1
|
Bouabid S, Zhang L, T Vu MA, Tang K, Graham BM, Noggle CA, Howe MW. Distinct spatially organized striatum-wide acetylcholine dynamics for the learning and extinction of Pavlovian associations. Nat Commun 2025; 16:5169. [PMID: 40467601 PMCID: PMC12137636 DOI: 10.1038/s41467-025-60462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
Striatal acetylcholine (ACh) signaling is thought to counteract reinforcement signals, promoting extinction and behavioral flexibility. Changes in striatal ACh signals have been reported during learning, but how ACh signals for learning and extinction are spatially organized to enable region-specific plasticity is unclear. We used array photometry in mice to reveal a topography of opposing changes in ACh release across distinct striatal regions. Reward prediction error encoding was localized to specific phases of ACh dynamics in anterior dorsal striatum (aDS): positive and negative prediction errors were expressed in dips and elevations respectively. Silencing ACh release in aDS impaired extinction, suggesting a role for ACh elevations in down-regulating cue-reward associations. Dopamine release in aDS dipped for cues during extinction, inverse to ACh, while glutamate input onto cholinergic interneurons was unchanged. These findings pinpoint where and suggest an intrastriatal mechanism for how ACh dynamics shape region-specific plasticity to gate learning and promote extinction.
Collapse
Affiliation(s)
- Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Liangzhu Zhang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mai-Anh T Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kylie Tang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Benjamin M Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Christian A Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mark W Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Riederer P, Strobel S, Nagatsu T, Watanabe H, Chen X, Löschmann PA, Sian-Hulsmann J, Jost WH, Müller T, Dijkstra JM, Monoranu CM. Levodopa treatment: impacts and mechanisms throughout Parkinson's disease progression. J Neural Transm (Vienna) 2025; 132:743-779. [PMID: 40214767 PMCID: PMC12116664 DOI: 10.1007/s00702-025-02893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/04/2025] [Indexed: 05/28/2025]
Abstract
Treatment with levodopa, a precursor of dopamine (DA), to compensate for the loss of endogenous DA in Parkinson's disease (PD), has been a success story for over 50 years. However, in late stages of PD, the progressive degeneration of dopaminergic neurons and the ongoing reduction in endogenous DA concentrations make it increasingly difficult to maintain normal-like DA function. Typically, in late PD, higher doses of levodopa are required, and the fluctuations in striatal DA concentrations-reflecting the timing pattern of levodopa administrations-become more pronounced. These DA fluctuations can include highs that induce involuntary movements (levodopa-induced dyskinesia, LID) or lows that result in insufficient suppression of PD symptoms ("OFF" phases). The enhanced fluctuations primarily arise from the loss of DA buffering capacity, resulting from the degeneration of DA neurons, and an increased reliance on levodopa-derived DA release as a "false neurotransmitter" by serotonergic neurons. In many patients, the LID and OFF-phases can be alleviated by modifying the levodopa therapy to provide a more continuous delivery or by using additional medications, such as monoamine oxidase-B (MAO-B) inhibitors, amantadine, or dopaminergic receptor agonists. Understanding the challenges faced by levodopa therapy also requires considering that the PD striatum is characterized not only by the loss of DA neurons but also by neuroplastic adaptations and PD-induced degenerations of other neural populations. This review provides a broad overview on the use of levodopa in treating PD, with a focus on the underlying science of the challenges encountered in late stages of the disease.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Würzburg, Germany
- Department of Psychiatry, University of South Denmark, Odense, Denmark
| | - Sabrina Strobel
- Institute of Pathology, Julius-Maximilian-University of Wuerzburg, Würzburg, Germany
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Xiqun Chen
- Mass. General Institute for Neurodegenerative Disease. Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | | | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstrasse 1, 13088, Berlin, Germany
| | | | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, Julius-Maximilian-University Ofwuerzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Lovinger DM. Alcohol effects on associative and sensorimotor cortico-thalamo-basal ganglia circuits alter decision making and alcohol intake. Alcohol 2025; 127:21-46. [PMID: 40456457 DOI: 10.1016/j.alcohol.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/29/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025]
Abstract
Much of the behavioral repertoire of humans and other vertebrates is learned and controlled through the function of brain circuits involving the cortex, thalamus and Basal Ganglia (for simplicity we will refer to this as the Cortico-Thalamo-Basal Ganglia, or CTBG, circuitry). As the name implies, these circuits include the different regions of cortex and thalamus, as well as BG subregions including the striatum, globus pallidus (GP), substantia nigra (SN)/ventral tegmental area (VTA), and the subthalamic nucleus (STN). This circuitry has developed evolutionarily to provide overarching control of actions following discrete environmental events as well as self-initiated actions. Several parallel CTBG circuits have been identified and linked to different aspects of action control under different circumstances. Research in experimental psychology and Neuroscience has established how different CTBG circuits contribute to control of actions based on environmental circumstances and past learning history. There is also a large and growing body of evidence that misused substances, including alcohol, act on cells within these circuits. These actions promote acute intoxication and drug seeking and contribute to changes in behavior induced by chronic alcohol exposure, withdrawal and relapse. Alcohol exposure also influences which of the different CTBG circuits has the strongest influence on behavior. This review will cover the relevant circuitry and describe the current state of knowledge as to how alcohol alters CTBG circuit function and control of behavior. Studies in rodents, non-human primates and humans will be discussed. Finally, ideas for future research directions in this area will be considered.
Collapse
Affiliation(s)
- David M Lovinger
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room TS-11, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Sepers MD, Woodard CL, Ramandi D, Vecchiarelli HA, Hill MN, Raymond LA. Upregulation of endocannabinoid signaling in vivo restores striatal synaptic plasticity and motor performance in Huntington's disease mice. J Huntingtons Dis 2025:18796397251337021. [PMID: 40275705 DOI: 10.1177/18796397251337021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
BackgroundSynaptic dysfunction underlies early sensorimotor and cognitive deficits in Huntington's disease (HD) and precedes the degeneration of striatal spiny projection neurons and cortical pyramidal neurons. Movement selection and motor learning, which are impaired early in HD, are regulated by connections between the motor cortex, basal ganglia and thalamus. In particular, plasticity at corticostriatal synapses, including endocannabinoid-mediated long-term depression (LTD), is critical for motor learning. Previously, we found impaired endocannabinoid-mediated LTD, induced by high frequency stimulation (HFS) at corticostriatal synapses in brain slice recordings from pre-manifest HD mouse models, which was corrected by JZL184, an inhibitor of endocannabinoid 2-arachidonoyl glycerol (2-AG) degradation.ObjectiveDetermine the effects of in vivo JZL184 administration on YAC128 HD model and wild-type (WT) littermate mice.MethodsJZL184 was administered to mice orally over a 3-week period and their motor function was assessed using several behavioral tasks. In addition, brain tissue was collected from mice in order to quantify changes in endocannabinoid levels and measure HFS-induced plasticity at corticostriatal synapses.ResultsOral administration of JZL184 significantly increased levels of 2-AG in striatal tissue. While JZL184 treatment had no impact on open field behavior, the treatment eliminated the difference in motor learning on the rotarod task between YAC128 and WT mice. Moreover, HFS-induced striatal plasticity in YAC128 mice was normalized to WT levels after JZL184 treatment.ConclusionsThese results suggest a novel target for mitigating early symptoms of HD and support the need for clinical trials of therapies that modulate the endocannabinoid system.
