1
|
Lopes CR, Gonçalves FQ, Olaio S, Tomé AR, Cunha RA, Lopes JP. Adenosine A 2A Receptors Shut Down Adenosine A 1 Receptor-Mediated Presynaptic Inhibition to Promote Implementation of Hippocampal Long-Term Potentiation. Biomolecules 2023; 13:biom13040715. [PMID: 37189461 DOI: 10.3390/biom13040715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Adenosine operates a modulation system fine-tuning the efficiency of synaptic transmission and plasticity through A1 and A2A receptors (A1R, A2AR), respectively. Supramaximal activation of A1R can block hippocampal synaptic transmission, and the tonic engagement of A1R-mediated inhibition is increased with increased frequency of nerve stimulation. This is compatible with an activity-dependent increase in extracellular adenosine in hippocampal excitatory synapses, which can reach levels sufficient to block synaptic transmission. We now report that A2AR activation decreases A1R-medated inhibition of synaptic transmission, with particular relevance during high-frequency-induced long-term potentiation (LTP). Thus, whereas the A1R antagonist DPCPX (50 nM) was devoid of effects on LTP magnitude, the addition of an A2AR antagonist SCH58261 (50 nM) allowed a facilitatory effect of DPCPX on LTP to be revealed. Additionally, the activation of A2AR with CGS21680 (30 nM) decreased the potency of the A1R agonist CPA (6-60 nM) to inhibit hippocampal synaptic transmission in a manner prevented by SCH58261. These observations show that A2AR play a key role in dampening A1R during high-frequency induction of hippocampal LTP. This provides a new framework for understanding how the powerful adenosine A1R-mediated inhibition of excitatory transmission can be controlled to allow the implementation of hippocampal LTP.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simão Olaio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-534 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Naumann LB, Keijser J, Sprekeler H. Invariant neural subspaces maintained by feedback modulation. eLife 2022; 11:e76096. [PMID: 35442191 PMCID: PMC9106332 DOI: 10.7554/elife.76096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory systems reliably process incoming stimuli in spite of changes in context. Most recent models accredit this context invariance to an extraction of increasingly complex sensory features in hierarchical feedforward networks. Here, we study how context-invariant representations can be established by feedback rather than feedforward processing. We show that feedforward neural networks modulated by feedback can dynamically generate invariant sensory representations. The required feedback can be implemented as a slow and spatially diffuse gain modulation. The invariance is not present on the level of individual neurons, but emerges only on the population level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity and thereby maintains an invariant neural subspace in spite of contextual variations. Our results highlight the importance of population-level analyses for understanding the role of feedback in flexible sensory processing.
Collapse
Affiliation(s)
- Laura B Naumann
- Modelling of Cognitive Processes, Technical University of BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Joram Keijser
- Modelling of Cognitive Processes, Technical University of BerlinBerlinGermany
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| |
Collapse
|
3
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
4
|
Ruggiero A, Katsenelson M, Slutsky I. Mitochondria: new players in homeostatic regulation of firing rate set points. Trends Neurosci 2021; 44:605-618. [PMID: 33865626 DOI: 10.1016/j.tins.2021.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Neural circuit functions are stabilized by homeostatic processes at long timescales in response to changes in behavioral states, experience, and learning. However, it remains unclear which specific physiological variables are being stabilized and which cellular or neural network components compose the homeostatic machinery. At this point, most evidence suggests that the distribution of firing rates among neurons in a neuronal circuit is the key variable that is maintained around a set-point value in a process called 'firing rate homeostasis.' Here, we review recent findings that implicate mitochondria as central players in mediating firing rate homeostasis. While mitochondria are known to regulate neuronal variables such as synaptic vesicle release or intracellular calcium concentration, the mitochondrial signaling pathways that are essential for firing rate homeostasis remain largely unknown. We used basic concepts of control theory to build a framework for classifying possible components of the homeostatic machinery that stabilizes firing rate, and we particularly emphasize the potential role of sleep and wakefulness in this homeostatic process. This framework may facilitate the identification of new homeostatic pathways whose malfunctions drive instability of neural circuits in distinct brain disorders.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
