limited molecular interaction between the pathways, non-additive signaling involves crosstalk between pathways and includes more complex synergistic, hierarchical, and permissive guidance cue relationships. Here the authors have attempted to classify recent studies that describe axon guidance signal integration according to these divisions. They also discuss the mechanistic implications of such interactions, as well as general ideas relating signal integration to the generation of diversity of axon guidance responses. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 891-904, 2017.
Collapse
Affiliation(s)
- Daniel Morales
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Department of Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|
47
|
Su L, Zhang Z, Gan L, Jiang Q, Xiao P, Zou J, Li Q, Jiang H. Deregulation of the planar cell polarity genes CELSR3 and FZD3 in Hirschsprung disease. Exp Mol Pathol 2016; 101:241-248. [PMID: 27619161 DOI: 10.1016/j.yexmp.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/16/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intrinsic ganglion cells in the lower intestine. Genetic factors in the pathogenesis of this disease are under active investigation. As core genes in the planar cell polarity pathway, Celsr3 and Fzd3 are believed to play vital roles in the development of the murine enteric nervous system. The potential association of CELSR3 and FZD3 with the development of HSCR in humans, however, is still unknown. We determined the genotypes of eight CELSR3 and FZD3 polymorphisms in 113 patients. Furthermore, target gene sequencing was used to search for rare mutations in the planar cell polarity genes. The mRNA and protein expression of CELSR3 and FZD3 were explored in patients with HSCR. Class III β-tubulin in colon tissue samples was examined to elucidate enteric innervation patterns. We observed a significant association between the FZD3 rs17059206 polymorphism and HSCR susceptibility (p<0.001). In addition, five rare mutations in CELSR3 were identified in six patients with HSCR. Upregulation of CELSR3 mRNA expression was detected in 80% of aganglionic segments; a similar increase was found for FZD3 protein expression in 81.8% of aganglionic tissues, compared with the ganglionic segments. Immunohistochemical staining on tissue sections revealed obvious excess expression of both molecules in the mucosal layer. The neurite patterns were highly disorganized in the aganglionic bowel segments, with a marked reduction in the prominence of TUJ1 bundles in number, thickness, and length. Our results showed that deregulation of the planar cell polarity genes CELSR3 and FZD3 might disrupt the enteric innervation pattern and consequently contribute to the susceptibility to HSCR.
Collapse
Affiliation(s)
- Lin Su
- Reproductive Medicine Center, 105 Hospital of People's Liberation Army, Hefei, Anhui, China
| | - Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Liang Gan
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Qian Jiang
- Department of Medical Genetics, Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Jizhen Zou
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China.
| | - Hong Jiang
- Reproductive Medicine Center, 105 Hospital of People's Liberation Army, Hefei, Anhui, China.
| |
Collapse
|
48
|
Drinkut A, Tillack K, Meka DP, Schulz JB, Kügler S, Kramer ER. Ret is essential to mediate GDNF's neuroprotective and neuroregenerative effect in a Parkinson disease mouse model. Cell Death Dis 2016; 7:e2359. [PMID: 27607574 PMCID: PMC5059866 DOI: 10.1038/cddis.2016.263] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/29/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF's neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF's effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD.
Collapse
Affiliation(s)
- Anja Drinkut
- DFG Research Center Molecular Physiology of the Brain (CMPB), University Medical Center Göttingen, Göttingen, Germany.,Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Göttingen, Germany
| | - Karsten Tillack
- Development and Maintenance of the Nervous System, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Durga P Meka
- Development and Maintenance of the Nervous System, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jorg B Schulz
- DFG Research Center Molecular Physiology of the Brain (CMPB), University Medical Center Göttingen, Göttingen, Germany.,Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology and JARA BRAIN Institute II, RWTH Aachen University and FZ Jülich, Aachen, Germany
| | - Sebastian Kügler
- DFG Research Center Molecular Physiology of the Brain (CMPB), University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Edgar R Kramer
- Development and Maintenance of the Nervous System, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
49
|
Ledda F, Paratcha G. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins. Front Cell Neurosci 2016; 10:199. [PMID: 27555809 PMCID: PMC4977320 DOI: 10.3389/fncel.2016.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| |
Collapse
|
50
|
Gabreski NA, Vaghasia JK, Novakova SS, McDonald NQ, Pierchala BA. Exon Skipping in the RET Gene Encodes Novel Isoforms That Differentially Regulate RET Protein Signal Transduction. J Biol Chem 2016; 291:16249-62. [PMID: 27226544 PMCID: PMC4965573 DOI: 10.1074/jbc.m115.709675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Rearranged during transfection (RET), a receptor tyrosine kinase that is activated by the glial cell line-derived neurotrophic factor family ligands (GFLs), plays a crucial role in the development and function of the nervous system and additionally is required for kidney development and spermatogenesis. RET encodes a transmembrane receptor that is 20 exons long and produces two known protein isoforms differing in C-terminal amino acid composition, referred to as RET9 and RET51. Studies of human pheochromocytomas identified two additional novel transcripts involving the skipping of exon 3 or exons 3, 4, and 5 and are referred to as RET(Δ) (E3) and RET(Δ) (E345), respectively. Here we report the presence of Ret(Δ) (E3) and Ret(Δ) (E345) in zebrafish, mice, and rats and show that these transcripts are dynamically expressed throughout development of the CNS, peripheral nervous system, and kidneys. We further explore the biochemical properties of these isoforms, demonstrating that, like full-length RET, RET(ΔE3) and RET(ΔE345) are trafficked to the cell surface, interact with all four GFRα co-receptors, and have the ability to heterodimerize with full-length RET. Signaling experiments indicate that RET(ΔE3) is phosphorylated in a similar manner to full-length RET. RET(ΔE345), in contrast, displays higher baseline autophosphorylation, specifically on the catalytic tyrosine, Tyr(905), and also on one of the most important signaling residues, Tyr(1062) These data provide the first evidence for a physiologic role of these isoforms in RET pathway function.
Collapse
Affiliation(s)
- Nicole A Gabreski
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, the Program in Cellular and Molecular Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Janki K Vaghasia
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Silvia S Novakova
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Neil Q McDonald
- the Structural Biology Laboratory, Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom, and the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Brian A Pierchala
- From the Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, the Program in Cellular and Molecular Biology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109,
| |
Collapse
|