1
|
Riederer P, Strobel S, Nagatsu T, Watanabe H, Chen X, Löschmann PA, Sian-Hulsmann J, Jost WH, Müller T, Dijkstra JM, Monoranu CM. Levodopa treatment: impacts and mechanisms throughout Parkinson's disease progression. J Neural Transm (Vienna) 2025; 132:743-779. [PMID: 40214767 PMCID: PMC12116664 DOI: 10.1007/s00702-025-02893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/04/2025] [Indexed: 05/28/2025]
Abstract
Treatment with levodopa, a precursor of dopamine (DA), to compensate for the loss of endogenous DA in Parkinson's disease (PD), has been a success story for over 50 years. However, in late stages of PD, the progressive degeneration of dopaminergic neurons and the ongoing reduction in endogenous DA concentrations make it increasingly difficult to maintain normal-like DA function. Typically, in late PD, higher doses of levodopa are required, and the fluctuations in striatal DA concentrations-reflecting the timing pattern of levodopa administrations-become more pronounced. These DA fluctuations can include highs that induce involuntary movements (levodopa-induced dyskinesia, LID) or lows that result in insufficient suppression of PD symptoms ("OFF" phases). The enhanced fluctuations primarily arise from the loss of DA buffering capacity, resulting from the degeneration of DA neurons, and an increased reliance on levodopa-derived DA release as a "false neurotransmitter" by serotonergic neurons. In many patients, the LID and OFF-phases can be alleviated by modifying the levodopa therapy to provide a more continuous delivery or by using additional medications, such as monoamine oxidase-B (MAO-B) inhibitors, amantadine, or dopaminergic receptor agonists. Understanding the challenges faced by levodopa therapy also requires considering that the PD striatum is characterized not only by the loss of DA neurons but also by neuroplastic adaptations and PD-induced degenerations of other neural populations. This review provides a broad overview on the use of levodopa in treating PD, with a focus on the underlying science of the challenges encountered in late stages of the disease.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Würzburg, Germany
- Department of Psychiatry, University of South Denmark, Odense, Denmark
| | - Sabrina Strobel
- Institute of Pathology, Julius-Maximilian-University of Wuerzburg, Würzburg, Germany
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Xiqun Chen
- Mass. General Institute for Neurodegenerative Disease. Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| | | | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstrasse 1, 13088, Berlin, Germany
| | | | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, Julius-Maximilian-University Ofwuerzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Srinivasan S, Limani F, Hanzlova M, La Batide-Alanore S, Klotz S, Hnasko TS, Steinkellner T. Evidence for low affinity of GABA at the vesicular monoamine transporter VMAT2 - Implications for transmitter co-release from dopamine neurons. Neuropharmacology 2025; 270:110367. [PMID: 39961377 DOI: 10.1016/j.neuropharm.2025.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Midbrain dopamine (DA) neurons comprise a heterogeneous population of cells. For instance, some DA neurons express the vesicular glutamate transporter VGLUT2 allowing these cells to co-release DA and glutamate. Additionally, GABA may be co-released from DA neurons. However, most cells do not express the canonical machinery to synthesize GABA or the vesicular GABA transporter VGAT. Instead, GABA seems to be taken up into DA neurons by a plasmalemmal GABA transporter (GAT1) and stored in synaptic vesicles via the vesicular monoamine transporter VMAT2. Yet, it remains unclear whether GABA indeed interacts with VMAT2. Here, we used radiotracer flux measurements in VMAT2 expressing HEK-293 cells and synaptic vesicles from male and female mice to determine whether GABA qualifies as substrate at VMAT2. We found that GABA reduced uptake of VMAT2 substrates in mouse synaptic vesicle preparations from striatum and cerebellum at millimolar concentrations but had no effect in VMAT2-expressing HEK-293 cells. Interestingly, while the closely related amino acid glycine did not affect substrate uptake at VMAT2 in mouse synaptic vesicles, the amino sulfonic acid taurine reduced uptake similar to GABA. Lastly, we discovered that the majority of mouse and human midbrain DA neurons in the substantia nigra of either sex expressed VMAT2 and GAT1 suggesting that most of them could be capable of co-releasing DA and GABA. Together, our findings suggest that GABA is a low-affinity substrate at VMAT2 with potential implications for basal ganglia physiology and disease.
Collapse
Affiliation(s)
- Sivakumar Srinivasan
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Fabian Limani
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michaela Hanzlova
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Ségolène La Batide-Alanore
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Veterans Affairs, San Diego Veterans Affairs Healthcare System, San Diego, CA, USA
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Shwab EK, Man Z, Gingerich DC, Gamache J, Garrett ME, Serrano GE, Beach TG, Crawford GE, Ashley‐Koch AE, Chiba‐Falek O. Comparative mapping of single-cell transcriptomic landscapes in neurodegenerative diseases. Alzheimers Dement 2025; 21:e70012. [PMID: 40344336 PMCID: PMC12061851 DOI: 10.1002/alz.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative diseases (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes. METHODS We profiled whole transcriptomes of NDD cortical tissue by single-nucleus RNA sequencing, using computational analyses to identify common and distinct differentially expressed genes (DEGs), pathways, vulnerable and disease-driver cell subtypes, and altered cell-to-cell interactions. RESULTS The same inhibitory neuron subtype was depleted in both AD and DLB. Potentially disease-driving neuronal cell subtypes were identified in both PD and DLB. Cell-cell communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were most commonly shared across NDDs within inhibitory neuron subtypes. Overall, AD and PD showed greatest transcriptomic divergence, while DLB exhibited an intermediate signature. DISCUSSION These results may help explain the clinicopathological spectrum of these NDDs and provide unique insights into shared and distinct molecular mechanisms underlying pathogenesis. HIGHLIGHTS The same vulnerable inhibitory neuron subtype population was depleted in both Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Potentially disease-driving neuronal cell subtypes were discovered in both Parkinson's disease (PD) and DLB. Cell-cell communication was predicted to be increased in AD but decreased in DLB and PD. Differentially expressed genes were most commonly shared across neurodegenerative diseases in inhibitory neuron types. AD and PD had the greatest transcriptomic divergence, with DLB showing an intermediate signature.