5
|
Increased Excitatory Synaptic Transmission Associated with Adult Seizure Vulnerability Induced by Early-Life Inflammation in Mice. J Neurosci 2021; 41:4367-4377. [PMID: 33827934 DOI: 10.1523/jneurosci.2667-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/27/2022] Open
Abstract
Early-life inflammatory stress increases seizure susceptibility later in life. However, possible sex- and age-specific differences and the associated mechanisms are largely unknown. C57BL/6 mice were bred in house, and female and male pups were injected with lipopolysaccharide (LPS; 100 μg/kg, i.p.) or vehicle control (saline solution) at postnatal day 14 (P14). Seizure threshold was assessed in response to pentylenetetrazol (1% solution, i.v.) in adolescence (∼P40) and adulthood (∼P60). We found that adult, but not adolescent, mice treated with LPS displayed ∼34% lower seizure threshold compared with controls. Females and males showed similar increased seizure susceptibility, suggesting that altered brain excitability was age dependent, but not sex dependent. Whole-cell recordings revealed no differences in excitatory synaptic activity onto CA1 pyramidal neurons from control or neonatally inflamed adolescent mice of either sex. However, adult mice of both sexes previously exposed to LPS displayed spontaneous EPSC frequency approximately twice that of controls, but amplitude was unchanged. Although these changes were not associated with alterations in dendritic spines or in the NMDA/AMPA receptor ratio, they were linked to an increased glutamate release probability from Schaffer collateral, but not temporoammonic pathway. This glutamate increase was associated with reduced activity of presynaptic GABAB receptors and was independent of the endocannabinoid-mediated suppression of excitation. Our new findings demonstrate that early-life inflammation leads to long-term increased hippocampal excitability in adult female and male mice associated with changes in glutamatergic synaptic transmission. These alterations may contribute to enhanced vulnerability of the brain to subsequent pathologic challenges such as epileptic seizures.SIGNIFICANCE STATEMENT Adult physiology has been shown to be affected by early-life inflammation. Our data reveal that early-life inflammation increases excitatory synaptic transmission onto hippocampal CA1 pyramidal neurons in an age-dependent manner through disrupted presynaptic GABAB receptor activity on Schaffer collaterals. This hyperexcitability was seen only in adult, and not in adolescent, animals of either sex. The data suggest a maturation process, independent of sex, in the priming action of early-life inflammation and highlight the importance of studying mature brains to reveal cellular changes associated with early-life interventions.
Collapse
|
6
|
Roberts BM, Lopes EF, Cragg SJ. Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling. Cells 2021; 10:709. [PMID: 33806845 PMCID: PMC8004767 DOI: 10.3390/cells10030709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Striatal dopamine (DA) release is critical for motivated actions and reinforcement learning, and is locally influenced at the level of DA axons by other striatal neurotransmitters. Here, we review a wealth of historical and more recently refined evidence indicating that DA output is inhibited by striatal γ-aminobutyric acid (GABA) acting via GABAA and GABAB receptors. We review evidence supporting the localisation of GABAA and GABAB receptors to DA axons, as well as the identity of the striatal sources of GABA that likely contribute to GABAergic modulation of DA release. We discuss emerging data outlining the mechanisms through which GABAA and GABAB receptors inhibit the amplitude as well as modulate the short-term plasticity of DA release. Furthermore, we highlight recent data showing that DA release is governed by plasma membrane GABA uptake transporters on striatal astrocytes, which determine ambient striatal GABA tone and, by extension, the tonic inhibition of DA release. Finally, we discuss how the regulation of striatal GABA-DA interactions represents an axis for dysfunction in psychomotor disorders associated with dysregulated DA signalling, including Parkinson's disease, and could be a novel therapeutic target for drugs to modify striatal DA output.