Collapse
Affiliation(s)
- Marja D Sepers
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| | - Cameron L Woodard
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Ramandi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
- CELL Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | | | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada
| |
Collapse
|
5
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Zhang R, Wickens JR, Carrasco A, Oorschot DE. Absolute Number of Thalamic Parafascicular and Striatal Cholinergic Neurons, and the Three-Dimensional Spatial Array of Striatal Cholinergic Neurons, in the Sprague-Dawley Rat. J Comp Neurol 2025; 533:e70050. [PMID: 40275352 PMCID: PMC12022195 DOI: 10.1002/cne.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
The absolute number of neurons and their spatial distribution yields important information about brain function and species comparisons. We studied thalamic parafascicular neurons and striatal cholinergic interneurons (CINs) because the parafascicular neurons are the main excitatory input to the striatal CINs. This circuit is of increasing interest due to research showing its involvement in specific types of learning and behavioral flexibility. In the Sprague-Dawley rat, the absolute number of thalamic parafascicular neurons and striatal CINs is unknown. They were estimated in this study using modern stereological counting methods. From each of six young adult rats, complete sets of serial 40 µm glycol methacrylate sections were used to quantify neuronal numbers in the right parafascicular nucleus (PFN). From each of five young adult rats, complete sets of serial 20 µm frozen sections were immunostained and used to quantify cholinergic neuronal numbers in the right striatum. The spatial distribution, in three dimensions, of striatal CINs was also determined from exhaustive measurement of the x, y, z coordinates of each large interneuron in 40 µm glycol methacrylate sections in sampled sets of five consecutive serial sections from each of two rats. Statistical analysis of spatial distribution was conducted by comparing observed three-dimensional data with computer models of 10,000 pseudorandom distributions, using measures of nearest neighbor distance and Ripley's K-function for inhomogeneous samples. We found that the right PFN consisted, on average, of 30,073 neurons (with a coefficient of variation of 0.11). The right striatum consisted, on average, of 10,778 CINs (0.14). The statistical analysis of spatial distribution showed no evidence of clustering of striatal CINs in three dimensions in the rat striatum, consistent with previous findings in the mouse striatum. The results provide important data for the transfer of information through the PFN and striatum, species comparisons, and computer modeling.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
| | - Jeffery R. Wickens
- Neurobiology Research UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Andres Carrasco
- Department of PsychologyCalifornia State UniversityFresnoCaliforniaUSA
| | - Dorothy E. Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
7
|
Jafri S, Ghani M, Stickle N, Virtanen C, Hazrati LN, Visanji NP. Translational profiling reveals novel gene expression changes in the direct and indirect pathways in a mouse model of levodopa induced dyskinesia. Front Cell Neurosci 2025; 18:1477511. [PMID: 40144773 PMCID: PMC11936753 DOI: 10.3389/fncel.2024.1477511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 03/28/2025] Open
Abstract
Introduction The molecular mechanisms underlying L-dihydroxyphenylalanine (LDOPA) induced dyskinesia in Parkinson's disease are poorly understood. Here we employ two transgenic mouse lines, combining translating ribosomal affinity purification (TRAP) with bacterial artificial chromosome expression (Bac), to selectively isolate RNA from either DRD1A expressing striatonigral, or DRD2 expressing striatopallidal medium spiny neurons (MSNs) of the direct and indirect pathways respectively, to study changes in translational gene expression following repeated LDOPA treatment. Methods 6-OHDA lesioned DRD1A and DRD2 BacTRAP mice were treated with either saline or LDOPA bi-daily for 21 days over which time they developed abnormal involuntary movements reminiscent of dyskinesia. On day 22, all animals received LDOPA 40min prior to sacrifice. The striatum of the lesioned hemisphere was dissected and subject to TRAP. Extracted ribosomal RNA was amplified, purified, and gene expression was quantified using microarray. Results One hundred ninety-five significantly varying transcripts were identified among the four treatment groups. Pathway analysis revealed an overrepresentation of calcium signaling and long-term potentiation in the DRD1A expressing MSNs of the direct pathway, with significant involvement of long-term depression in the DRD2 expressing MSNs of the indirect pathway following chronic treatment with LDOPA. Several MAPK associated genes (NR4A1, GADD45G, STMN1, FOS, and DUSP1) differentiated the direct and indirect pathways following both acute and chronic LDOPA treatment. However, the MAPK pathway activator PAK1 was downregulated in the indirect pathway and upregulated in the direct pathway, strongly suggesting a role for PAK1 in regulating the opposing effects of LDOPA on these two pathways in dyskinesia. Discussion Future studies will assess the potential of targeting these genes and pathways to prevent the development of LDOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Sabika Jafri
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Krembil Discovery Tower, Toronto, ON, Canada
| | - Natalie Stickle
- University Health Network Microarray Centre, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Carl Virtanen
- University Health Network Microarray Centre, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Naomi P. Visanji
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Ratna DD, Francis TC. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front Mol Neurosci 2025; 18:1528419. [PMID: 40018010 PMCID: PMC11865219 DOI: 10.3389/fnmol.2025.1528419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
The striatum is an integrated component of the basal ganglia responsible for associative learning and response. Besides the presence of the most abundant γ-aminobutyric acid (GABA-ergic) medium spiny neurons (MSNs), the striatum also contains distributed populations of cholinergic interneurons (ChIs), which bidirectionally communicate with many of these neuronal subtypes. Despite their sparse distribution, ChIs provide the largest source of acetylcholine (ACh) to striatal cells, have a prominent level of arborization and activity, and are potent modulators of striatal output and play prominent roles in plasticity underlying associative learning and reinforcement. Deviations from this tonic activity, including phasic bursts or pauses caused by region-selective excitatory input, neuromodulator, or neuropeptide release can exert strong influences on intrinsic activity and synaptic plasticity via diverse receptor signaling. Recent studies and new tools have allowed improved identification of factors driving or suppressing cholinergic activity, including peptides. This review aims to outline our current understanding of factors that control tonic and phasic ChI activity, specifically focusing on how neuromodulators and neuropeptides interact to facilitate or suppress phasic ChI responses underlying learning and plasticity.
Collapse
Affiliation(s)
| | - Tanner Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
9
|
Bouabid S, Zhang L, Vu MAT, Tang K, Graham BM, Noggle CA, Howe MW. Distinct spatially organized striatum-wide acetylcholine dynamics for the learning and extinction of Pavlovian associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.10.602947. [PMID: 39071401 PMCID: PMC11275942 DOI: 10.1101/2024.07.10.602947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Striatal acetylcholine (ACh) signaling has been proposed to counteract reinforcement signals to promote extinction and behavioral flexibility. ACh dips to cues and rewards may open a temporal window for associative plasticity to occur, while elevations may promote extinction. Changes in multi-phasic striatal ACh signals have been widely reported during learning, but how and where signals are distributed to enable region-specific plasticity for the learning and degradation of cue-reward associations is poorly understood. We used array fiber photometry in mice to investigate how ACh release across the striatum evolves during learning and extinction of Pavlovian associations. We report a topographic organization of opposing changes in ACh release to cues, rewards, and consummatory actions across distinct striatum regions. We localized reward prediction error encoding in particular phases of the ACh dynamics to a specific region of the anterior dorsal striatum (aDS). Positive prediction errors in the aDS were expressed in ACh dips, and negative prediction errors in long latency ACh elevations. Silencing aDS ACh release impaired behavioral extinction, suggesting a role for ACh elevations in down-regulating cue-reward associations. Dopamine release in aDS dipped for cues during extinction, but glutamate input onto cholinergic interneurons did not change, suggesting an intrastriatal mechanism for the emergence of ACh elevations. Our large scale measurements indicate how and where ACh dynamics can shape region-specific plasticity to gate learning and promote extinction of Pavlovian associations.
Collapse
Affiliation(s)
- Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Liangzhu Zhang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mai-Anh T. Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Kylie Tang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Benjamin M. Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Christian A. Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mark W. Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
10
|
Huang Z, Chen R, Ho M, Xie X, Gangal H, Wang X, Wang J. Dynamic responses of striatal cholinergic interneurons control behavioral flexibility. SCIENCE ADVANCES 2024; 10:eadn2446. [PMID: 39693433 DOI: 10.1126/sciadv.adn2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Striatal cholinergic interneurons (CINs) are key to regulating behavioral flexibility, involving both extinguishing learned actions and adopting new ones. However, the mechanisms driving these processes remain elusive. In this study, we initially demonstrate that chronic alcohol consumption disrupts the burst-pause dynamics of CINs and impairs behavioral flexibility. We next aimed to elucidate the mechanisms by which CIN dynamics control behavioral flexibility. We found that extinction learning enhances acetylcholine (ACh) release and that mimicking this enhancement through optogenetic induction of CIN burst firing accelerates the extinction process. In addition, we demonstrate that disrupting CIN pauses via continuous optogenetic stimulation reversibly impairs the updating of goal-directed behaviors. Overall, we demonstrate that CIN burst firing, which increases ACh release, promotes extinction learning, aiding the extinguishment of learned behaviors. Conversely, CIN firing pauses, which lead to ACh dips, are crucial for reversal learning, facilitating the adaptation of new actions. These findings shed light on how CIN dynamics regulate behavioral flexibility.