Collapse
Affiliation(s)
- E. Keats Shwab
- Division of Translational Brain SciencesDepartment of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Genomic and Computational BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Zhaohui Man
- Division of Translational Brain SciencesDepartment of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Genomic and Computational BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Daniel C. Gingerich
- Division of Translational Brain SciencesDepartment of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Genomic and Computational BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Julia Gamache
- Division of Translational Brain SciencesDepartment of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Genomic and Computational BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Melanie E. Garrett
- Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNorth CarolinaUSA
| | | | | | - Gregory E. Crawford
- Center for Genomic and Computational BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of PediatricsDivision of Medical GeneticsDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Advanced Genomic TechnologiesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Allison E. Ashley‐Koch
- Duke Molecular Physiology InstituteDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Ornit Chiba‐Falek
- Division of Translational Brain SciencesDepartment of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Genomic and Computational BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
4
|
Prajapati JL, Dhurandhar Y, Singh AP, Gupta DK, Baghel VS, Kushwaha U, Namdeo KP. Redox chemical delivery system: an innovative strategy for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 2025:1-18. [PMID: 40188375 DOI: 10.1080/17425247.2025.2489558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
INTRODUCTION It is anticipated that the prevalence of illnesses affecting the central nervous system (CNS) will rise significantly due to longer lifespans and changing demography. Age-related decline in brain function and neuronal death are features of neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, which provide formidable treatment challenges. Because most therapeutic drugs cannot across the blood-brain barrier (BBB) to reach the brain, there are still few treatment alternatives available despite a great deal of research. AREAS COVERED This study explores the role of redox chemical delivery systems in CNS drug delivery and addresses challenges associated with neurodegenerative disease (ND). Redox Chemical Delivery System offers a promising approach to enhancing leveraging redox reactions that facilitate the transport of therapeutic agents across the BBB. Through the optimization of medication delivery pathways to the brain, this technology has the potential to greatly improve the treatment of ND. EXPERT OPINION As our understanding of the biological underpinnings of ND deepens, the potential for effective interventions increases. Refining drug delivery strategies, such as RCDS, is essential for advancing CNS therapies from research to clinical practice. These advancements could transform the management of ND, improving both treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Deepak Kumar Gupta
- Department of Pharmaceutics, IQ City Institute of Pharmaceutical Sciences, Durgapur, India
| | | | - Umesh Kushwaha
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | |
Collapse
|
5
|
Phan L, Miller D, Gopinath A, Lin M, Gunther D, Kiel K, Quintin S, Borg D, Hasanpour-Segherlou Z, Newman A, Sorrentino Z, Miller E J, Seibold J, Hoh B, Giasson B, Khoshbouei H. Parkinson's Paradox: Alpha-synuclein's Selective Strike on SNc Dopamine Neurons over VTA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644952. [PMID: 40236072 PMCID: PMC11996431 DOI: 10.1101/2025.03.24.644952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In synucleinopathies, including Parkinson's disease (PD), dopamine neurons in the substantia nigra pars compacta (SNc) exhibit greater vulnerability to degeneration than those in the ventral tegmental area (VTA). While α-synuclein (αSyn) pathology is implicated in nigral dopamine neuron loss, the mechanisms by which αSyn affects neuronal activity and midbrain dopamine network connectivity prior to cell death remain unclear. This study tested the hypothesis that elevated αSyn expression induces pathophysiological changes in firing activity and disrupts network connectivity dynamics of dopamine neurons before neuronal loss. We employed two mouse models of synucleinopathy: preformed αSyn fibril (PFF) injection and AAV-mediated expression of human αSyn (hαSyn) under the control of the tyrosine hydroxylase (TH) promoter, both targeting the VTA and SNc. Four weeks post-injection, brain sections underwent histological, electrophysiological, and network analyses. Immunohistochemistry for TH, hαSyn, and phospho-Ser129 αSyn assessed αSyn expression and dopaminergic neuron alterations. Neuronal viability was evaluated using two complementary approaches: quantification of TH + or FOX3 + and TUNEL labeling. Importantly, these analyses revealed no significant changes in neuronal counts or TUNEL + cells at this time point, confirming that subsequent functional assessments captured pre-neurodegenerative, αSyn-induced alterations rather than late-stage neurodegeneration. Electrophysiological recordings revealed a differential effect of hαSyn expression. SNc dopamine neurons exhibited significantly increased baseline firing rates, whereas VTA dopamine neurons remained unchanged. These findings indicate a region-specific vulnerability to αSyn-induced hyperactivity of dopamine neurons. Further analysis revealed impaired homeostatic firing rate regulation in SNc, but not VTA, dopamine neurons, demonstrated by a reduced capacity to recover baseline firing following hyperpolarization. Collectively, our results demonstrate that, prior to neurodegeneration, elevated αSyn expression differentially disrupts both basal firing activity and network stability of SNc dopamine neurons, while sparing VTA dopamine neurons. By identifying neurophysiological changes preceding dopaminergic neuron loss, these findings provide critical insights into the pathophysiological mechanisms predisposing SNc neurons to degeneration in Parkinson's disease. Significance Statement A central question in Parkinson's disease research is why dopamine neurons in the substantia nigra pars compacta (SNc) are more vulnerable than those in the ventral tegmental area (VTA). This study reveals that alpha-synuclein (αSyn) pathology differentially impacts dopamine neuronal activity and network connectivity, causing changes in the SNc before neuronal loss occurs, but not in the VTA. These findings provide a mechanism to explain the differential resilience of these neighboring dopamine neuron populations and provide insights into Parkinson's disease progression. The methodologies developed in this study establish a foundation for investigating network topology in deep brain structures and its role in neurodegenerative disorders.
Collapse
|
6
|
Shtilbans A, Esneault E, Simon F, Mazzulli JR, Quiriconi DJ, Rom D, Reintsch WE, Krahn AI, Durcan TM. Evaluation of Additive Neuroprotective Effect of Combination Therapy for Parkinson's Disease Using In Vitro Models. Antioxidants (Basel) 2025; 14:396. [PMID: 40298667 PMCID: PMC12024093 DOI: 10.3390/antiox14040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND All the processes leading to neurodegeneration cannot be addressed with just one medication. Combinations of drugs affecting various disease mechanisms concurrently could demonstrate improved effect in slowing the course of Parkinson's disease (PD). OBJECTIVE This was a drug-repurposing experiment designed to assess several combinations of nine drugs for possible added or synergistic efficacy using in vitro models of PD. METHODS We evaluated 44 combinations of the nine medications (sodium phenylbutyrate, terazosin, exenatide, ambroxol, deferiprone, coenzyme-Q10, creatine, dasatinib and tauroursodeoxycholic acid) selected for their previously demonstrated evidence of their impact on different targets, showing neuroprotective properties in preclinical models of PD. We utilized wild-type induced pluripotent stem-cell-derived human dopaminergic neurons treated with 1-methyl-4-phenylpyridinium for initial screening. We retested some combinations using an idiopathic PD patient-derived induced pluripotent stem cell line and alpha-synuclein triplication line. We assessed anti-neuroinflammatory effects using human microglia cells. As metrics, we evaluated neurite length, number of branch points per mm2, the number of live neurons, neurofilament heavy chain and pro-inflammatory cytokines. RESULTS We have identified four combinations of two to three drugs that showed an additive protective effect in some endpoints. Only the combination of sodium phenylbutyrate, exenatide and tauroursodeoxycholic acid showed improvement in four endpoints studied. CONCLUSIONS We demonstrated that some of the medications, used in combination, can exert an additive neuroprotective effect in preclinical models of PD that is superior to that of each of the compounds individually. This project can lead to the development of the first treatment for PD that can slow or prevent its progression.
Collapse
Affiliation(s)
- Alexander Shtilbans
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elise Esneault
- Porsolt Research Laboratory, 53940 Le Genest-Saint-Isle, France; (E.E.); (F.S.)
| | - Florian Simon
- Porsolt Research Laboratory, 53940 Le Genest-Saint-Isle, France; (E.E.); (F.S.)
| | - Joseph R. Mazzulli
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.R.M.); (D.J.Q.)
| | - Drew J. Quiriconi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.R.M.); (D.J.Q.)
| | - Dror Rom
- Prosoft Clinical, Chesterbrook, PA 19087, USA;
| | - Wolfgang E. Reintsch
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (W.E.R.); (A.I.K.); (T.M.D.)
| | - Andrea I. Krahn
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (W.E.R.); (A.I.K.); (T.M.D.)
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (W.E.R.); (A.I.K.); (T.M.D.)
| |
Collapse
|
7
|
Chang X, Tse AM, Fayzullina M, Albanese A, Kim M, Wang CF, Zheng Z, Joshi RV, Williams CK, Magaki SD, Vinters HV, Jones JO, Haworth IS, Seidler PM. Monoaminergic neurotransmitters are bimodal effectors of tau aggregation. SCIENCE ADVANCES 2025; 11:eadr8055. [PMID: 39888993 PMCID: PMC11784839 DOI: 10.1126/sciadv.adr8055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/31/2024] [Indexed: 02/02/2025]
Abstract
Neurotransmitters (NTs) mediate trans-synaptic signaling, and disturbances in their levels are linked to aging and brain disorders. Here, we ascribe an additional function for NTs in mediating intracellular protein aggregation by interaction with cytosolic protein fibrils. Cell-based seeding experiments revealed monoaminergic NTs as inhibitors of tau. Seeding is a disease-relevant mechanism involving catalysis by fibrils, leading to the aggregation of proteins in Alzheimer's disease and other neurodegenerative diseases. Chemotyping small molecules with varied backbone structures revealed determinants of aggregation inhibitors and catalysts. Among those identified were monoaminergic NTs. Dose titrations revealed bimodal effects indicative of fibril disaggregation, with aggregation catalysis occurring at low ratios of NTs and inhibited seeding ensuing at higher concentrations. Bimodal effects by NTs extend from in vitro systems to dopaminergic neurons, suggesting that pharmacotherapies that modify intracellular NT levels could shape the neuronal protein aggregation environment.