Collapse
Affiliation(s)
| | | | - Stephanie J. Cragg
- Department of Physiology, Anatomy and Genetics, Centre for Integrative Neuroscience and Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
7
|
Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity. PLoS Comput Biol 2020; 16:e1008118. [PMID: 32764742 PMCID: PMC7439813 DOI: 10.1371/journal.pcbi.1008118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/19/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
Hebbian plasticity, a mechanism believed to be the substrate of learning and memory, detects and further enhances correlated neural activity. Because this constitutes an unstable positive feedback loop, it requires additional homeostatic control. Computational work suggests that in recurrent networks, the homeostatic mechanisms observed in experiments are too slow to compensate instabilities arising from Hebbian plasticity and need to be complemented by rapid compensatory processes. We suggest presynaptic inhibition as a candidate that rapidly provides stability by compensating recurrent excitation induced by Hebbian changes. Presynaptic inhibition is mediated by presynaptic GABA receptors that effectively and reversibly attenuate transmitter release. Activation of these receptors can be triggered by excess network activity, hence providing a stabilising negative feedback loop that weakens recurrent interactions on sub-second timescales. We study the stabilising effect of presynaptic inhibition in recurrent networks, in which presynaptic inhibition is implemented as a multiplicative reduction of recurrent synaptic weights in response to increasing inhibitory activity. We show that networks with presynaptic inhibition display a gradual increase of firing rates with growing excitatory weights, in contrast to traditional excitatory-inhibitory networks. This alleviates the positive feedback loop between Hebbian plasticity and network activity and thereby allows homeostasis to act on timescales similar to those observed in experiments. Our results generalise to spiking networks with a biophysically more detailed implementation of the presynaptic inhibition mechanism. In conclusion, presynaptic inhibition provides a powerful compensatory mechanism that rapidly reduces effective recurrent interactions and thereby stabilises Hebbian learning. Synapses between neurons change during learning and memory formation, a process termed synaptic plasticity. Established models of plasticity rely on strengthening synapses of co-active neurons. In recurrent networks, mutually connected neurons tend to be co-active. The emerging positive feedback loop is believed to be counteracted by homeostatic mechanisms that aim to keep neural activity at a given set point. However, theoretical work indicates that experimentally observed forms of homeostasis are too slow to maintain stable network activity. In this article, we suggest that presynaptic inhibition can alleviate this problem. Presynaptic inhibition is an inhibitory mechanism that weakens synapses rather than suppressing neural activity. Using mathematical analyses and computer simulations, we show that presynaptic inhibition can compensate the strengthening of recurrent connections and thus stabilises neural networks subject to synaptic plasticity, even if homeostasis acts on biologically plausible timescales.
Collapse
|
8
|
Papon MA, Le Feuvre Y, Barreda-Gómez G, Favereaux A, Farrugia F, Bouali-Benazzouz R, Nagy F, Rodríguez-Puertas R, Landry M. Spinal Inhibition of GABAB Receptors by the Extracellular Matrix Protein Fibulin-2 in Neuropathic Rats. Front Cell Neurosci 2020; 14:214. [PMID: 32765223 PMCID: PMC7378325 DOI: 10.3389/fncel.2020.00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022] Open
Abstract
In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain. We demonstrate that fibulin-2 hampers GABAB activation, presumably through decreasing agonist-induced conformational changes. Fibulin-2 regulates the GABAB-mediated presynaptic inhibition of neurotransmitter release and weakens the GABAB-mediated inhibitory effect in neuronal cell culture. In the dorsal spinal cord of neuropathic rats, fibulin-2 is overexpressed and colocalized with B1a. Fibulin-2 may thus interact with presynaptic GABAB receptors, including those on nociceptive afferents. By applying anti-fibulin-2 siRNA in vivo, we enhanced the antinociceptive effect of intrathecal baclofen in neuropathic rats, thus demonstrating that fibulin-2 limits the action of GABAB agonists in vivo. Taken together, our data provide an example of an endogenous regulation of GABAB receptor by extracellular matrix proteins and demonstrate its functional impact on pathophysiological processes of pain sensitization.
Collapse
Affiliation(s)
- Marie-Amélie Papon
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Yves Le Feuvre
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Alexandre Favereaux
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Fanny Farrugia
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | - Frédéric Nagy
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| | | | - Marc Landry
- Institut Interdisciplinaire de Neurosciences, University of Bordeaux, Bordeaux, France.,CNRS UMR 5297, Institut Interdisciplinaire de Neurosciences, Bordeaux, France
| |
Collapse
|
9
|
Extracellular Signal-Regulated Kinases Mediate an Autoregulation of GABA B-Receptor-Activated Whole-Cell Current in Locus Coeruleus Neurons. Sci Rep 2020; 10:7869. [PMID: 32398643 PMCID: PMC7217949 DOI: 10.1038/s41598-020-64292-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022] Open
Abstract
The norepinephrine-releasing neurons in the locus coeruleus (LC) are well known to regulate wakefulness/arousal. They display active firing during wakefulness and a decreased discharge rate during sleep. We have previously reported that LC neurons express large numbers of GABAB receptors (GABABRs) located at peri-/extrasynaptic sites and are subject to tonic inhibition due to the continuous activation of GABABRs by ambient GABA, which is significantly higher during sleep than during wakefulness. In this study, we further showed using western blot analysis that the activation of GABABRs with baclofen could increase the level of phosphorylated extracellular signal-regulated kinase 1 (ERK1) in LC tissue. Recordings from LC neurons in brain slices showed that the inhibition of ERK1/2 with U0126 and FR180204 accelerated the decay of whole-cell membrane current induced by prolonged baclofen application. In addition, the inhibition of ERK1/2 also increased spontaneous firing and reduced tonic inhibition of LC neurons after prolonged exposure to baclofen. These results suggest a new role of GABABRs in mediating ERK1-dependent autoregulation of the stability of GABABR-activated whole-cell current, in addition to its well-known effect on gated potassium channels, to cause a tonic current in LC neurons.