Collapse
Affiliation(s)
- Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Matthew Ho
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
11
|
Jung K, Krüssel S, Yoo S, An M, Burke B, Schappaugh N, Choi Y, Gu Z, Blackshaw S, Costa RM, Kwon HB. Dopamine-mediated formation of a memory module in the nucleus accumbens for goal-directed navigation. Nat Neurosci 2024; 27:2178-2192. [PMID: 39333785 PMCID: PMC11537966 DOI: 10.1038/s41593-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Spatial memories guide navigation efficiently toward desired destinations. However, the neuronal and circuit mechanisms underlying the encoding of goal locations and its translation into goal-directed navigation remain unclear. Here we demonstrate that mice rapidly form a spatial memory of a shelter during shelter experiences, guiding escape behavior toward the goal location-a shelter-when under threat. Dopaminergic neurons in the ventral tegmental area and their projection to the nucleus accumbens (NAc) encode safety signals associated with the shelter. Optogenetically induced phasic dopamine signals are sufficient to create a place memory that directs escape navigation. Converging dopaminergic and hippocampal glutamatergic inputs to the NAc mediate the formation of a goal-related memory within a subpopulation of NAc neurons during shelter experiences. Artificial co-activation of this goal-related NAc ensemble with neurons in the dorsal periaqueductal gray was sufficient to trigger memory-guided, rather than random, escape behavior. These findings provide causal evidence of cognitive circuit modules linking memory with goal-directed action.
Collapse
Affiliation(s)
- Kanghoon Jung
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
- Allen Institute, Seattle, WA, USA.
| | - Sarah Krüssel
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Sooyeon Yoo
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Myungmo An
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Benjamin Burke
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicholas Schappaugh
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Youngjin Choi
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zirong Gu
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rui M Costa
- Allen Institute, Seattle, WA, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
12
|
Duhne M, Mohebi A, Kim K, Pelattini L, Berke JD. A mismatch between striatal cholinergic pauses and dopaminergic reward prediction errors. Proc Natl Acad Sci U S A 2024; 121:e2410828121. [PMID: 39365823 PMCID: PMC11474027 DOI: 10.1073/pnas.2410828121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024] Open
Abstract
Striatal acetylcholine and dopamine critically regulate movement, motivation, and reward-related learning. Pauses in cholinergic interneuron (CIN) firing are thought to coincide with dopamine pulses encoding reward prediction errors (RPE) to jointly enable synaptic plasticity. Here, we examine the firing of identified CINs during reward-guided decision-making in freely moving rats and compare this firing to dopamine release. Relationships between CINs, dopamine, and behavior varied strongly by subregion. In the dorsal-lateral striatum, a Go! cue evoked burst-pause CIN spiking, followed by a brief dopamine pulse that was unrelated to RPE. In the dorsal-medial striatum, this cue evoked only a CIN pause, that was curtailed by a movement-selective rebound in firing. Finally, in the ventral striatum, a reward cue evoked RPE-coding increases in both dopamine and CIN firing, without a consistent pause. Our results demonstrate a spatial and temporal dissociation between CIN pauses and dopamine RPE signals and will inform future models of striatal information processing under both normal and pathological conditions.
Collapse
Affiliation(s)
- Mariana Duhne
- Department of Neurology, University of California, San Francisco, CA94158
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, CA94158
| | - Kyoungjun Kim
- Department of Neurology, University of California, San Francisco, CA94158
| | - Lilian Pelattini
- Department of Neurology, University of California, San Francisco, CA94158
| | - Joshua D. Berke
- Department of Neurology, University of California, San Francisco, CA94158
- Department of Psychiatry and Behavioral Science, University of California, San Francisco, CA94107
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA94158
- Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| |
Collapse
|
13
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+-dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. Cell Rep 2024; 43:114540. [PMID: 39058595 PMCID: PMC11426333 DOI: 10.1016/j.celrep.2024.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shintaro Otsuka
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hitesh K Agarwal
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Jang HJ, Ward RM, Golden CEM, Constantinople CM. Acetylcholine demixes heterogeneous dopamine signals for learning and moving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592444. [PMID: 38746300 PMCID: PMC11092744 DOI: 10.1101/2024.05.03.592444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Midbrain dopamine neurons promote reinforcement learning and movement vigor. A major outstanding question is how dopamine-recipient neurons in the striatum parse these heterogeneous signals. Here we characterized dopamine and acetylcholine release in the dorsomedial striatum (DMS) of rats performing a decision-making task. We found that dopamine acted as a reward prediction error (RPE), modulating behavior and DMS spiking on subsequent trials when coincident with pauses in cholinergic release. In contrast, at task events that elicited coincident bursts of acetylcholine and dopamine, dopamine preceded contralateral movements and predicted movement vigor without inducing plastic changes in DMS firing rates. Our findings provide a circuit-level mechanism by which cholinergic modulation allows the same dopamine signals to be used for either movement or learning depending on instantaneous behavioral context.
Collapse
|
15
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
16
|
Calakos N, Caffall ZF. The integrated stress response pathway and neuromodulator signaling in the brain: lessons learned from dystonia. J Clin Invest 2024; 134:e177833. [PMID: 38557486 PMCID: PMC10977992 DOI: 10.1172/jci177833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology
- Department of Neurobiology, and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | | |
Collapse
|
17
|
Morgenstern NA, Esposito MS. The Basal Ganglia and Mesencephalic Locomotor Region Connectivity Matrix. Curr Neuropharmacol 2024; 22:1454-1472. [PMID: 37559244 PMCID: PMC11097982 DOI: 10.2174/1570159x21666230809112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
Although classically considered a relay station for basal ganglia (BG) output, the anatomy, connectivity, and function of the mesencephalic locomotor region (MLR) were redefined during the last two decades. In striking opposition to what was initially thought, MLR and BG are actually reciprocally and intimately interconnected. New viral-based, optogenetic, and mapping technologies revealed that cholinergic, glutamatergic, and GABAergic neurons coexist in this structure, which, in addition to extending descending projections, send long-range ascending fibers to the BG. These MLR projections to the BG convey motor and non-motor information to specific synaptic targets throughout different nuclei. Moreover, MLR efferent fibers originate from precise neuronal subpopulations located in particular MLR subregions, defining independent anatomo-functional subcircuits involved in particular aspects of animal behavior such as fast locomotion, explorative locomotion, posture, forelimb- related movements, speed, reinforcement, among others. In this review, we revised the literature produced during the last decade linking MLR and BG. We conclude that the classic framework considering the MLR as a homogeneous output structure passively receiving input from the BG needs to be revisited. We propose instead that the multiple subcircuits embedded in this region should be taken as independent entities that convey relevant and specific ascending information to the BG and, thus, actively participate in the execution and tuning of behavior.
Collapse
Affiliation(s)
- Nicolás A. Morgenstern
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Instituto De Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Maria S. Esposito
- Department of Medical Physics, Centro Atomico Bariloche, CNEA, CONICET, Av. Bustillo 9500, San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
18
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
19
|
Augustin SM, Gracias AL, Luo G, Anumola RC, Lovinger DM. Striatonigral direct pathway 2-arachidonoylglycerol contributes to ethanol effects on synaptic transmission and behavior. Neuropsychopharmacology 2023; 48:1941-1951. [PMID: 37528221 PMCID: PMC10584873 DOI: 10.1038/s41386-023-01671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Endocannabinoids (eCB) and cannabinoid receptor 1 (CB1) play important roles in mediating short- and long-term synaptic plasticity in many brain regions involved in learning and memory, as well as the reinforcing effects of misused substances. Ethanol-induced plasticity and neuroadaptations predominantly occur in striatal direct pathway projecting medium spiny neurons (dMSNs). It is hypothesized that alterations in eCB neuromodulation may be involved. Recent work has implicated a role of eCB 2-arachidonoylglycerol (2-AG) in the rewarding effects of ethanol. However, there is insufficient research to answer which cellular subtype is responsible for mediating the 2-AG eCB signal that might be involved in the rewarding properties of ethanol and the mechanisms by which that occurs. To examine the role of dMSN mediated 2-AG signaling in ethanol related synaptic transmission and behaviors, we used conditional knockout mice in which the 2-AG-synthesizing enzyme diacylglycerol lipase α (DGLα) was deleted in dMSNs, DGLαD1-Cre+. Using acute brain slice photometry and a genetically encoded fluorescent eCB sensor, GRABeCB2.0, to assess real-time eCB mediated activity of sensorimotor inputs from primary motor cortices (M1/M2) to the dorsolateral striatum, we showed that DGLαD1-Cre+ mice had blunted evoked eCB-mediated presynaptic eCB signaling compared to littermate controls. Furthermore, ethanol induced eCB inhibition was significantly reduced in DGLαD1-Cre+ deficient mice. Additionally, there was a reduction in the duration of loss of righting reflex (LORR) to a high dose of ethanol in the DGLαD1-Cre+ mice compared to controls. These mice also showed a male-specific decrease in ethanol preference accompanied by an increase in ethanol-induced water consumption in a voluntary drinking paradigm. There were no significant differences observed in sucrose and quinine consumption between the genotypes. These findings reveal a novel role for dMSN mediated 2-AG signaling in modulating ethanol effects on presynaptic function and behavior.
