1
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
2
|
Patil MM, Park SJ, Yeom GS, Bendre RS, Kuwar A, Nimse SB. Fluorescence 'turn-on' probe for nanomolar Zn (II) detection in living cells and environmental samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj02012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a Schiff base ligand FHE was synthesized by condensing 5-allyl-2-hydroxy-3-methoxybenzaldehyde, a eugenol derivative with a derivative furan-2-carbohydrazide. FHE alone showed low fluorescence signals due to the intramolecular charge transfer...
Collapse
|
3
|
Kim JJ, Hong J, Yu S, You Y. Deep-Red-Fluorescent Zinc Probe with a Membrane-Targeting Cholesterol Unit. Inorg Chem 2020; 59:11562-11576. [DOI: 10.1021/acs.inorgchem.0c01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jin Ju Kim
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jayeon Hong
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seungyeon Yu
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Yan X, Kim JJ, Jeong HS, Moon YK, Cho YK, Ahn S, Jun SB, Kim H, You Y. Low-Affinity Zinc Sensor Showing Fluorescence Responses with Minimal Artifacts. Inorg Chem 2017; 56:4332-4346. [PMID: 28378582 DOI: 10.1021/acs.inorgchem.6b02786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study of the zinc biology requires molecular probes with proper zinc affinity. We developed a low-affinity zinc probe (HBO-ACR) based on an azacrown ether (ACR) and an 2-(2-hydroxyphenyl)benzoxazole (HBO) fluorophore. This probe design imposed positive charge in the vicinity of a zinc coordination center, which enabled fluorescence turn-on responses to high levels of zinc without being affected by the pH and the presence of other transition-metal ions. Steady-state and transient photophysical investigations suggested that such a high tolerance benefits from orchestrated actions of proton-induced nonradiative and zinc-induced radiative control. The zinc bioimaging utility of HBO-ACR has been fully demonstrated with the use of human pancreas epidermoid carcinoma, PANC-1 cells, and rodent hippocampal neurons from cultures and acute brain slices. The results obtained through our studies established the validity of incorporating positively charged ionophores for the creation of low-affinity probes for the visualization of biometals.
Collapse
Affiliation(s)
- Xinhao Yan
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi-do 17104, Korea
| | | | | | | | | | - Soyeon Ahn
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi-do 17104, Korea
| | | | - Hakwon Kim
- Department of Applied Chemistry, Kyung Hee University , Yongin, Gyeonggi-do 17104, Korea
| | | |
Collapse
|
5
|
Yakimovskii AF. Effects of Zinc Chloride Administered into the Striatum on Motor Behavior in Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11055-012-9624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Geis HR, Schmid S. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle. Neurosci Res 2011; 71:114-23. [PMID: 21726589 DOI: 10.1016/j.neures.2011.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 01/24/2023]
Abstract
The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC. Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine.
Collapse
|
7
|
Lee SJ, Park MH, Kim HJ, Koh JY. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia 2010; 58:1186-96. [PMID: 20544854 DOI: 10.1002/glia.20998] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
8
|
Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 2009; 10:780-91. [PMID: 19826435 DOI: 10.1038/nrn2734] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past few years have witnessed dramatic progress on all frontiers of zinc neurobiology. The recent development of powerful tools, including zinc-sensitive fluorescent probes, selective chelators and genetically modified animal models, has brought a deeper understanding of the roles of this cation as a crucial intra- and intercellular signalling ion of the CNS, and hence of the neurophysiological importance of zinc-dependent pathways and the injurious effects of zinc dyshomeostasis. The development of some innovative therapeutic strategies is aimed at controlling and preventing the damaging effects of this cation in neurological conditions such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University G. dAnnunzio, Chieti, 66013, Italy.
| | | | | | | |
Collapse
|
9
|
Zinc and cortical plasticity. ACTA ACUST UNITED AC 2009; 59:347-73. [DOI: 10.1016/j.brainresrev.2008.10.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/17/2008] [Accepted: 10/21/2008] [Indexed: 01/08/2023]
|
10
|
Abstract
The vesicles of certain glutamatergic terminals in the mammalian forebrain are replete with ionic zinc. It is believed that during synaptic transmission zinc is released, binds to receptors on the pre- or postsynaptic membranes, and hence acts as a neuromodulator. Although exogenous zinc modulates a wide variety of channels, whether synaptic zinc transits across the synaptic cleft and alters the response of channels has been difficult to establish. We will review the evidence for zinc as a neuromodulator and propose diagnostic criteria for establishing whether it is indeed one. Moreover, we will delineate alternative ways in which zinc might act at synapses.
Collapse
Affiliation(s)
- Alan R Kay
- Department of Biology, 336 BB, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
11
|
Tolosa J, Zucchero AJ, Bunz UHF. Water-Soluble Cruciforms: Response to Protons and Selected Metal Ions. J Am Chem Soc 2008; 130:6498-506. [DOI: 10.1021/ja800232f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Juan Tolosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Anthony J. Zucchero
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| | - Uwe H. F. Bunz
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332
| |
Collapse
|
12
|
Paoletti P, Vergnano AM, Barbour B, Casado M. Zinc at glutamatergic synapses. Neuroscience 2008; 158:126-36. [PMID: 18353558 DOI: 10.1016/j.neuroscience.2008.01.061] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 12/21/2022]
Abstract
It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.
Collapse
Affiliation(s)
- P Paoletti
- Laboratoire de Neurobiologie, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| | | | | | | |
Collapse
|
13
|
Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS. The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. THE NEW PHYTOLOGIST 2007; 174:39-45. [PMID: 17335495 DOI: 10.1111/j.1469-8137.2007.02030.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
* The usefulness of the zinc (Zn)-fluorophore, Zinpyr-1, to examine the localization of Zn in the roots of Arabidopsis has been investigated. * In wild-type roots Zinpyr-1 fluorescence was predominantly in the xylem. The fluorescence signal was abolished by the application of the Zn-chelator, N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and was increased by increasing exogenous Zn in the medium, indicating that fluorescence reflected relative Zn concentrations. * In the hma2, hma4 double mutant, which is deficient in root to shoot Zn translocation, Zinpyr-1 fluorescence was low in the xylem and high in the adjacent pericycle cells in which HMA2 and HMA4 are specifically expressed in a wild type. Zinpyr-1 fluorescence was also increased in the endodermis. * These results show that Zinpyr-1 can be used to examine the effects of mutations in Zn transporters on the localization of Zn in Arabidopsis roots and should be a useful addition to the tools available for studying Zn homeostasis in plants.
Collapse
Affiliation(s)
- Scott A Sinclair
- Department of Genetics, The University of Melbourne, Parkville, Australia 3010
| | - Sarah M Sherson
- Department of Genetics, The University of Melbourne, Parkville, Australia 3010
| | - Renée Jarvis
- Department of Genetics, The University of Melbourne, Parkville, Australia 3010
| | - James Camakaris
- Department of Genetics, The University of Melbourne, Parkville, Australia 3010
| | | |
Collapse
|