Collapse
|
10
|
Frere S, Slutsky I. Alzheimer's Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 2019; 97:32-58. [PMID: 29301104 DOI: 10.1016/j.neuron.2017.11.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) starts from pure cognitive impairments and gradually progresses into degeneration of specific brain circuits. Although numerous factors initiating AD have been extensively studied, the common principles underlying the transition from cognitive deficits to neuronal loss remain unknown. Here we describe an evolutionarily conserved, integrated homeostatic network (IHN) that enables functional stability of central neural circuits and safeguards from neurodegeneration. We identify the critical modules comprising the IHN and propose a central role of neural firing in controlling the complex homeostatic network at different spatial scales. We hypothesize that firing instability and impaired synaptic plasticity at early AD stages trigger a vicious cycle, leading to dysregulation of the whole IHN. According to this hypothesis, the IHN collapse represents the major driving force of the transition from early memory impairments to neurodegeneration. Understanding the core elements of homeostatic control machinery, the reciprocal connections between distinct IHN modules, and the role of firing homeostasis in this hierarchy has important implications for physiology and should offer novel conceptual approaches for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
11
|
Zafar S, Jabeen I. Structure, Function, and Modulation of γ-Aminobutyric Acid Transporter 1 (GAT1) in Neurological Disorders: A Pharmacoinformatic Prospective. Front Chem 2018; 6:397. [PMID: 30255012 PMCID: PMC6141625 DOI: 10.3389/fchem.2018.00397] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
γ-Aminobutyric acid (GABA) Transporters (GATs) belong to sodium and chloride dependent-transporter family and are widely expressed throughout the brain. Notably, GAT1 is accountable for sustaining 75% of the synaptic GABA concentration and entails its transport to the GABAA receptors to initiate the receptor-mediated inhibition of post-synaptic neurons. Imbalance in ion homeostasis has been associated with several neurological disorders related to the GABAergic system. However, inhibition of the GABA uptake by these transporters has been accepted as an effective approach to enhance GABAergic inhibitory neurotransmission in the treatment of seizures in epileptic and other neurological disorders. Here, we reviewed computational methodologies including molecular modeling, docking, and molecular dynamic simulations studies to underscore the structure and function of GAT1 in the GABAergic system. Additionally, various SAR and QSAR methodologies have been reviewed to probe the 3D structural features of inhibitors required to modulate GATs activity. Overall, present review provides an overview of crucial role of GAT1 in GABAergic system and its modulation to evade neurological disorders.