Collapse
Affiliation(s)
- Shana M Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Alexa L Gracias
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guoxiang Luo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rishitha C Anumola
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Sfera A, Andronescu L, Britt WG, Himsl K, Klein C, Rahman L, Kozlakidis Z. Receptor-Independent Therapies for Forensic Detainees with Schizophrenia-Dementia Comorbidity. Int J Mol Sci 2023; 24:15797. [PMID: 37958780 PMCID: PMC10647468 DOI: 10.3390/ijms242115797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Forensic institutions throughout the world house patients with severe psychiatric illness and history of criminal violations. Improved medical care, hygiene, psychiatric treatment, and nutrition led to an unmatched longevity in this population, which previously lived, on average, 15 to 20 years shorter than the public at large. On the other hand, longevity has contributed to increased prevalence of age-related diseases, including neurodegenerative disorders, which complicate clinical management, increasing healthcare expenditures. Forensic institutions, originally intended for the treatment of younger individuals, are ill-equipped for the growing number of older offenders. Moreover, as antipsychotic drugs became available in 1950s and 1960s, we are observing the first generation of forensic detainees who have aged on dopamine-blocking agents. Although the consequences of long-term treatment with these agents are unclear, schizophrenia-associated gray matter loss may contribute to the development of early dementia. Taken together, increased lifespan and the subsequent cognitive deficit observed in long-term forensic institutions raise questions and dilemmas unencountered by the previous generations of clinicians. These include: does the presence of neurocognitive dysfunction justify antipsychotic dose reduction or discontinuation despite a lifelong history of schizophrenia and violent behavior? Should neurolipidomic interventions become the standard of care in elderly individuals with lifelong schizophrenia and dementia? Can patients with schizophrenia and dementia meet the Dusky standard to stand trial? Should neurocognitive disorders in the elderly with lifelong schizophrenia be treated differently than age-related neurodegeneration? In this article, we hypothesize that gray matter loss is the core symptom of schizophrenia which leads to dementia. We hypothesize further that strategies to delay or stop gray matter depletion would not only improve the schizophrenia sustained recovery, but also avert the development of major neurocognitive disorders in people living with schizophrenia. Based on this hypothesis, we suggest utilization of both receptor-dependent and independent therapeutics for chronic psychosis.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Luminita Andronescu
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - William G. Britt
- Department of Psychiatry, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Kiera Himsl
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA; (L.A.); (K.H.)
| | - Carolina Klein
- California Department of State Hospitals, Sacramento, CA 95814, USA;
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 1585 E 13th Ave, Eugene, OR 97403, USA;
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69366 Lyon Cedex, France;
| |
Collapse
|
21
|
Chancey JH, Kellendonk C, Javitch JA, Lovinger DM. Dopaminergic D2 receptor modulation of striatal cholinergic interneurons contributes to sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554807. [PMID: 37693570 PMCID: PMC10491092 DOI: 10.1101/2023.08.28.554807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Learning action sequences is necessary for normal daily activities. Medium spiny neurons (MSNs) in the dorsal striatum (dStr) encode action sequences through changes in firing at the start and/or stop of action sequences or sustained changes in firing throughout the sequence. Acetylcholine (ACh), released from cholinergic interneurons (ChIs), regulates striatal function by modulating MSN and interneuron excitability, dopamine and glutamate release, and synaptic plasticity. Cholinergic neurons in dStr pause their tonic firing during the performance of learned action sequences. Activation of dopamine type-2 receptors (D2Rs) on ChIs is one mechanism of ChI pausing. In this study we show that deleting D2Rs from ChIs by crossing D2-floxed with ChAT-Cre mice (D2Flox-ChATCre), which inhibits dopamine-mediated ChI pausing and leads to deficits in an operant action sequence task and lower breakpoints in a progressive ratio task. These data suggest that D2Flox-ChATCre mice have reduced motivation to work for sucrose reward, but show no generalized motor skill deficits. D2Flox-ChATCre mice perform similarly to controls in a simple reversal learning task, indicating normal behavioral flexibility, a cognitive function associated with ChIs. In vivo electrophysiological recordings show that D2Flox-ChatCre mice have deficits in sequence encoding, with fewer dStr MSNs encoding entire action sequences compared to controls. Thus, ChI D2R deletion appears to impair a neural substrate of action chunking. Virally replacing D2Rs in dStr ChIs in adult mice improves action sequence learning, but not the lower breakpoints, further suggesting that D2Rs on ChIs in the dStr are critical for sequence learning, but not for driving the motivational aspects of the task.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| | - Christoph Kellendonk
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| |
Collapse
|
22
|
Cavallaro J, Yeisley J, Akdoǧan B, Salazar RE, Floeder JR, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacology 2023; 48:1309-1317. [PMID: 37221325 PMCID: PMC10354036 DOI: 10.1038/s41386-023-01608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Ronald E Salazar
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Joseph R Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Peter D Balsam
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, New York, NY, USA
| | - Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
23
|
Lewitus VJ, Blackwell KT. Estradiol Receptors Inhibit Long-Term Potentiation in the Dorsomedial Striatum. eNeuro 2023; 10:ENEURO.0071-23.2023. [PMID: 37487741 PMCID: PMC10405883 DOI: 10.1523/eneuro.0071-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Estradiol, a female sex hormone and the predominant form of estrogen, has diverse effects throughout the brain including in learning and memory. Estradiol modulates several types of learning that depend on the dorsomedial striatum (DMS), a subregion of the basal ganglia involved in goal-directed learning, cued action-selection, and motor skills. A cellular basis of learning is synaptic plasticity, and the presence of extranuclear estradiol receptors ERα, ERβ, and G-protein-coupled estrogen receptor (GPER) throughout the DMS suggests that estradiol may influence rapid cellular actions including those involved in plasticity. To test whether estradiol affects synaptic plasticity in the DMS, corticostriatal long-term potentiation (LTP) was induced using theta-burst stimulation (TBS) in ex vivo brain slices from intact male and female C57BL/6 mice. Extracellular field recordings showed that female mice in the diestrous stage of the estrous cycle exhibited LTP similar to male mice, while female mice in estrus did not exhibit LTP. Furthermore, antagonists of ERα or GPER rescued LTP in estrous females and agonists of ERα or GPER reduced LTP in diestrous females. In males, activating ERα but not GPER reduced LTP. These results uncover an inhibitory action of estradiol receptors on cellular learning in the DMS and suggest a cellular mechanism underlying the impairment in certain types of DMS-based learning observed in the presence of high estradiol. Because of the dorsal striatum's role in substance use disorders, these findings may provide a mechanism underlying an estradiol-mediated progression from goal-directed to habitual drug use.
Collapse
Affiliation(s)
| | - Kim T Blackwell
- Interdisciplinary Neuroscience PhD Program
- Department of Bioengineering, George Mason University, Fairfax, VA 22030
| |
Collapse
|
24
|
Wadsworth HA, Anderson EQ, Williams BM, Ronström JW, Moen JK, Lee AM, McIntosh JM, Wu J, Yorgason JT, Steffensen SC. Role of α6-Nicotinic Receptors in Alcohol-Induced GABAergic Synaptic Transmission and Plasticity to Cholinergic Interneurons in the Nucleus Accumbens. Mol Neurobiol 2023; 60:3113-3129. [PMID: 36802012 PMCID: PMC10690621 DOI: 10.1007/s12035-023-03263-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that project to the nucleus accumbens (NAc), underlies the reward properties of ethanol (EtOH) and nicotine (NIC). We have shown previously that EtOH and NIC modulation of DA release in the NAc is mediated by α6-containing nicotinic acetylcholine receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and that α6*-nAChRs may be a molecular target for low-dose EtOH. However, the most sensitive target for reward-relevant EtOH modulation of mesolimbic DA transmission and the involvement of α6*-nAChRs in the mesolimbic DA reward system remains to be elucidated. The aim of this study was to evaluate EtOH effects on GABAergic modulation of VTA GABA neurons and VTA GABAergic input to cholinergic interneurons (CINs) in the NAc. Low-dose EtOH enhanced GABAergic input to VTA GABA neurons that was blocked by knockdown of α6*-nAChRs. Knockdown was achieved either by α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice or by superfusion of the α-conotoxin MII[H9A;L15A] (MII). Superfusion of MII blocked EtOH inhibition of mIPSCs in NAc CINs. Concomitantly, EtOH enhanced CIN firing rate, which was blocked by knockdown of α6*-nAChRs with α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice. The firing rate of CINs was not enhanced by EtOH in EtOH-dependent mice, and low-frequency stimulation (LFS; 1 Hz, 240 pulses) caused inhibitory long-term depression at this synapse (VTA-NAc CIN-iLTD) which was blocked by knockdown of α6*-nAChR and MII. Ethanol inhibition of CIN-mediated evoked DA release in the NAc was blocked by MII. Taken together, these findings suggest that α6*-nAChRs in the VTA-NAc pathway are sensitive to low-dose EtOH and play a role in plasticity associated with chronic EtOH.