Collapse
Affiliation(s)
- Xinmin Chang
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Amanda M. Tse
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marina Fayzullina
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Angela Albanese
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medical Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Minchan Kim
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Conner F. Wang
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zipeng Zheng
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ruchira V. Joshi
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher K. Williams
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shino D. Magaki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Jeremy O. Jones
- Simulations Plus Inc., 42505 10th Street West, Lancaster, CA 93534-7059, USA
| | - Ian S. Haworth
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical Sciences, USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Stykel MG, Siripala SV, Soubeyrand E, Coackley CL, Lu P, Camargo S, Thevasenan S, Figueroa GB, So RWL, Stuart E, Panchal R, Akrioti EK, Joseph JT, Haji-Ghassemi O, Taoufik E, Akhtar TA, Watts JC, Ryan SD. G6PD deficiency triggers dopamine loss and the initiation of Parkinson's disease pathogenesis. Cell Rep 2025; 44:115178. [PMID: 39772392 DOI: 10.1016/j.celrep.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP). This leads to decreased nicotinamide adenine dinucleotide phosphate (NADP/H) and glutathione (GSH) levels, resulting in DA oxidation and decreased total DA levels. We find that α-syn anchors the PPP enzyme G6PD to synaptic vesicles via the α-syn C terminus and that this interaction is lost in PD. Furthermore, G6PD clinical mutations are associated with PD diagnosis, and G6PD deletion phenocopies PD pathology. Finally, we show that restoring NADPH or GSH levels through genetic and pharmacological intervention blocks DA oxidation and rescues steady-state DA levels, identifying G6PD as a pharmacological target against PD.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Shehani V Siripala
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Eric Soubeyrand
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Carla L Coackley
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Ping Lu
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Suelen Camargo
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Sharanya Thevasenan
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | | | - Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rachi Panchal
- Biological Sciences, Hellenic Pasteur Institute, Athens, Greece
| | - Elissavet-Kalliopi Akrioti
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Jeffery T Joseph
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Omid Haji-Ghassemi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Knapp CP, Papadopoulos E, Loweth JA, Raghupathi R, Floresco SB, Waterhouse BD, Navarra RL. Sex-dependent perturbations in risky choice behavior and prefrontal tyrosine hydroxylase levels induced by repetitive mild traumatic brain injury. Behav Brain Res 2025; 476:115244. [PMID: 39241835 DOI: 10.1016/j.bbr.2024.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Head trauma often impairs cognitive processes mediated within the prefrontal cortex (PFC), leading to impaired decision making and risk-taking behavior. Mild traumatic brain injury (mTBI) accounts for approximately 80 % of reported head injury cases. Most neurological symptoms of a single mTBI are transient; however, growing evidence suggests that repeated mTBI (rmTBI) results in more severe impairments that worsen with each subsequent injury. Although mTBI-induced disruption of risk/reward decision making has been characterized, the potential for rmTBI to exacerbate these effects and the neural mechanisms involved are unknown. Catecholamine neurotransmitters, dopamine (DA) and norepinephrine (NE), modulate PFC-mediated functions. Imbalances in catecholamine function have been associated with TBI and may underlie aberrant decision making. We used a closed head-controlled cortical impact (CH-CCI) model in rats to evaluate the effects of rmTBI on performance of a probabilistic discounting task of risk/reward decision making behavior and expression levels of catecholamine regulatory proteins within the PFC. RmTBI produced transient increases in risky choice preference in both male and female rats, with these effects persisting longer in females. Additionally, rmTBI increased expression of the catecholamine synthetic enzyme, tyrosine hydroxylase (TH), within the orbitofrontal (OFC) region of the PFC in females only. These results suggest females are more susceptible to rmTBI-induced disruption of risk/reward decision making behavior and dysregulation of catecholamine synthesis within the OFC. Together, using the CH-CCI model of rodent rmTBI to evaluate the effects of multiple insults on risk-taking behavior and PFC catecholamine regulation begins to differentiate how mTBI occurrences affect neuropathological outcomes across different sexes.
Collapse
Affiliation(s)
- Christopher P Knapp
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Eleni Papadopoulos
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Jessica A Loweth
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA.
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Barry D Waterhouse
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| | - Rachel L Navarra
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA.
| |
Collapse
|
10
|
Shwab EK, Man Z, Gingerich DC, Gamache J, Garrett ME, Serrano GE, Beach TG, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Comparative mapping of single-cell transcriptomic landscapes in neurodegenerative diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628436. [PMID: 39764045 PMCID: PMC11702568 DOI: 10.1101/2024.12.13.628436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), and Parkinson's disease (PD) represent a spectrum of neurodegenerative disorders (NDDs). Here, we performed the first direct comparison of their transcriptomic landscapes. METHODS We profiled the whole transcriptomes of NDD cortical tissue by snRNA-seq. We used computational analyses to identify common and distinct differentially expressed genes (DEGs), biological pathways, vulnerable and disease-driver cell subtypes, and alteration in cell-to-cell interactions. RESULTS The same vulnerable inhibitory neuron subtype was depleted in both AD and DLB. Potentially disease-driving neuronal cell subtypes were present in both PD and DLB. Cell-cell communication was predicted to be increased in AD but decreased in DLB and PD. DEGs were most commonly shared across NDDs within inhibitory neuron subtypes. Overall, we observed the greatest transcriptomic divergence between AD and PD, while DLB exhibited an intermediate transcriptomic signature. DISCUSSION These results help explain the clinicopathological spectrum of this group of NDDs and provide unique insights into the shared and distinct molecular mechanisms underlying the pathogenesis of NDDs.
Collapse
Affiliation(s)
- E. Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Zhaohui Man
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel C. Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E. Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, 85351, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA
| | - Allison E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| |
Collapse
|
11
|
Zuurbier KR, Fonseca RS, Arneaud SLB, Wall JM, Kim J, Tatge L, Otuzoglu G, Bali S, Metang P, Douglas PM. Yin Yang 1 and guanine quadruplexes protect dopaminergic neurons from cellular stress via transmissive dormancy. Nat Commun 2024; 15:10592. [PMID: 39632864 PMCID: PMC11618784 DOI: 10.1038/s41467-024-54958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Neurons deploy diverse adaptive strategies to ensure survival and neurotransmission amid cellular stress. When these adaptive pathways are overwhelmed, functional impairment or neurodegeneration follows. Here we show that stressed neurons actively induce a state of transmissive dormancy as a protective measure. Extending observations of neurotrauma in C. elegans and mice, human dopaminergic neurons capable of surviving severe cellular challenges both decrease spontaneous activity and modulate dopamine homeostasis through the transcriptional regulator Yin Yang 1 (YY1). To bolster stress resilience and mitigate dopamine toxicity, YY1 increases expression of the vesicular monoamine transporter 2, vMAT2, while coordinately inhibiting dopamine synthesis through stabilization of a guanine quadruplex in intron 10 of tyrosine hydroxylase, TH. This dopaminergic stress response has the potential to cause circuit inactivation, yet safeguards neurons by minimizing the toxic accumulation of cytosolic dopamine and inducing a state of neuronal dormancy. In essence, neurons appear to actively prioritize viability over functionality.
Collapse
Affiliation(s)
- Kielen R Zuurbier
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sonja L B Arneaud
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jordan M Wall
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Juhee Kim
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gupse Otuzoglu
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patrick Metang
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology; University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine; UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
13
|
Geibl FF, Henrich MT, Xie Z, Zampese E, Ueda J, Tkatch T, Wokosin DL, Nasiri E, Grotmann CA, Dawson VL, Dawson TM, Chandel NS, Oertel WH, Surmeier DJ. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson's disease. Mol Neurodegener 2024; 19:69. [PMID: 39379975 PMCID: PMC11462807 DOI: 10.1186/s13024-024-00756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. METHODS aSYN PFFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell-type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser-scanning microscopy of genetically encoded sensors for bioenergetic and redox status. RESULTS In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. CONCLUSIONS Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Martin T Henrich
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Jun Ueda
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Nasiri
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Constantin A Grotmann
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35043, Marburg, Germany
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, US.