Collapse
Affiliation(s)
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Activating Transcription Factor 4 (ATF4) Regulates Neuronal Activity by Controlling GABA BR Trafficking. J Neurosci 2018; 38:6102-6113. [PMID: 29875265 DOI: 10.1523/jneurosci.3350-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
Activating Transcription Factor 4 (ATF4) has been postulated as a key regulator of learning and memory. We previously reported that specific hippocampal ATF4 downregulation causes deficits in synaptic plasticity and memory and reduction of glutamatergic functionality. Here we extend our studies to address ATF4's role in neuronal excitability. We find that long-term ATF4 knockdown in cultured rat hippocampal neurons significantly increases the frequency of spontaneous action potentials. This effect is associated with decreased functionality of metabotropic GABAB receptors (GABABRs). Knocking down ATF4 results in significant reduction of GABABR-induced GIRK currents and increased mIPSC frequency. Furthermore, reducing ATF4 significantly decreases expression of membrane-exposed, but not total, GABABR 1a and 1b subunits, indicating that ATF4 regulates GABABR trafficking. In contrast, ATF4 knockdown has no effect on surface expression of GABABR2s, several GABABR-coupled ion channels or β2 and γ2 GABAARs. Pharmacologic manipulations confirmed the relationship between GABABR functionality and action potential frequency in our cultures. Specifically, the effects of ATF4 downregulation cited above are fully rescued by transcriptionally active, but not by transcriptionally inactive, shRNA-resistant, ATF4. We previously reported that ATF4 promotes stabilization of the actin-regulatory protein Cdc42 by a transcription-dependent mechanism. To test the hypothesis that this action underlies the mechanism by which ATF4 loss affects neuronal firing rates and GABABR trafficking, we downregulated Cdc42 and found that this phenocopies the effects of ATF4 knockdown on these properties. In conclusion, our data favor a model in which ATF4, by regulating Cdc42 expression, affects trafficking of GABABRs, which in turn modulates the excitability properties of neurons.SIGNIFICANCE STATEMENT GABAB receptors (GABABRs), the metabotropic receptors for the inhibitory neurotransmitter GABA, have crucial roles in controlling the firing rate of neurons. Deficits in trafficking/functionality of GABABRs have been linked to a variety of neurological and psychiatric conditions, including epilepsy, anxiety, depression, schizophrenia, addiction, and pain. Here we show that GABABRs trafficking is influenced by Activating Transcription Factor 4 (ATF4), a protein that has a pivotal role in hippocampal memory processes. We found that ATF4 downregulation in hippocampal neurons reduces membrane-bound GABABR levels and thereby increases intrinsic excitability. These effects are mediated by loss of the small GTPase Cdc42 following ATF4 downregulation. These findings reveal a critical role for ATF4 in regulating the modulation of neuronal excitability by GABABRs.
Collapse
|
13
|
Orts-Del'Immagine A, Pugh JR. Activity-dependent plasticity of presynaptic GABA B receptors at parallel fiber synapses. Synapse 2018; 72:e22027. [PMID: 29360168 DOI: 10.1002/syn.22027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 01/10/2023]
Abstract
Parallel fiber synapses in the cerebellum express a wide range of presynaptic receptors. However, presynaptic receptor expression at individual parallel fiber synapses is quite heterogeneous, suggesting physiological mechanisms regulate presynaptic receptor expression. We investigated changes in presynaptic GABAB receptors at parallel fiber-stellate cell synapses in acute cerebellar slices from juvenile mice. GABAB receptor-mediated inhibition of excitatory postsynaptic currents (EPSCs) is remarkably diverse at these synapses, with transmitter release at some synapses inhibited by >50% and little or no inhibition at others. GABAB receptor-mediated inhibition was significantly reduced following 4 Hz parallel fiber stimulation but not after stimulation at other frequencies. The reduction in GABAB receptor-mediated inhibition was replicated by bath application of forskolin and blocked by application of a PKA inhibitor, suggesting activation of adenylyl cyclase and PKA are required. Immunolabeling for an extracellular domain of the GABAB2 subunit revealed reduced surface expression in the molecular layer after exposure to forskolin. GABAB receptor-mediated inhibition of action potential evoked calcium transients in parallel fiber varicosities was also reduced following bath application of forskolin, confirming presynaptic receptors are responsible for the reduced EPSC inhibition. These data demonstrate that presynaptic GABAB receptor expression can be a plastic property of synapses, which may compliment other forms of synaptic plasticity. This opens the door to novel forms of receptor plasticity previously confined primarily to postsynaptic receptors.
Collapse
Affiliation(s)
- Adeline Orts-Del'Immagine
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jason R Pugh
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
14
|
Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer's disease. Nat Neurosci 2018; 21:463-473. [PMID: 29403035 DOI: 10.1038/s41593-018-0080-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
During recent years, the preclinical stage of Alzheimer's disease (AD) has become a major focus of research. Continued failures in clinical trials and the realization that early intervention may offer better therapeutic outcome triggered a conceptual shift from late-stage AD pathology to early-stage pathophysiology. While much effort has been directed at understanding the factors initiating AD, little is known about the principle basis underlying the disease progression at its early stages. In this Perspective, we suggest a hypothesis to explain the transition from 'silent' signatures of aberrant neural circuit activity to clinically evident memory impairments. Namely, we propose that failures in firing homeostasis and imbalance between firing stability and synaptic plasticity in cortico-hippocampal circuits represent the driving force of early disease progression. We analyze the main types of possible homeostatic failures and provide the essential conceptual framework for examining the causal link between dysregulation of firing homeostasis, aberrant neural circuit activity and memory-related plasticity impairments associated with early AD.