Collapse
Affiliation(s)
- Hillary A Wadsworth
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Elizabeth Q Anderson
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Benjamin M Williams
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Joakim W Ronström
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Janna K Moen
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - J Michael McIntosh
- School of Biological Sciences and Department of Psychiatry, University of Utah, Salt Lake City, UT, 84108, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jordan T Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA.
| |
Collapse
|
25
|
Manz KM, Brady LJ, Calipari ES, Grueter BA. Accumbal Histamine Signaling Engages Discrete Interneuron Microcircuits. Biol Psychiatry 2023; 93:1041-1052. [PMID: 34953589 PMCID: PMC9012818 DOI: 10.1016/j.biopsych.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Central histamine (HA) signaling modulates diverse cortical and subcortical circuits throughout the brain, including the nucleus accumbens (NAc). The NAc, a key striatal subregion directing reward-related behavior, expresses diverse HA receptor subtypes that elicit cellular and synaptic plasticity. However, the neuromodulatory capacity of HA within interneuron microcircuits in the NAc remains unknown. METHODS We combined electrophysiology, pharmacology, voltammetry, and optogenetics in male transgenic reporter mice to determine how HA influences microcircuit motifs controlled by parvalbumin-expressing fast-spiking interneurons (PV-INs) and tonically active cholinergic interneurons (CINs) in the NAc shell. RESULTS HA enhanced CIN output through an H2 receptor (H2R)-dependent effector pathway requiring Ca2+-activated small-conductance K+ channels, with a small but discernible contribution from H1Rs and synaptic H3Rs. While PV-IN excitability was unaffected by HA, presynaptic H3Rs decreased feedforward drive onto PV-INs via AC-cAMP-PKA (adenylyl cyclase-cyclic adenosine monophosphate-protein kinase A) signaling. H3R-dependent plasticity was differentially expressed at mediodorsal thalamus and prefrontal cortex synapses onto PV-INs, with mediodorsal thalamus synapses undergoing HA-induced long-term depression. These effects triggered downstream shifts in PV-IN- and CIN-controlled microcircuits, including near-complete collapse of mediodorsal thalamus-evoked feedforward inhibition and increased mesoaccumbens dopamine release. CONCLUSIONS HA targets H1R, H2R, and H3Rs in the NAc shell to engage synapse- and cell type-specific mechanisms that bidirectionally regulate PV-IN and CIN microcircuit activity. These findings extend the current conceptual framework of HA signaling and offer critical insight into the modulatory potential of HA in the brain.
Collapse
Affiliation(s)
- Kevin M Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
26
|
Matar E, Bhatia K. Dystonia and Parkinson's disease: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:347-411. [PMID: 37482398 DOI: 10.1016/bs.irn.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Parkinsonism and dystonia co-occur across many movement disorders and are most encountered in the setting of Parkinson's disease. Here we aim to explore the shared neurobiological underpinnings of dystonia and parkinsonism through the clinical lens of the conditions in which these movement disorders can be seen together. Foregrounding the discussion, we briefly review the circuits of the motor system and the neuroanatomical and neurophysiological aspects of motor control and highlight their relevance to the proposed pathophysiology of parkinsonism and dystonia. Insight into shared biology is then sought from dystonia occurring in PD and other forms of parkinsonism including those disorders in which both can be co-expressed simultaneously. We organize these within a biological schema along with important questions to be addressed in this space.
Collapse
Affiliation(s)
- Elie Matar
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Kailash Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom
| |
Collapse
|
27
|
Cavallaro J, Yeisley J, Akdoǧan B, Floeder J, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524596. [PMID: 36711450 PMCID: PMC9882257 DOI: 10.1101/2023.01.20.524596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY
| | - Joseph Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY.,Department of Neuroscience and Behavior, Barnard College, New York, NY
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
28
|
Lucente E, Söderpalm B, Ericson M, Adermark L. Acute and chronic effects by nicotine on striatal neurotransmission and synaptic plasticity in the female rat brain. Front Mol Neurosci 2023; 15:1104648. [PMID: 36710931 PMCID: PMC9877298 DOI: 10.3389/fnmol.2022.1104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Tobacco use is in part a gendered activity, yet neurobiological studies outlining the effect by nicotine on the female brain are scarce. The aim of this study was to outline acute and sub-chronic effects by nicotine on the female rat brain, with special emphasis on neurotransmission and synaptic plasticity in the dorsolateral striatum (DLS), a key brain region with respect to the formation of habits. Methods In vivo microdialysis and ex vivo electrophysiology were performed in nicotine naïve female Wistar rats, and following sub-chronic nicotine exposure (0.36 mg/kg free base, 15 injections). Locomotor behavior was assessed at the first and last drug-exposure. Results Acute exposure to nicotine ex vivo depresses excitatory neurotransmission by reducing the probability of transmitter release. Bath applied nicotine furthermore facilitated long-term synaptic depression induced by high frequency stimulation (HFS-LTD). The cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 produced a robust synaptic depression of evoked potentials, and HFS-LTD was blocked by the CB1R antagonist AM251, suggesting that HFS-LTD in the female rat DLS is endocannabinoid mediated. Sub-chronic exposure to nicotine in vivo produced behavioral sensitization and electrophysiological recordings performed after 2-8 days abstinence revealed a sustained depression of evoked population spike amplitudes in the DLS, with no concomitant change in paired pulse ratio. Rats receiving sub-chronic nicotine exposure further demonstrated an increased neurophysiological responsiveness to nicotine with respect to both dopaminergic- and glutamatergic signaling. However, a tolerance towards the plasticity facilitating property of bath applied nicotine was developed during sub-chronic nicotine exposure in vivo. In addition, the dopamine D2 receptor agonist quinpirole selectively facilitate HFS-LTD in slices from nicotine naïve rats, suggesting that the tolerance may be associated with changes in dopaminergic signaling. Conclusion Nicotine produces acute and sustained effects on striatal neurotransmission and synaptic plasticity in the female rat brain, which may contribute to the establishment of persistent nicotine taking habits.
Collapse
Affiliation(s)
- Erika Lucente
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Louise Adermark, ✉
| |
Collapse
|
29
|
Florio E, Serra M, Lewis RG, Kramár E, Freidberg M, Wood M, Morelli M, Borrelli E. D2R signaling in striatal spiny neurons modulates L-DOPA induced dyskinesia. iScience 2022; 25:105263. [PMID: 36274959 PMCID: PMC9579025 DOI: 10.1016/j.isci.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Degeneration of dopaminergic neurons leads to Parkinson's disease (PD), characterized by reduced levels of striatal dopamine (DA) and impaired voluntary movements. DA replacement is achieved by levodopa treatment which in long-term causes involuntary movements or dyskinesia. Dyskinesia is linked to the pulsatile activation of D1 receptors of the striatal medium spiny neurons (MSNs) forming the direct output pathway (dMSNs). The contribution of DA stimulation of D2R in MSNs of the indirect pathway (iMSNs) is less clear. Using the 6-hydroxydopamine model of PD, here we show that loss of DA-mediated inhibition of these neurons intensifies levodopa-induced dyskinesia (LID) leading to reprogramming of striatal gene expression. We propose that the motor impairments characteristic of PD and of its therapy are critically dependent on D2R-mediated iMSNs activity. D2R signaling not only filters inputs to the striatum but also indirectly regulates dMSNs mediated responses.