| |
Collapse
|
14
|
Pawar A, Pardasani KR. Computational model of the spatiotemporal synergetic system dynamics of calcium, IP 3 and dopamine in neuron cells. Cogn Neurodyn 2024; 18:2709-2729. [PMID: 39678722 PMCID: PMC11639382 DOI: 10.1007/s11571-024-10117-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 12/17/2024] Open
Abstract
The functioning of several cellular processes in neuron cells relies on the interplay between multiple systems, such as calcium ([Ca2+]), inositol 1, 4, 5-trisphosphate (IP3), and dopamine. But, their individual dynamics provide very little insight into the various regulatory and dysregulatory cellular processes. The interaction of two systems dynamics offers some useful information about cell functioning in neurons. But, no attempt has been noted in the literature about the cooperation of three systems dynamics of [Ca2+], IP3, and dopamine in neurons. A mathematical model was utilized to examine the dynamic interactions of [Ca2+], IP3, and dopamine in neurons, considering their spatiotemporal aspects. Numerical findings were obtained using the finite element technique in conjunction with the Crank-Nicholson scheme. The effects of different component events like IP3-receptor (IP3R), sodium-calcium exchanger (NCX), calbindin-D28K buffer, etc. on the synergetic calcium, IP3, and dopamine dynamics have been studied in neuronal cells. The present model offers novel insights into the effects of regulation and dysregulation in different mechanisms like IP3R, NCX, calbindin-D28K, etc. on the synergetic systems of [Ca2+], IP3 and dopamine in neurons and their association with multiple neurological disorders, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Anand Pawar
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| | - Kamal Raj Pardasani
- Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India
| |
Collapse
|
15
|
Peng L, Wang T. Histamine synthesis and transport are coupled in axon terminals via a dual quality control system. EMBO J 2024; 43:4472-4491. [PMID: 39242788 PMCID: PMC11480334 DOI: 10.1038/s44318-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals. This process requires HDC anchoring to synaptic vesicles via interactions with N-ethylmaleimide-sensitive fusion protein 1 (NSF1). Disassociating HDC from synaptic vesicles disrupts visual synaptic transmission and causes somatic accumulation of histamine, which leads to retinal degeneration. We further identified a proteasome degradation system mediated by the E3 ubiquitin ligase, purity of essence (POE), which clears mislocalized HDC from the soma, thus eliminating the cytotoxic effects of histamine. Taken together, our results reveal a dual mechanism for translocation and degradation of HDC that ensures restriction of histamine synthesis to axonal terminals and at the same time rapid loading into synaptic vesicles. This is crucial for sustaining neurotransmission and protecting against cytotoxic monoamines.
Collapse
Affiliation(s)
- Lei Peng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
16
|
Chang CH, Lim KL, Foo JN. Synaptic Vesicle Glycoprotein 2C: a role in Parkinson's disease. Front Cell Neurosci 2024; 18:1437144. [PMID: 39301216 PMCID: PMC11410587 DOI: 10.3389/fncel.2024.1437144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Synaptic Vesicle Glycoprotein 2C (SV2C), characterized by its selective expression in discrete brain regions such as the midbrain, has recently emerged as a promising player in Parkinson's Disease (PD) - a debilitating neurodegenerative disorder affecting millions worldwide. This review aims to consolidate our current understanding of SV2C's function, its involvement in PD pathogenesis, and to evaluate its potential as a therapeutic target. Integrating previous findings of SV2C, from genetics to molecular studies, and drawing on insights from the largest East Asian genome-wide association study that highlights SV2C as a novel risk factor for PD, we explore the potential pathways through which SV2C may influence the disease. Our discussion extends to the implications of SV2C's role in synaptic vesicle trafficking, neurotransmitter release, and α-synuclein homeostasis, thereby laying the groundwork for future investigations that could pave the way for novel therapeutic strategies in combating PD.
Collapse
Affiliation(s)
- Chu Hua Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
17
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
18
|
Sawant R, Godad A. An update on novel and emerging therapeutic targets in Parkinson's disease. Metab Brain Dis 2024; 39:1213-1225. [PMID: 39066989 DOI: 10.1007/s11011-024-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's Disease (PD) remains a significant focus of extensive research aimed at developing effective therapeutic strategies. Current treatments primarily target symptom management, with limited success in altering the course of the disease. This shortfall underscores the urgent need for novel therapeutic approaches that can modify the progression of PD.This review concentrates on emerging therapeutic targets poised to address the underlying mechanisms of PD. Highlighted novel and emerging targets include Protein Abelson, Rabphilin-3 A, Colony Stimulating Factor 1-Receptor, and Apelin, each showing promising potential in preclinical and clinical settings for their ability to modulate disease progression. By examining recent advancements and outcomes from trials focusing on these targets, the review aims to elucidate their efficacy and potential as disease-modifying therapies.Furthermore, the review explores the concept of multi-target approaches, emphasizing their relevance in tackling the complex pathology of PD. By providing comprehensive insights into these novel targets and their therapeutic implications, this review aims to guide future research directions and clinical developments toward more effective treatments for PD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Richa Sawant
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V M Road, Vile Parle (w), Mumbai, 400056, India.
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
19
|
Sackner-Bernstein J. Rethinking Parkinson's disease: could dopamine reduction therapy have clinical utility? J Neurol 2024; 271:5687-5695. [PMID: 38904783 PMCID: PMC11319508 DOI: 10.1007/s00415-024-12526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Following reports of low striatal dopamine content in Parkinson's disease, levodopa was shown to rapidly reverse hypokinesis, establishing the model of disease as one of dopamine deficiency. Dopaminergic therapy became standard of care, yet it failed to reverse the disease, suggesting the understanding of disease was incomplete. The literature suggests the potential for toxicity of dopamine and its metabolites, perhaps more relevant given the recent evidence for elevated cytosolic dopamine levels in the dopaminergic neurons of people with Parkinson's. To understand the relevance of these data, multiple investigations are reviewed that tested dopamine reduction therapy as an alternative to dopaminergic agents. The data from use of an inhibitor of dopamine synthesis in experimental models suggest that such an approach could reverse disease pathology, which suggests that cytosolic dopamine excess is a primary driver of disease. These data support clinical investigation of dopamine reduction therapy for Parkinson's disease. Doing so will determine whether these experimental models are predictive and this treatment strategy is worth pursuing further. If clinical data are positive, it could warrant reconsideration of our disease model and treatment strategies, including a shift from dopaminergic to dopamine reduction treatment of the disease.
Collapse
|
20
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 PMCID: PMC11694735 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
22
|
Zuurbier KR, Solano Fonseca R, Arneaud SL, Tatge L, Otuzoglu G, Wall JM, Douglas PM. Cytosolic dopamine determines hypersensitivity to blunt force trauma. iScience 2024; 27:110094. [PMID: 38883817 PMCID: PMC11179581 DOI: 10.1016/j.isci.2024.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The selective vulnerability of dopaminergic neurons to trauma-induced neurodegeneration is conserved across species, from nematodes to humans. However, the molecular mechanisms underlying this hypersensitivity to blunt force trauma remain elusive. We find that extravesicular dopamine, a key driver of Parkinson's disease, extends its toxic role to the acute challenges associated with injury. Ectopic dopamine synthesis in serotonergic neurons sensitizes this resilient neuronal subtype to trauma-induced degeneration. While dopaminergic neurons normally maintain dopamine in a functional and benign state, trauma-induced subcellular redox imbalances elicit dopamine-dependent cytotoxicity. Cytosolic dopamine accumulation, through perturbations to its synthesis, metabolism, or packaging, is necessary and sufficient to drive neurodegeneration upon injury and during aging. Additionally, degeneration is further exacerbated by rapid upregulation of the rate-limiting enzyme in dopamine synthesis, cat-2, via the FOS-1 transcription factor. Fundamentally, our study in C. elegans unravels the molecular intricacies rendering dopaminergic neurons uniquely prone to physical perturbation across evolutionary lines.