Collapse
Affiliation(s)
- Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Kahanovitch U, Berlin S, Dascal N. Collision coupling in the GABA
B
receptor–G protein–GIRK signaling cascade. FEBS Lett 2017; 591:2816-2825. [DOI: 10.1002/1873-3468.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Uri Kahanovitch
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Shai Berlin
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Israel
| |
Collapse
|
16
|
Sawant-Pokam PM, Suryavanshi P, Mendez JM, Dudek FE, Brennan KC. Mechanisms of Neuronal Silencing After Cortical Spreading Depression. Cereb Cortex 2017; 27:1311-1325. [PMID: 26733536 PMCID: PMC6317285 DOI: 10.1093/cercor/bhv328] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cortical spreading depression (CSD) is associated with migraine, stroke, and traumatic brain injury, but its mechanisms remain poorly understood. One of the major features of CSD is an hour-long silencing of neuronal activity. Though this silencing has clear ramifications for CSD-associated disease, it has not been fully explained. We used in vivo whole-cell recordings to examine the effects of CSD on layer 2/3 pyramidal neurons in mouse somatosensory cortex and used in vitro recordings to examine their mechanism. We found that CSD caused a reduction in spontaneous synaptic activity and action potential (AP) firing that lasted over an hour. Both pre- and postsynaptic mechanisms contributed to this silencing. Reductions in frequency of postsynaptic potentials were due to a reduction in presynaptic transmitter release probability as well as reduced AP activity. Decreases in postsynaptic potential amplitude were due to an inhibitory shift in the ratio of excitatory and inhibitory postsynaptic currents. This inhibitory shift in turn contributed to the reduced frequency of APs. Thus, distinct but complementary mechanisms generate the long neuronal silence that follows CSD. These cellular changes could contribute to wider network dysfunction in CSD-associated disease, while the pre- and postsynaptic mechanisms offer separate targets for therapy.
Collapse
Affiliation(s)
| | | | | | - F. E. Dudek
- Department of Neurosurgery
,
University of Utah School of Medicine
,
Salt Lake City, UT
,
USA
| | | |
Collapse
|
17
|
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17:777-792. [PMID: 27829687 DOI: 10.1038/nrn.2016.141] [Citation(s) in RCA: 684] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| |
Collapse
|
18
|
Scheyltjens I, Arckens L. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plast 2016; 2016:8723623. [PMID: 27403348 PMCID: PMC4923604 DOI: 10.1155/2016/8723623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/05/2022] Open
Abstract
The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning.
Collapse
Affiliation(s)
- Isabelle Scheyltjens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Gazit N, Vertkin I, Shapira I, Helm M, Slomowitz E, Sheiba M, Mor Y, Rizzoli S, Slutsky I. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses. Neuron 2016; 89:583-97. [PMID: 26804996 PMCID: PMC4742535 DOI: 10.1016/j.neuron.2015.12.034] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 11/19/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer's disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca(2+) transients, while promoting spontaneous transmission and resting Ca(2+) level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca(2+) buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Neta Gazit
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Irena Vertkin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Martin Helm
- Department of Neuro- and Sensory Physiology, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, European Neuroscience Institute, University of Göttingen Medical Center, 37075 Göttingen, Germany; International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
| | - Edden Slomowitz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maayan Sheiba
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yael Mor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Silvio Rizzoli
- Department of Neuro- and Sensory Physiology, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, European Neuroscience Institute, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
20
|
Rabinovich-Toidman P, Rabinovich-Nikitin I, Ezra A, Barbiro B, Fogel H, Slutsky I, Solomon B. Mutant SOD1 Increases APP Expression and Phosphorylation in Cellular and Animal Models of ALS. PLoS One 2015; 10:e0143420. [PMID: 26600047 PMCID: PMC4658003 DOI: 10.1371/journal.pone.0143420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/04/2015] [Indexed: 12/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease and it is the most common adult onset neurodegenerative disorder affecting motor neurons. There is currently no effective treatment for ALS and our understanding of the pathological mechanism is still far away from prevention and/or treatment of this devastating disease. Amyloid precursor protein (APP) is a transmembrane protein that undergoes processing either by β-secretase or α-secretase, followed by γ-secretase. In the present study, we show that APP levels, and aberrant phosphorylation, which is associated with enhanced β-secretase cleavage, are increased in SOD1G93A ALS mouse model. Fluorescence resonance energy transfer (FRET) analysis suggests a close interaction between SOD1 and APP at hippocampal synapses. Notably, SOD1G93A mutation induces APP-SOD1 conformational changes, indicating a crosstalk between these two signaling proteins. Inhibition of APP processing via monoclonal antibody called BBS that blocks APP β-secretase cleavage site, resulted in reduction of mutant SOD1G93A levels in animal and cellular models of ALS, significantly prolonged life span of SOD1G93A mice and diminished inflammation. Beyond its effect on toxic mutant SOD1G93A, BBS treatment resulted in a reduction in the levels of APP, its processing product soluble APPβ and pro-apoptotic p53. This study demonstrates that APP and its processing products contribute to ALS pathology through several different pathways; thus BBS antibody could be a promising neuroprotective strategy for treatment of this disease.