Collapse
Affiliation(s)
- Ermanno Florio
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Robert G. Lewis
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| | - Enikö Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Michael Freidberg
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, CA 92697, USA
| | - Marcello Wood
- Department of Neurobiology and Behavior, University of California, Irvine, 200 Qureshey Research Lab., Irvine, CA 92697, USA
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato (CA), Italy
| | - Emiliana Borrelli
- Department of Microbiology & Molecular Genetics, INSERM U1233, Center for Epigenetics and Metabolism, 308 Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Okada K, Hashimoto K, Kobayashi K. Cholinergic regulation of object recognition memory. Front Behav Neurosci 2022; 16:996089. [PMID: 36248033 PMCID: PMC9557046 DOI: 10.3389/fnbeh.2022.996089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Object recognition memory refers to a basic memory mechanism to identify and recall various features of objects. This memory has been investigated by numerous studies in human, primates and rodents to elucidate the neuropsychological underpinnings in mammalian memory, as well as provide the diagnosis of dementia in some neurological diseases, such as Alzheimer's disease and Parkinson's disease. Since Alzheimer's disease at the early stage is reported to be accompanied with cholinergic cell loss and impairment in recognition memory, the central cholinergic system has been studied to investigate the neural mechanism underlying recognition memory. Previous studies have suggested an important role of cholinergic neurons in the acquisition of some variants of object recognition memory in rodents. Cholinergic neurons in the medial septum and ventral diagonal band of Broca that project mainly to the hippocampus and parahippocampal area are related to recognition memory for object location. Cholinergic projections from the nucleus basalis magnocellularis innervating the entire cortex are associated with recognition memory for object identification. Especially, the brain regions that receive cholinergic projections, such as the perirhinal cortex and prefrontal cortex, are involved in recognition memory for object-in-place memory and object recency. In addition, experimental studies using rodent models for Alzheimer's disease have reported that neurodegeneration within the central cholinergic system causes a deficit in object recognition memory. Elucidating how various types of object recognition memory are regulated by distinct cholinergic cell groups is necessary to clarify the neuronal mechanism for recognition memory and the development of therapeutic treatments for dementia.
Collapse
Affiliation(s)
- Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
31
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
32
|
Xing H, Yokoi F, Walker AL, Torres-Medina R, Liu Y, Li Y. Electrophysiological characterization of the striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. DYSTONIA 2022; 1:10557. [PMID: 36329866 PMCID: PMC9629210 DOI: 10.3389/dyst.2022.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DYT1 dystonia is an inherited early-onset movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, and abnormal postures. Most DYT1 patients have a heterozygous trinucleotide GAG deletion mutation (ΔGAG) in DYT1/TOR1A, coding for torsinA. Dyt1 heterozygous ΔGAG knock-in (KI) mice show motor deficits and reduced striatal dopamine receptor 2 (D2R). Striatal cholinergic interneurons (ChIs) are essential in regulating striatal motor circuits. Multiple dystonia rodent models, including KI mice, show altered ChI firing and modulation. However, due to the errors in assigning KI mice, it is essential to replicate these findings in genetically confirmed KI mice. Here, we found irregular and decreased spontaneous firing frequency in the acute brain slices from Dyt1 KI mice. Quinpirole, a D2R agonist, showed less inhibitory effect on the spontaneous ChI firing in Dyt1 KI mice, suggesting decreased D2R function on the striatal ChIs. On the other hand, a muscarinic receptor agonist, muscarine, inhibited the ChI firing in both wild-type (WT) and Dyt1 KI mice. Trihexyphenidyl, a muscarinic acetylcholine receptor M1 antagonist, had no significant effect on the firing. Moreover, the resting membrane property and functions of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, μ-opioid receptors, and large-conductance calcium-activated potassium (BK) channels were unaffected in Dyt1 KI mice. The results suggest that the irregular and low-frequency firing and decreased D2R function are the main alterations of striatal ChIs in Dyt1 KI mice. These results appear consistent with the reduced dopamine release and high striatal acetylcholine tone in the previous reports.
Collapse
Affiliation(s)
- Hong Xing
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Ariel Luz Walker
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Rosemarie Torres-Medina
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuning Liu
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
33
|
Paz RM, Stahl AM, Rela L, Murer MG, Tubert C. D1/D5 Inverse Agonists Restore Striatal Cholinergic Interneuron Physiology in Dyskinetic Mice. Mov Disord 2022; 37:1693-1706. [PMID: 35535012 DOI: 10.1002/mds.29055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In advanced stages of Parkinson's disease (PD), dyskinesia and motor fluctuations become seriously debilitating and therapeutic options become scarce. Aberrant activity of striatal cholinergic interneurons (SCIN) has been shown to be critical to PD and dyskinesia, but the systemic administration of cholinergic medications can exacerbate extrastriatal-related symptoms. Thus, targeting the mechanisms causing pathological SCIN activity in severe PD with motor fluctuations and dyskinesia is a promising therapeutic alternative. METHODS We used ex vivo electrophysiological recordings combined with pharmacology to study the alterations in intracellular signaling that contribute to the altered SCIN physiology observed in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS The altered phenotypes of SCIN of parkinsonian mice during the "off levodopa" state resulting from aberrant Kir/leak and Kv1.3 currents can be rapidly reverted by acute inhibition of cAMP-ERK1/2 signaling. Inverse agonists that inhibit the ligand-independent activity of D5 receptors, like clozapine, restore Kv1.3 and Kir/leak currents and SCIN normal physiology in dyskinetic mice. CONCLUSION Our work unravels a signaling pathway involved in the dysregulation of membrane currents causing SCIN hyperexcitability and burst-pause activity in parkinsonian mice treated with levodopa (l-dopa). These changes persist during off-medication periods due to tonic mechanisms that can be acutely reversed by pharmacological interventions. Thus, targeting the D5-cAMP-ERK1/2 signaling pathway selectively in SCIN may have therapeutic effects in PD and dyskinesia by restoring the normal SCIN function. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rodrigo Manuel Paz
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Agostina Mónica Stahl
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Cecilia Tubert
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| |
Collapse
|
34
|
Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Mol Psychiatry 2022; 27:1502-1514. [PMID: 34789847 PMCID: PMC9106808 DOI: 10.1038/s41380-021-01364-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023]
Abstract
Cholinergic interneurons (CINs) in the striatum respond to salient stimuli with a multiphasic response, including a pause, in neuronal activity. Slice-physiology experiments have shown the importance of dopamine D2 receptors (D2Rs) in regulating CIN pausing, yet the behavioral significance of the CIN pause and its regulation by dopamine in vivo is still unclear. Here, we show that D2R upregulation in CINs of the nucleus accumbens (NAc) lengthens the pause in CIN activity ex vivo and enlarges a stimulus-evoked decrease in acetylcholine (ACh) levels during behavior. This enhanced dip in ACh levels is associated with a selective deficit in the learning to inhibit responding in a Go/No-Go task. Our data demonstrate, therefore, the importance of CIN D2Rs in modulating the CIN response induced by salient stimuli and point to a role of this response in inhibitory learning. This work has important implications for brain disorders with altered striatal dopamine and ACh function, including schizophrenia and attention-deficit hyperactivity disorder (ADHD).
Collapse
|
35
|
Liput DJ, Puhl HL, Dong A, He K, Li Y, Lovinger DM. 2-Arachidonoylglycerol mobilization following brief synaptic stimulation in the dorsal lateral striatum requires glutamatergic and cholinergic neurotransmission. Neuropharmacology 2022; 205:108916. [PMID: 34896118 PMCID: PMC8843864 DOI: 10.1016/j.neuropharm.2021.108916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/05/2021] [Indexed: 01/29/2023]
Abstract
Several forms of endocannabinoid (eCB) signaling have been described in the dorsal lateral striatum (DLS), however most experimental protocols used to generate eCBs do not recapitulate the firing patterns of striatal-projecting pyramidal neurons in the cortex or firing patterns of striatal medium spiny neurons. Therefore, it is unclear if current models of eCB signaling in the DLS provide a reliable description of mechanisms engaged under physiological conditions. To address this uncertainty, we investigated mechanisms of eCB mobilization following brief synaptic stimulation that mimics in vivo patterns of neural activity in the DLS. To monitor eCB mobilization, the novel genetically encoded fluorescent eCB biosensor, GRABeCB2.0, was expressed presynaptically in corticostriatal afferents of C57BL6J mice and evoked eCB transients were measured in the DLS using a brain slice photometry technique. We found that brief bouts of synaptic stimulation induce long lasting eCB transients that were generated predominantly by 2-arachidonoylglycerol (2-AG) mobilization. Efficient 2-AG mobilization required coactivation of AMPA and NMDA ionotropic glutamate receptors and muscarinic M1 receptors. Dopamine D2 receptors expressed on cholinergic interneurons inhibited 2-AG mobilization by inhibiting acetylcholine release. Collectively, these data uncover unrecognized mechanisms underlying 2-AG mobilization in the DLS.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA,Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA
| | - Henry L. Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA
| | - Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Kaikai He
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Chinese Institute for Brain Research, Beijing 100871, China
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Maryland 20852, USA,Correspondence:
| |
Collapse
|
36
|
Nishioka M, Kamada T, Nakata A, Shiokawa N, Kinoshita A, Hata T. Intra-dorsal striatal acetylcholine M1 but not dopaminergic D1 or glutamatergic NMDA receptor antagonists inhibit consolidation of duration memory in interval timing. Behav Brain Res 2022; 419:113669. [PMID: 34800548 DOI: 10.1016/j.bbr.2021.113669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/02/2022]
Abstract
The striatal beat frequency model assumes that striatal medium spiny neurons encode duration via synaptic plasticity. Muscarinic 1 (M1) cholinergic receptors as well as dopamine and glutamate receptors are important for neural plasticity in the dorsal striatum. Therefore, we investigated the effect of inhibiting these receptors on the formation of duration memory. After sufficient training in a peak interval (PI)-20-s procedure, rats were administered a single or mixed infusion of a selective antagonist for the dopamine D1 receptor (SCH23390, 0.5 µg per side), N-methyl-D-aspartic acid (NMDA)-type glutamate receptor (D-AP5, 3 µg), or M1 receptor (pirenzepine, 10 µg) bilaterally in the dorsal striatum, immediately before initiating a PI-40 s session (shift session). The next day, the rats were tested for new duration memory (40 s) in a session in which no lever presses were reinforced (test session). In the shift session, the performance was comparable irrespective of the drug injected. However, in the test session, the mean peak time (an index of duration memory) of the M1 + NMDA co-blockade group, but not of the D1 + NMDA co-blockade group, was lower than that of the control group (Experiments 1 and 2). In Experiment 3, the effect of the co-blockade of M1 and NMDA receptors was replicated. Moreover, sole blockade of M1 receptors induced the same effect as M1 and NMDA blockade. These results suggest that in the dorsal striatum, the M1 receptor, but not the D1 or NMDA receptors, is involved in the consolidation of duration memory.