Collapse
Affiliation(s)
- Kielen R. Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sonja L.B. Arneaud
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lexus Tatge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gupse Otuzoglu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan M. Wall
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter M. Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- O’Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Javid H, Rahimian R, Salimi M, Haghani-Samani E, Farhadi M, Torkaman-Boutorabi A. Fumaria vaillantii extract protects PC12 cells against neurotoxicity induced by 6-OHDA. Mol Biol Rep 2024; 51:768. [PMID: 38884894 DOI: 10.1007/s11033-024-09673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Parkinson's disease is a neurological disorder caused by the loss of dopaminergic neurons in the midbrain. Various mechanisms are involved in the incidence of the disease including oxidative stress. Several herbs and natural products may interfere with the oxidative-stress pathway due to their antioxidant effects. OBJECTIVE Herein, we aimed to investigate the neuroprotective role of F. vaillantii extract on Parkinson's in vitro and in vivo model owing to the presence of the bioactive agents with antioxidant properties. METHODS In vitro experments showed that 6-hydroxydopamine could induce toxicity in PC12 cells. The impact of F. vaillantii extract on cell viability was measured by using MTT assay. Nuclear morphological changes were qualitatively evaluated employing Hoechst staining. The antioxidant activity of the extract was determined by ROS and lipid peroxidation assays. Tyrosine hydroxylase protein expression was measured by western blotting in PC12 cells. For in vivo study, movement parameters were evaluated. RESULTS The results indicated that 75 µΜ of 6-OHDA induced 50% toxicity in PC12 cells for 24 h. Following post-treatment with F. vaillantii extract (0.1 mg/ml) for 72 h, we observed that the extract effectively prevented cell toxicity induced by 6-OHDA and reduced the apoptotic cell population. Furthermore, the extract attenuated the ROS level, lipid peroxidation and increased protein expression of TH after 72 h of treatment. In addition, oral administration of 300 mg/kg of F. vaillantii extract for 14 days improved locomotor activity, catalepsy, bradykinesia, motor coordination and reduced the apomorphine-caused rotation in 6-OHDA- induced Parkinson's disease-like symptoms in male rats. CONCLUSION The present study suggests a protective role for the extract of F. vaillantii against oxidative stress-induced cell damage in the PC12 cells exposed to neurotoxin 6-OHDA which was verified in in vivo model by reducing the motor defects induced by 6-OHDA. This extract could be a promising therapeutic agent for the prevention of PD progression.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran
| | - Rana Rahimian
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Misha Salimi
- Department of Biology, Faculty of Converging Sciences and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Haghani-Samani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran
| | - Mona Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, No. 88, Italya Street, Vesaal Shirazi Avenue, Keshavars Boulevard, Tehran, Iran.
- Research Center for Cognitive and Behavioral Studies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Knapp CP, Papadopoulos E, Loweth JA, Raghupathi R, Floresco SB, Waterhouse BD, Navarra RL. Perturbations in risk/reward decision making and frontal cortical catecholamine regulation induced by mild traumatic brain injury. Behav Brain Res 2024; 467:115002. [PMID: 38636779 DOI: 10.1016/j.bbr.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries.
Collapse
Affiliation(s)
- Christopher P Knapp
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA.
| | - Eleni Papadopoulos
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA
| | - Jessica A Loweth
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Barry D Waterhouse
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA
| | - Rachel L Navarra
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA.
| |
Collapse
|
25
|
Sandoval A, Duran P, Corzo-López A, Fernández-Gallardo M, Muñoz-Herrera D, Leyva-Leyva M, González-Ramírez R, Felix R. The role of voltage-gated calcium channels in the pathogenesis of Parkinson's disease. Int J Neurosci 2024; 134:452-461. [PMID: 35993158 DOI: 10.1080/00207454.2022.2115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease. Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022. Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention. Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.
Collapse
Affiliation(s)
- Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Paz Duran
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
26
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Morais PLAG, Santos JR, Cavalcanti JRLP. The neurobiological effects of senescence on dopaminergic system: A comprehensive review. J Chem Neuroanat 2024; 137:102415. [PMID: 38521203 DOI: 10.1016/j.jchemneu.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Over time, the body undergoes a natural, multifactorial, and ongoing process named senescence, which induces changes at the molecular, cellular, and micro-anatomical levels in many body systems. The brain, being a highly complex organ, is particularly affected by this process, potentially impairing its numerous functions. The brain relies on chemical messengers known as neurotransmitters to function properly, with dopamine being one of the most crucial. This catecholamine is responsible for a broad range of critical roles in the central nervous system, including movement, learning, cognition, motivation, emotion, reward, hormonal release, memory consolidation, visual performance, sexual drive, modulation of circadian rhythms, and brain development. In the present review, we thoroughly examine the impact of senescence on the dopaminergic system, with a primary focus on the classic delimitations of the dopaminergic nuclei from A8 to A17. We provide in-depth information about their anatomy and function, particularly addressing how senescence affects each of these nuclei.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Marco Aurelio M Freire
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | - Karina M Paiva
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Rodrigo F Oliveira
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, State University of Rio Grande do Norte (UERN), Mossoró, Brazil
| | - José Ronaldo Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Federal University of Sergipe (UFS), Itabaiana, Brazil
| | | |
Collapse
|
27
|
Fan RZ, Sportelli C, Lai Y, Salehe SS, Pinnell JR, Brown HJ, Richardson JR, Luo S, Tieu K. A partial Drp1 knockout improves autophagy flux independent of mitochondrial function. Mol Neurodegener 2024; 19:26. [PMID: 38504290 PMCID: PMC10953112 DOI: 10.1186/s13024-024-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Dynamin-related protein 1 (Drp1) plays a critical role in mitochondrial dynamics. Partial inhibition of this protein is protective in experimental models of neurological disorders such as Parkinson's disease and Alzheimer's disease. The protective mechanism has been attributed primarily to improved mitochondrial function. However, the observations that Drp1 inhibition reduces protein aggregation in such neurological disorders suggest the involvement of autophagy. To investigate this potential novel protective mechanism of Drp1 inhibition, a model with impaired autophagy without mitochondrial involvement is needed. METHODS We characterized the effects of manganese (Mn), which causes parkinsonian-like symptoms in humans, on autophagy and mitochondria by performing dose-response studies in two cell culture models (stable autophagy HeLa reporter cells and N27 rat immortalized dopamine neuronal cells). Mitochondrial function was assessed using the Seahorse Flux Analyzer. Autophagy flux was monitored by quantifying the number of autophagosomes and autolysosomes, as well as the levels of other autophagy proteins. To strengthen the in vitro data, multiple mouse models (autophagy reporter mice and mutant Drp1+/- mice and their wild-type littermates) were orally treated with a low chronic Mn regimen that was previously reported to increase α-synuclein aggregation and transmission via exosomes. RNAseq, laser captured microdissection, immunofluorescence, immunoblotting, stereological cell counting, and behavioural studies were used. RESULTS IN VITRO: data demonstrate that at low non-toxic concentrations, Mn impaired autophagy flux but not mitochondrial function and morphology. In the mouse midbrain, RNAseq data further confirmed autophagy pathways were dysregulated but not mitochondrial related genes. Additionally, Mn selectively impaired autophagy in the nigral dopamine neurons but not the nearby nigral GABA neurons. In cells with a partial Drp1-knockdown and Drp1+/- mice, Mn induced autophagic impairment was significantly prevented. Consistent with these observations, Mn increased the levels of proteinase-K resistant α-synuclein and Drp1-knockdown protected against this pathology. CONCLUSIONS This study demonstrates that improved autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of its role in mitochondrial fission. Given that impaired autophagy and mitochondrial dysfunction are two prominent features of neurodegenerative diseases, the combined protective mechanisms targeting these two pathways conferred by Drp1 inhibition make this protein an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca Z Fan
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Yanhao Lai
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Said S Salehe
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Jennifer R Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Harry J Brown
- Department of Environmental Health Sciences, Florida International University, Miami, USA
- Biomolecular Sciences Institute, Florida International University, Miami, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, USA.
| |
Collapse
|
28
|
Khamis H, Cohen O. Coupled action potential and calcium dynamics underlie robust spontaneous firing in dopaminergic neurons. Phys Biol 2024; 21:026005. [PMID: 38382117 DOI: 10.1088/1478-3975/ad2bd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Dopaminergic neurons are specialized cells in the substantia nigra, tasked with dopamine secretion. This secretion relies on intracellular calcium signaling coupled to neuronal electrical activity. These neurons are known to display spontaneous calcium oscillationsin-vitroandin-vivo, even in synaptic isolation, controlling the basal dopamine levels. Here we outline a kinetic model for the ion exchange across the neuronal plasma membrane. Crucially, we relax the assumption of constant, cytoplasmic sodium and potassium concentration. We show that sodium-potassium dynamics are strongly coupled to calcium dynamics and are essential for the robustness of spontaneous firing frequency. The model predicts several regimes of electrical activity, including tonic and 'burst' oscillations, and predicts the switch between those in response to perturbations. 'Bursting' correlates with increased calcium amplitudes, while maintaining constant average, allowing for a vast change in the calcium signal responsible for dopamine secretion. All the above traits provide the flexibility to create rich action potential dynamics that are crucial for cellular function.
Collapse
Affiliation(s)
- Hadeel Khamis
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| | - Ohad Cohen
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| |
Collapse
|
29
|
Chagraoui A, Anouar Y, De Deurwaerdere P, Arias HR. To what extent may aminochrome increase the vulnerability of dopaminergic neurons in the context of Parkinson's disease. Int J Biochem Cell Biol 2024; 168:106528. [PMID: 38246261 DOI: 10.1016/j.biocel.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD. Its capacity to induce a gradual reduction in dopaminergic neurons is due to its endogenous neurotoxicity. The formation of aminochrome results in the production of various reactive oxygen species (ROS), including pro-inflammatory factors, superoxide, nitric oxide, and hydroxyl radicals. This, in turn, causes loss of dopaminergic neurons, reducing DA uptake, and reduced numbers and shortened dendrites. Notably, o-quinones, which are more cytotoxic, arise from the oxidation of DA and possess a higher capacity to impede cellular defense mechanisms, thereby resulting in the death of neuronal cells. Aminochrome potentially contributes to the pathophysiology of PD by forming adducts with various proteins. All of the aforementioned effects suggest that aminochrome may play a crucial role in the pathophysiology of PD. Thus, aminochrome may serve as a more relevant preclinical model for PD, facilitating a better understanding of its pathophysiological processes and identification of novel therapeutic strategies aimed at preventing or slowing disease progression.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France.
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
30
|
Fornstedt Wallin B. Oxidation of dopamine and related catechols in dopaminergic brain regions in Parkinson's disease and during ageing in non-Parkinsonian subjects. J Neural Transm (Vienna) 2024; 131:213-228. [PMID: 38238531 DOI: 10.1007/s00702-023-02718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.
Collapse
Affiliation(s)
- Bodil Fornstedt Wallin
- Department of Pharmacology, University of Göteborg (at the time of the study), Göteborg, Sweden.
| |
Collapse
|
31
|
Björklund A, Mattsson B. The AAV-α-Synuclein Model of Parkinson's Disease: An Update. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1077-1094. [PMID: 39031386 PMCID: PMC11380285 DOI: 10.3233/jpd-240207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Targeted delivery of α-synuclein using AAV vectors has over the two decades since its introduction developed into a versatile tool for modeling different aspects of synucleinopathy, mimicking those seen in Parkinson's disease and related Lewy body disorders. The viral vector approach to disease modeling is attractive in that the expression of α-synuclein, wild-type or mutated, can be confined to defined anatomical structures and targeted to selected cell populations using either cell-type specific promoter constructs or different natural or engineered AAV serotypes. AAV-α-synuclein was initially used to model progressive α-synuclein pathology in nigral dopamine neurons, and, like the standard 6-OHDA model, it has most commonly been applied unilaterally, using the non-injected side as a reference and control. In recent years, however, the AAV-α-synuclein model has become more widely used to induce Parkinson-like synuclein pathology in other relevant neuronal systems, such as the brainstem noradrenergic and serotonergic neurons, the vagal motor neurons, as well as in oligodendrocytes, the prime target relevant to the pathology seen in multiple system atrophy. The purpose of this review is to give an overview of the progress made in the use of the AAV-α-synuclein model over the last two decades and summarize the state-of-the art in the use of the AAV-α-synuclein model for disease modeling in rats and mice.
Collapse
Affiliation(s)
- Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Bengt Mattsson
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Geibl FF, Henrich MT, Xie Z, Zampese E, Tkatch T, Wokosin DL, Nasiri E, Grotmann CA, Dawson VL, Dawson TM, Chandel NS, Oertel WH, Surmeier DJ. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571045. [PMID: 38168401 PMCID: PMC10759995 DOI: 10.1101/2023.12.11.571045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Pathological accumulation of aggregated α-synuclein (aSYN) is a common feature of Parkinson's disease (PD). However, the mechanisms by which intracellular aSYN pathology contributes to dysfunction and degeneration of neurons in the brain are still unclear. A potentially relevant target of aSYN is the mitochondrion. To test this hypothesis, genetic and physiological methods were used to monitor mitochondrial function in substantia nigra pars compacta (SNc) dopaminergic and pedunculopontine nucleus (PPN) cholinergic neurons after stereotaxic injection of aSYN pre-formed fibrils (PFFs) into the mouse brain. Methods aSYN PPFs were stereotaxically injected into the SNc or PPN of mice. Twelve weeks later, mice were studied using a combination of approaches, including immunocytochemical analysis, cell- type specific transcriptomic profiling, electron microscopy, electrophysiology and two-photon-laser- scanning microscopy of genetically encoded sensors for bioenergetic and redox status. Results In addition to inducing a significant neuronal loss, SNc injection of PFFs induced the formation of intracellular, phosphorylated aSYN aggregates selectively in dopaminergic neurons. In these neurons, PFF-exposure decreased mitochondrial gene expression, reduced the number of mitochondria, increased oxidant stress, and profoundly disrupted mitochondrial adenosine triphosphate production. Consistent with an aSYN-induced bioenergetic deficit, the autonomous spiking of dopaminergic neurons slowed or stopped. PFFs also up-regulated lysosomal gene expression and increased lysosomal abundance, leading to the formation of Lewy-like inclusions. Similar changes were observed in PPN cholinergic neurons following aSYN PFF exposure. Conclusions Taken together, our findings suggest that disruption of mitochondrial function, and the subsequent bioenergetic deficit, is a proximal step in the cascade of events induced by aSYN pathology leading to dysfunction and degeneration of neurons at-risk in PD.
Collapse
|
33
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
34
|
Sharma R, Neupane C, Pham TL, Lee M, Lee S, Lee SY, Nam MH, Kim CS, Park JB. Tonic Activation of NR2D-Containing NMDARs Exacerbates Dopaminergic Neuronal Loss in MPTP-Injected Parkinsonian Mice. J Neurosci 2023; 43:7730-7744. [PMID: 37726169 PMCID: PMC10648527 DOI: 10.1523/jneurosci.1955-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
NR2D subunit-containing NMDA receptors (NMDARs) gradually disappear during brain maturation but can be recruited by pathophysiological stimuli in the adult brain. Here, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication recruited NR2D subunit-containing NMDARs that generated an Mg2+-resistant tonic NMDA current (INMDA) in dopaminergic (DA) neurons in the midbrain of mature male mice. MPTP selectively generated an Mg2+-resistant tonic INMDA in DA neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Consistently, MPTP increased NR2D but not NR2B expression in the midbrain regions. Pharmacological or genetic NR2D interventions abolished the generation of Mg2+-resistant tonic INMDA in SNpc DA neurons, and thus attenuated subsequent DA neuronal loss and gait deficits in MPTP-treated mice. These results show that extrasynaptic NR2D recruitment generates Mg2+-resistant tonic INMDA and exacerbates DA neuronal loss, thus contributing to MPTP-induced Parkinsonism. The state-dependent NR2D recruitment could be a novel therapeutic target for mitigating cell type-specific neuronal death in neurodegenerative diseases.SIGNIFICANCE STATEMENT NR2D subunit-containing NMDA receptors (NMDARs) are widely expressed in the brain during late embryonic and early postnatal development, and then downregulated during brain maturation and preserved at low levels in a few regions of the adult brain. Certain stimuli can recruit NR2D subunits to generate tonic persistent NMDAR currents in nondepolarized neurons in the mature brain. Our results show that MPTP intoxication recruits NR2D subunits in midbrain dopaminergic (DA) neurons, which leads to tonic NMDAR current-promoting dopaminergic neuronal death and consequent abnormal gait behavior in the MPTP mouse model of Parkinson's disease (PD). This is the first study to indicate that extrasynaptic NR2D recruitment could be a target for preventing neuronal death in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Chiranjivi Neupane
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Thuy Linh Pham
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Miae Lee
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Cuk-Seong Kim
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| |
Collapse
|
35
|
Desalegn AA, van der Ent W, Lenters V, Iszatt N, Stigum H, Lyche JL, Berg V, Kirstein-Smardzewska KJ, Esguerra CV, Eggesbø M. Perinatal exposure to potential endocrine disrupting chemicals and autism spectrum disorder: From Norwegian birth cohort to zebrafish studies. ENVIRONMENT INTERNATIONAL 2023; 181:108271. [PMID: 37879205 DOI: 10.1016/j.envint.2023.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The etiology of autism spectrum disorder (ASD) is multifactorial, involving genetic and environmental contributors such as endocrine-disrupting chemicals (EDCs). OBJECTIVE To evaluate the association between perinatal exposure to 27 potential EDCs and ASD among Norwegian children, and to further examine the neurodevelopmental toxicity of associated chemicals using zebrafish embryos and larvae. METHOD 1,199 mothers enrolled in the prospective birth-cohort (HUMIS, 2002-2009) study. Breastmilk levels of 27 chemicals were measured: polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers, and perfluoroalkyl substances as a proxy for perinatal exposure. We employed multivariable logistic regression to determine association, utilized elastic net logistic regression as variable selection method, and conducted an in vivo study with zebrafish larvae to confirm the neurodevelopmental effect. RESULTS A total of 20 children had specialist confirmed diagnosis of autism among 1,199 mother-child pairs in this study. β-Hexachlorocyclohexane (β-HCH) was the only chemical associated with ASD, after adjusting for 26 other chemicals. Mothers with the highest levels of β-HCH in their milk had a significant increased risk of having a child with ASD (OR = 1.82, 95 % CI: 1.20, 2.77 for an interquartile range increase in ln-transformed β-HCH concentration). The median concentration of β-HCH in breast milk was 4.37 ng/g lipid (interquartile range: 2.92-6.47), and the estimated daily intake (EDI) for Norwegian children through breastfeeding was 0.03 µg/kg of body weight. The neurodevelopmental and social behavioral effects of β-HCH were established in zebrafish embryos and larvae across various concentrations, with further analysis suggesting that perturbation of dopaminergic neuron development may underlie the neurotoxicity associated with β-HCH. CONCLUSIONS Prenatal exposure to β-HCH was associated with an increased risk of specialist-confirmed diagnoses of ASD among Norwegian children, and the EDI surpasses the established threshold. Zebrafish experiments confirm β-HCH neurotoxicity, suggesting dopaminergic neuron disruption as a potential underlying mechanism.