Collapse
Affiliation(s)
- Masahiko Nishioka
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Taisuke Kamada
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Atsushi Nakata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Naoko Shiokawa
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Aoi Kinoshita
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
37
|
Morgenstern NA, Isidro AF, Israely I, Costa RM. Pyramidal tract neurons drive amplification of excitatory inputs to striatum through cholinergic interneurons. SCIENCE ADVANCES 2022; 8:eabh4315. [PMID: 35138902 PMCID: PMC8827762 DOI: 10.1126/sciadv.abh4315] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/15/2021] [Indexed: 05/07/2023]
Abstract
Corticostriatal connectivity is central for many cognitive and motor processes, such as reinforcement or action initiation and invigoration. The cortical input to the striatum arises from two main cortical populations: intratelencephalic (IT) and pyramidal tract (PT) neurons. We report a previously unknown excitatory circuit, supported by a polysynaptic motif from PT neurons to cholinergic interneurons (ChIs) to glutamate-releasing axons, which runs in parallel to the canonical monosynaptic corticostriatal connection. This motif conveys a delayed second phase of excitation to striatal spiny projection neurons, through an acetylcholine-dependent glutamate release mechanism mediated by α4-containing nicotinic receptors, resulting in biphasic corticostriatal signals. These biphasic signals are a hallmark of PT, but not IT, corticostriatal inputs, due to a stronger relative input from PT neurons to ChIs. These results describe a previously unidentified circuit mechanism by which PT activity amplifies excitatory inputs to the striatum, with potential implications for behavior, plasticity, and learning.
Collapse
Affiliation(s)
| | - Ana Filipa Isidro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Inbal Israely
- Departments of Pathology and Cell Biology, and Neuroscience, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10027, USA
| | - Rui M. Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
38
|
Manz KM, Coleman BC, Jameson AN, Ghose DG, Patel S, Grueter BA. Cocaine restricts nucleus accumbens feedforward drive through a monoamine-independent mechanism. Neuropsychopharmacology 2022; 47:652-663. [PMID: 34545194 PMCID: PMC8782870 DOI: 10.1038/s41386-021-01167-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Parvalbumin-expressing fast-spiking interneurons (PV-INs) within feedforward microcircuits in the nucleus accumbens (NAc) coordinate goal-directed motivational behavior. Feedforward inhibition of medium spiny projection neurons (MSNs) is initiated by glutamatergic input from corticolimbic brain structures. While corticolimbic synapses onto MSNs are targeted by the psychostimulant, cocaine, it remains unknown whether cocaine also exerts acute neuromodulatory actions at collateralizing synapses onto PV-INs. Using whole-cell patch-clamp electrophysiology, optogenetics, and pharmacological tools in transgenic reporter mice, we found that cocaine decreases thalamocortical glutamatergic drive onto PV-INs by engaging a monoamine-independent mechanism. This mechanism relies on postsynaptic sigma-1 (σ1) activity, leading to the mobilization of intracellular Ca2+ stores that trigger retrograde endocannabinoid signaling at presynaptic type-1 cannabinoid receptors (CB1R). Cocaine-evoked CB1R activity occludes the expression of CB1R-dependent long-term depression (LTD) at this synaptic locus. These findings provide evidence that acute cocaine exposure targets feedforward microcircuits in the NAc and extend existing models of cocaine action on mesolimbic reward circuits.
Collapse
Affiliation(s)
- Kevin M Manz
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alexis N Jameson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Dipanwita G Ghose
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
39
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
40
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
41
|
Abstract
The last century was characterized by a significant scientific effort aimed at unveiling the neurobiological basis of learning and memory. Thanks to the characterization of the mechanisms regulating the long-term changes of neuronal synaptic connections, it was possible to understand how specific neural networks shape themselves during the acquisition of memory traces or complex motor tasks. In this chapter, we will summarize the mechanisms underlying the main forms of synaptic plasticity taking advantage of the studies performed in the hippocampus and in the nucleus striatum, key brain structures that play a crucial role in cognition. Moreover, we will discuss how the molecular pathways involved in the induction of physiologic synaptic long-term changes could be disrupted during neurodegenerative and neuroinflammatory disorders, highlighting the translational relevance of this intriguing research field.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Antonio de Iure
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy; University San Raffaele, Rome, Italy.
| |
Collapse
|
42
|
Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA. Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:817524. [PMID: 36926058 PMCID: PMC10013044 DOI: 10.3389/fnetp.2022.817524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is a multi-systemic neurodegenerative brain disorder. Motor symptoms of PD are linked to the significant dopamine (DA) loss in substantia nigra pars compacta (SNc) followed by basal ganglia (BG) circuit dysfunction. Increasing experimental and computational evidence indicates that (synaptic) plasticity plays a key role in the emergence of PD-related pathological changes following DA loss. Spike-timing-dependent plasticity (STDP) mediated by DA provides a mechanistic model for synaptic plasticity to modify synaptic connections within the BG according to the neuronal activity. To shed light on how DA-mediated STDP can shape neuronal activity and synaptic connectivity in the PD condition, we reviewed experimental and computational findings addressing the modulatory effect of DA on STDP as well as other plasticity mechanisms and discussed their potential role in PD pathophysiology and related network dynamics and connectivity. In particular, reshaping of STDP profiles together with other plasticity-mediated processes following DA loss may abnormally modify synaptic connections in competing pathways of the BG. The cascade of plasticity-induced maladaptive or compensatory changes can impair the excitation-inhibition balance towards the BG output nuclei, leading to the emergence of pathological activity-connectivity patterns in PD. Pre-clinical, clinical as well as computational studies reviewed here provide an understanding of the impact of synaptic plasticity and other plasticity mechanisms on PD pathophysiology, especially PD-related network activity and connectivity, after DA loss. This review may provide further insights into the abnormal structure-function relationship within the BG contributing to the emergence of pathological states in PD. Specifically, this review is intended to provide detailed information for the development of computational network models for PD, serving as testbeds for the development and optimization of invasive and non-invasive brain stimulation techniques. Computationally derived hypotheses may accelerate the development of therapeutic stimulation techniques and potentially reduce the number of related animal experiments.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Abdol-Hossein Vahabie
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
43
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
44
|
Crittenden JR, Zhai S, Sauvage M, Kitsukawa T, Burguière E, Thomsen M, Zhang H, Costa C, Martella G, Ghiglieri V, Picconi B, Pescatore KA, Unterwald EM, Jackson WS, Housman DE, Caine SB, Sulzer D, Calabresi P, Smith AC, Surmeier DJ, Graybiel AM. CalDAG-GEFI mediates striatal cholinergic modulation of dendritic excitability, synaptic plasticity and psychomotor behaviors. Neurobiol Dis 2021; 158:105473. [PMID: 34371144 PMCID: PMC8486000 DOI: 10.1016/j.nbd.2021.105473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
CalDAG-GEFI (CDGI) is a protein highly enriched in the striatum, particularly in the principal spiny projection neurons (SPNs). CDGI is strongly down-regulated in two hyperkinetic conditions related to striatal dysfunction: Huntington’s disease and levodopa-induced dyskinesia in Parkinson’s disease. We demonstrate that genetic deletion of CDGI in mice disrupts dendritic, but not somatic, M1 muscarinic receptors (M1Rs) signaling in indirect pathway SPNs. Loss of CDGI reduced temporal integration of excitatory postsynaptic potentials at dendritic glutamatergic synapses and impaired the induction of activity-dependent long-term potentiation. CDGI deletion selectively increased psychostimulant-induced repetitive behaviors, disrupted sequence learning, and eliminated M1R blockade of cocaine self-administration. These findings place CDGI as a major, but previously unrecognized, mediator of cholinergic signaling in the striatum. The effects of CDGI deletion on the self-administration of drugs of abuse and its marked alterations in hyperkinetic extrapyramidal disorders highlight CDGI’s therapeutic potential.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Shenyu Zhai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Magdalena Sauvage
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Leibniz Institute for Neurobiology, Functional Architecture of Memory Dept., Magdeburg, Germany
| | - Takashi Kitsukawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eric Burguière
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM U 1127, UPMC-P6 UMR S, 1127, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, Paris, France
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen and University, DK-2100, Copenhagen, Denmark; Basic Neuroscience Division, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Hui Zhang
- Departments of Psychiatry, Pharmacology, Neurology, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cinzia Costa
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della misericordia, University of Perugia, 06100 Perugia, Italy
| | - Giuseppina Martella
- Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | | | | - Karen A Pescatore
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - David E Housman
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - S Barak Caine
- Basic Neuroscience Division, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - David Sulzer
- Departments of Psychiatry, Pharmacology, Neurology, Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Faculty of Medicine, Università Cattolica del "Sacro Cuore", 00168 Rome, Italy
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85724, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Dept. of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
46
|
Fernández-Rodríguez S, Esposito-Zapero C, Zornoza T, Polache A, Granero L, Cano-Cebrián MJ. The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals (Basel) 2021; 14:ph14060593. [PMID: 34203104 PMCID: PMC8233914 DOI: 10.3390/ph14060593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
N-acetylcysteine (NAC) is a prodrug that is marketed as a mucolytic agent and used for the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD), although its mechanism of action is already being debated. In this paper, we set out to assess both the potential involvement of the glutamate metabotropic receptors (mGluR) in the possible dual effect of NAC administered at two different doses and NAC's effect on ethanol-induced activation. To this aim, 30 or 120 mg/kg of NAC was intraperitoneally administered to rats with the presence or absence of the negative allosteric modulator of mGluR5 (MTEP 0.1 mg/kg). Thereafter, the cFOS IR-cell expression was analyzed. Secondly, we explored the effect of 120 mg/kg of NAC on the neurochemical and behavioral activation induced by intra-VTA ethanol administration (150 nmol). Our results showed that the high NAC dose stimulated cFOS expression in the NAcc, and that this effect was suppressed in the presence of MTEP, thus suggesting the implication of mGluR5. Additionally, high doses could attenuate the ethanol-induced increase in cFOS-expression in the NAcc, probably due to a phenomenon based on the long-term depression of the MSNs. Additional experiments are required to corroborate our hypothesis.
Collapse
|
47
|
Galli S, Stancheva SH, Dufor T, Gibb AJ, Salinas PC. Striatal Synapse Degeneration and Dysfunction Are Reversed by Reactivation of Wnt Signaling. Front Synaptic Neurosci 2021; 13:670467. [PMID: 34149390 PMCID: PMC8209303 DOI: 10.3389/fnsyn.2021.670467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Synapse degeneration in the striatum has been associated with the early stages of Parkinson’s and Huntington’s diseases (PD and HD). However, the molecular mechanisms that trigger synaptic dysfunction and loss are not fully understood. Increasing evidence suggests that deficiency in Wnt signaling triggers synapse degeneration in the adult brain and that this pathway is affected in neurodegenerative diseases. Here, we demonstrate that endogenous Wnt signaling is essential for the integrity of a subset of inhibitory synapses on striatal medium spiny neurons (MSNs). We found that inducible expression of the specific Wnt antagonist Dickkopf-1 (Dkk1) in the adult striatum leads to the loss of inhibitory synapses on MSNs and affects the synaptic transmission of D2-MSNs. We also discovered that re-activation of the Wnt pathway by turning off Dkk1 expression after substantial loss of synapses resulted in the complete recovery of GABAergic and dopamine synapse number. Our results also show that re-activation of the Wnt pathway leads to a recovery of amphetamine response and motor function. Our studies identify the Wnt signaling pathway as a potential therapeutic target for restoring neuronal circuits after synapse degeneration.
Collapse
Affiliation(s)
- Soledad Galli
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stefka H Stancheva
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Tom Dufor
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
48
|
Mechanisms of Antiparkinsonian Anticholinergic Therapy Revisited. Neuroscience 2021; 467:201-217. [PMID: 34048797 DOI: 10.1016/j.neuroscience.2021.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023]
Abstract
Before the advent of L-DOPA, the gold standard symptomatic therapy for Parkinson's disease (PD), anticholinergic drugs (muscarinic receptor antagonists) were the preferred antiparkinsonian therapy, but their unwanted side effects associated with impaired extrastriatal cholinergic function limited their clinical utility. Since most patients treated with L-DOPA also develop unwanted side effects such as L-DOPA-induced dyskinesia (LID), better therapies are needed. Recent studies in animal models demonstrate that optogenetic and chemogenetic manipulation of striatal cholinergic interneurons (SCIN), the main source of striatal acetylcholine, modulate parkinsonism and LID, suggesting that restoring SCIN function might serve as a therapeutic option that avoids extrastriatal anticholinergics' side effects. However, it is still unclear how the altered SCIN activity in PD and LID affects the striatal circuit, whereas the mechanisms of action of anticholinergic drugs are still not fully understood. Recent animal model studies showing that SCINs undergo profound changes in their tonic discharge pattern after chronic L-DOPA administration call for a reexamination of classical views of how SCINs contribute to PD symptoms and LID. Here, we review the recent advances on the circuit implications of aberrant striatal cholinergic signaling in PD and LID in an effort to provide a comprehensive framework to understand the effects of anticholinergic drugs and with the aim of shedding light into future perspectives of cholinergic circuit-based therapies.
Collapse
|
49
|
Helseth AR, Hernandez-Martinez R, Hall VL, Oliver ML, Turner BD, Caffall ZF, Rittiner JE, Shipman MK, King CS, Gradinaru V, Gerfen C, Costa-Mattioli M, Calakos N. Cholinergic neurons constitutively engage the ISR for dopamine modulation and skill learning in mice. Science 2021; 372:372/6540/eabe1931. [PMID: 33888613 DOI: 10.1126/science.abe1931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/22/2020] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.
Collapse
Affiliation(s)
- Ashley R Helseth
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA.
| | | | - Victoria L Hall
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA
| | - Matthew L Oliver
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA
| | - Brandon D Turner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Zachary F Caffall
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Joseph E Rittiner
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Miranda K Shipman
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Connor S King
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | - Nicole Calakos
- Department of Neurology, Duke University Medical Center, Durham, NC 27715, USA. .,Department of Neurobiology, Duke University Medical Center, Durham, NC 27715, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27715, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC 27715, USA
| |
Collapse
|
50
|
Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunol 2021; 12:644294. [PMID: 33953715 PMCID: PMC8091963 DOI: 10.3389/fimmu.2021.644294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
The basal ganglia network is represented by an interconnected group of subcortical nuclei traditionally thought to play a crucial role in motor learning and movement execution. During the last decades, knowledge about basal ganglia physiology significantly evolved and this network is now considered as a key regulator of important cognitive and emotional processes. Accordingly, the disruption of basal ganglia network dynamics represents a crucial pathogenic factor in many neurological and psychiatric disorders. The striatum is the input station of the circuit. Thanks to the synaptic properties of striatal medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum exerts a fundamental integrative and filtering role in the basal ganglia network, influencing the functional output of the whole circuit. Although it is currently established that the immune system is able to regulate neuronal transmission and plasticity in specific cortical areas, the role played by immune molecules and immune/glial cells in the modulation of intra-striatal connections and basal ganglia activity still needs to be clarified. In this manuscript, we review the available evidence of immune-based regulation of synaptic activity in the striatum, also discussing how an abnormal immune activation in this region could be involved in the pathogenesis of inflammatory and degenerative central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Section of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|