Collapse
Affiliation(s)
- Anteneh Assefa Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway; Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Virissa Lenters
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Hein Stigum
- Department of Non-Communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway
| | - Vidar Berg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway
| | - Karolina J Kirstein-Smardzewska
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camila Vicencio Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Merete Eggesbø
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
36
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
37
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca 2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis 2023; 9:137. [PMID: 37741841 PMCID: PMC10518018 DOI: 10.1038/s41531-023-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
38
|
Zhang D, Yao J, Sun J, Wang J, Chen L, He H, Wu T. Iron accumulation in the ventral tegmental area in Parkinson's disease. Front Aging Neurosci 2023; 15:1187684. [PMID: 37448687 PMCID: PMC10338054 DOI: 10.3389/fnagi.2023.1187684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The ventral tegmental area (VTA) is less affected compared to substantia nigra pars compacta (SNc) in Parkinson's disease (PD). This study aimed to quantitatively evaluate iron content in the VTA across different stages of PD in order to help explain the selective loss of dopamine neurons in PD. Methods Quantitative susceptibility mapping (QSM) data were obtained from 101 PD patients, 35 idiopathic rapid eye movement sleep behavior disorder (RBD) patients, and 62 healthy controls (HCs). The mean QSM values in the VTA and SNc were calculated and compared among the groups. Results Both RBD and PD patients had increased iron values in the bilateral SNc compared with HCs. RBD and PD patients in the Hoehn-Yahr (H & Y) stage 1 did not show elevated iron values in the VTA, while PD patients with more than 1.5 H & Y staging had increased iron values in bilateral VTA compared to HCs. Discussion This study shows that there is no increased iron accumulation in the VTA during the prodromal and early clinical stages of PD, but iron deposition increases significantly as the disease becomes more severe.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Tapias V, González-Andrés P, Peña LF, Barbero A, Núñez L, Villalobos C. Therapeutic Potential of Heterocyclic Compounds Targeting Mitochondrial Calcium Homeostasis and Signaling in Alzheimer's Disease and Parkinson's Disease. Antioxidants (Basel) 2023; 12:1282. [PMID: 37372013 DOI: 10.3390/antiox12061282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the elderly. The key histopathological features of these diseases are the presence of abnormal protein aggregates and the progressive and irreversible loss of neurons in specific brain regions. The exact mechanisms underlying the etiopathogenesis of AD or PD remain unknown, but there is extensive evidence indicating that excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with a depleted antioxidant system, mitochondrial dysfunction, and intracellular Ca2+ dyshomeostasis, plays a vital role in the pathophysiology of these neurological disorders. Due to an improvement in life expectancy, the incidence of age-related neurodegenerative diseases has significantly increased. However, there is no effective protective treatment or therapy available but rather only very limited palliative treatment. Therefore, there is an urgent need for the development of preventive strategies and disease-modifying therapies to treat AD/PD. Because dysregulated Ca2+ metabolism drives oxidative damage and neuropathology in these diseases, the identification or development of compounds capable of restoring Ca2+ homeostasis and signaling may provide a neuroprotective avenue for the treatment of neurodegenerative diseases. In addition, a set of strategies to control mitochondrial Ca2+ homeostasis and signaling has been reported, including decreased Ca2+ uptake through voltage-operated Ca2+ channels (VOCCs). In this article, we review the modulatory effects of several heterocyclic compounds on Ca2+ homeostasis and trafficking, as well as their ability to regulate compromised mitochondrial function and associated free-radical production during the onset and progression of AD or PD. This comprehensive review also describes the chemical synthesis of the heterocycles and summarizes the clinical trial outcomes.
Collapse
Affiliation(s)
- Victor Tapias
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paula González-Andrés
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura F Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Asunción Barbero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
40
|
Kwon YJ, Kwon OI, Hwang HJ, Shin HC, Yang S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front Mol Neurosci 2023; 16:1193590. [PMID: 37305552 PMCID: PMC10249478 DOI: 10.3389/fnmol.2023.1193590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Phlorotannins are natural polyphenolic compounds produced by brown marine algae and are currently found in nutritional supplements. Although they are known to cross the blood-brain barrier, their neuropharmacological actions remain unclear. Here we review the potential therapeutic benefits of phlorotannins in the treatment of neurodegenerative diseases. In mouse models of Alzheimer's disease, ethanol intoxication and fear stress, the phlorotannin monomer phloroglucinol and the compounds eckol, dieckol and phlorofucofuroeckol A have been shown to improve cognitive function. In a mouse model of Parkinson's disease, phloroglucinol treatment led to improved motor performance. Additional neurological benefits associated with phlorotannin intake have been demonstrated in stroke, sleep disorders, and pain response. These effects may stem from the inhibition of disease-inducing plaque synthesis and aggregation, suppression of microglial activation, modulation of pro-inflammatory signaling, reduction of glutamate-induced excitotoxicity, and scavenging of reactive oxygen species. Clinical trials of phlorotannins have not reported significant adverse effects, suggesting these compounds to be promising bioactive agents in the treatment of neurological diseases. We therefore propose a putative biophysical mechanism of phlorotannin action in addition to future directions for phlorotannin research.
Collapse
Affiliation(s)
- Yoon Ji Kwon
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Oh Ig Kwon
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Hyeon-Cheol Shin
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
41
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K, Zucca FA, Zecca L, Youdim M, Wulf M, Riederer P, Dijkstra JM. The role of tyrosine hydroxylase as a key player in neuromelanin synthesis and the association of neuromelanin with Parkinson's disease. J Neural Transm (Vienna) 2023; 130:611-625. [PMID: 36939908 PMCID: PMC10121510 DOI: 10.1007/s00702-023-02617-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine β-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi, Japan.
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milan), Italy
| | - Moussa Youdim
- Technion-Rappaport Family Faculty of Medicine, Haifa, Israel
- Department of Biology, Yonsey World Central University, Seoul, South Korea
| | - Maximilian Wulf
- Medical Proteome-Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Peter Riederer
- Clinic and Polyclinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
- Department and Research Unit of Psychiatry, Syddansk University, Odense, Denmark
| | | |
Collapse
|
42
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha Synuclein Modulates Mitochondrial Ca 2+ Uptake from ER During Cell Stimulation and Under Stress Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537965. [PMID: 37163091 PMCID: PMC10168219 DOI: 10.1101/2023.04.23.537965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress. 1 We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca 2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca 2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca 2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David A. Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
43
|
Gonzalez-Sepulveda M, Compte J, Cuadros T, Nicolau A, Guillard-Sirieix C, Peñuelas N, Lorente-Picon M, Parent A, Romero-Giménez J, Cladera-Sastre JM, Laguna A, Vila M. In vivo reduction of age-dependent neuromelanin accumulation mitigates features of Parkinson's disease. Brain 2023; 146:1040-1052. [PMID: 36717986 PMCID: PMC9976971 DOI: 10.1093/brain/awac445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 02/01/2023] Open
Abstract
Humans accumulate with age the dark-brown pigment neuromelanin inside specific neuronal groups. Neurons with the highest neuromelanin levels are particularly susceptible to degeneration in Parkinson's disease, especially dopaminergic neurons of the substantia nigra, the loss of which leads to characteristic motor Parkinson's disease symptoms. In contrast to humans, neuromelanin does not appear spontaneously in most animals, including rodents, and Parkinson's disease is an exclusively human condition. Using humanized neuromelanin-producing rodents, we recently found that neuromelanin can trigger Parkinson's disease pathology when accumulated above a specific pathogenic threshold. Here, by taking advantage of this newly developed animal model, we assessed whether the intracellular build-up of neuromelanin that occurs with age can be slowed down in vivo to prevent or attenuate Parkinson's disease. Because neuromelanin derives from the oxidation of free cytosolic dopamine, we enhanced dopamine vesicular encapsulation in the substantia nigra of neuromelanin-producing rats by viral vector-mediated overexpression of vesicular monoamine transporter 2 (VMAT2). This strategy reduced the formation of potentially toxic oxidized dopamine species that can convert into neuromelanin and maintained intracellular neuromelanin levels below their pathogenic threshold. Decreased neuromelanin production was associated with an attenuation of Lewy body-like inclusion formation and a long-term preservation of dopamine homeostasis, nigrostriatal neuronal integrity and motor function in these animals. Our results demonstrate the feasibility and therapeutic potential of modulating age-dependent intracellular neuromelanin production in vivo, thereby opening an unexplored path for the treatment of Parkinson's disease and, in a broader sense, brain ageing.
Collapse
Affiliation(s)
- Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joan Compte
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alba Nicolau
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Camille Guillard-Sirieix
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marina Lorente-Picon
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
| | - Joana M Cladera-Sastre
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institut de Neurociències (INc-UAB), Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Institut de Neurociències (INc-UAB), Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
44
|
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.
Collapse
|
45
|
Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Disease mechanisms as Subtypes: Mitochondrial and bioenergetic dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:53-66. [PMID: 36803823 DOI: 10.1016/b978-0-323-85555-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease in the world. Despite its enormous human and societal cost, there is no disease-modifying therapy for PD. This unmet medical need reflects our limited understanding of PD pathogenesis. One of the most important clues comes from the recognition that PD motor symptoms arises from the dysfunction and degeneration of a very select group of neurons in the brain. These neurons have a distinctive set of anatomic and physiologic traits that reflect their role in brain function. These traits elevate mitochondrial stress, potentially making them particularly vulnerable to age, as well as to genetic mutations and environmental toxins linked to PD incidence. In this chapter, the literature supporting this model is outlined, along with gaps in our knowledge base. The translational implications of this hypothesis are then discussed, with a focus on why disease-modification trials have failed to date and what this means for the development of new strategies for altering disease course.
Collapse
Affiliation(s)
- Patricia Gonzalez-Rodriguez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and CIBERNED, Seville, Spain
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
46
|
Ito S, Napolitano A, Sarna T, Wakamatsu K. Iron and copper ions accelerate and modify dopamine oxidation to eumelanin: implications for neuromelanin genesis. J Neural Transm (Vienna) 2023; 130:29-42. [PMID: 36527527 DOI: 10.1007/s00702-022-02574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 ℃. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.
Collapse
Affiliation(s)
- Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan.
| | | | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
47
|
Correa BH, Moreira CR, Hildebrand ME, Vieira LB. The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:183-201. [PMID: 35339179 PMCID: PMC10190140 DOI: 10.2174/1570159x20666220327211156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Bernardo H.M. Correa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Roberto Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
48
|
Mosharov EV, Lindau M. Patch Amperometry and Intracellular Patch Electrochemistry. Methods Mol Biol 2023; 2565:239-260. [PMID: 36205899 PMCID: PMC9910029 DOI: 10.1007/978-1-0716-2671-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Both patch amperometry (PA) and intracellular patch electrochemistry (IPE) take advantage of a recording configuration where an electrochemical detector-carbon fiber electrode (CFE)-is housed inside a patch pipette. PA, which is employed in cell-attached or excised inside-out patch clamp configuration, offers high-resolution patch capacitance measurements with simultaneous amperometric detection of catecholamines released during exocytosis. The method provides precise information on single-vesicle size and quantal content, fusion pore conductance, and permeability of the pore for catecholamines. IPE, on the other hand, measures cytosolic catecholamines that diffuse into the patch pipette following membrane rupture to achieve the whole-cell configuration. In amperometric mode, IPE detects total catechols, whereas in cyclic voltammetric mode, it provides more specific information on the nature of the detected molecules and may selectively quantify catecholamines, providing a direct approach to determine cytosolic concentrations of catecholaminergic transmitters and their metabolites. Here, we provide detailed instructions on setting up PA and IPE, performing experiments and analyzing the data.
Collapse
Affiliation(s)
- Eugene V. Mosharov
- Departments of Psychiatry and Neurology, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10032
| | - Manfred Lindau
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL, 33136
| |
Collapse
|
49
|
Inhibition of VMAT2 by β2-adrenergic agonists, antagonists, and the atypical antipsychotic ziprasidone. Commun Biol 2022; 5:1283. [PMID: 36418492 PMCID: PMC9684503 DOI: 10.1038/s42003-022-04121-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Vesicular monoamine transporter 2 (VMAT2) is responsible for packing monoamine neurotransmitters into synaptic vesicles for storage and subsequent neurotransmission. VMAT2 inhibitors are approved for symptomatic treatment of tardive dyskinesia and Huntington's chorea, but despite being much-studied inhibitors their exact binding site and mechanism behind binding and inhibition of monoamine transport are not known. Here we report the identification of several approved drugs, notably β2-adrenergic agonists salmeterol, vilanterol and formoterol, β2-adrenergic antagonist carvedilol and the atypical antipsychotic ziprasidone as inhibitors of rat VMAT2. Further, plausible binding modes of the established VMAT2 inhibitors reserpine and tetrabenazine and hit compounds salmeterol and ziprasidone were identified using molecular dynamics simulations and functional assays using VMAT2 wild-type and mutants. Our findings show VMAT2 as a potential off-target of treatments with several approved drugs in use today and can also provide important first steps in both drug repurposing and therapy development targeting VMAT2 function.
Collapse
|
50
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232213678. [PMID: 36430157 PMCID: PMC9696602 DOI: 10.3390/ijms232213678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The underlying causes of Parkinson's disease are complex, and besides recent advances in elucidating relevant disease mechanisms, no disease-modifying treatments are currently available. One proposed pathophysiological hallmark is mitochondrial dysfunction, and a plethora of evidence points toward the interconnected nature of mitochondria in neuronal homeostasis. This also extends to iron and neuromelanin metabolism, two biochemical processes highly relevant to individual disease manifestation and progression. Modern neuroimaging methods help to gain in vivo insights into these intertwined pathways and may pave the road to individualized medicine in this debilitating disorder. In this narrative review, we will highlight the biological rationale for studying these pathways, how distinct neuroimaging methods can be applied in patients, their respective limitations, and which challenges need to be overcome for successful implementation in clinical studies.
Collapse
Affiliation(s)
- Benjamin Matis Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| | - Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23588 Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|