Collapse
Affiliation(s)
- Polina Rabinovich-Toidman
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University,Tel-Aviv, Israel
| | - Inna Rabinovich-Nikitin
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University,Tel-Aviv, Israel
| | - Assaf Ezra
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University,Tel-Aviv, Israel
| | - Beka Barbiro
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University,Tel-Aviv, Israel
| | - Hilla Fogel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Beka Solomon
- Department of Molecular Microbiology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University,Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
21
|
Wahlstrom-Helgren S, Klyachko VA. GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome. J Physiol 2015; 593:5009-24. [PMID: 26282581 DOI: 10.1113/jp271190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Cortico-hippocampal feed-forward circuits formed by the temporoammonic (TA) pathway exhibit a marked increase in excitation/inhibition ratio and abnormal spike modulation functions in Fmr1 knock-out (KO) mice. Inhibitory, but not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward circuit abnormalities in Fmr1 KO mice. GABA release is reduced in TA-associated inhibitory synapses of Fmr1 KO mice in a GABAB receptor-dependent manner. Inhibitory synapse and feed-forward circuit defects are mediated predominately by presynaptic GABAB receptor signalling in the TA pathway of Fmr1 KO mice. GABAB receptor-mediated inhibitory synapse defects are circuit-specific and are not observed in the Schaffer collateral pathway-associated inhibitory synapses in stratum radiatum. ABSTRACT Circuit hyperexcitability has been implicated in neuropathology of fragile X syndrome, the most common inheritable cause of intellectual disability. Yet, how canonical unitary circuits are affected in this disorder remains poorly understood. Here, we examined this question in the context of the canonical feed-forward inhibitory circuit formed by the temporoammonic (TA) branch of the perforant path, the major cortical input to the hippocampus. TA feed-forward circuits exhibited a marked increase in excitation/inhibition ratio and major functional defects in spike modulation tasks in Fmr1 knock-out (KO) mice, a fragile X mouse model. Changes in feed-forward circuits were caused specifically by inhibitory, but not excitatory, synapse defects. TA-associated inhibitory synapses exhibited increase in paired-pulse ratio and in the coefficient of variation of IPSPs, consistent with decreased GABA release probability. TA-associated inhibitory synaptic transmission in Fmr1 KO mice was also more sensitive to inhibition of GABAB receptors, suggesting an increase in presynaptic GABAB receptor (GABAB R) signalling. Indeed, the differences in inhibitory synaptic transmission between Fmr1 KO and wild-type (WT) mice were eliminated by a GABAB R antagonist. Inhibition of GABAB Rs or selective activation of presynaptic GABAB Rs also abolished the differences in the TA feed-forward circuit properties between Fmr1 KO and WT mice. These GABAB R-mediated defects were circuit-specific and were not observed in the Schaffer collateral pathway-associated inhibitory synapses. Our results suggest that the inhibitory synapse dysfunction in the cortico-hippocampal pathway of Fmr1 KO mice causes hyperexcitability and feed-forward circuit defects, which are mediated in part by a presynaptic GABAB R-dependent reduction in GABA release.
Collapse
Affiliation(s)
- Sarah Wahlstrom-Helgren
- Departments of Cell Biology and Physiology, Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Departments of Cell Biology and Physiology, Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
22
|
GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proc Natl Acad Sci U S A 2015; 112:E3291-9. [PMID: 26056260 DOI: 10.1073/pnas.1424810112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.
Collapse
|
23
|
ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons. J Neurosci 2015; 35:985-98. [PMID: 25609616 DOI: 10.1523/jneurosci.0944-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.
Collapse
|
24
|
Slomowitz E, Styr B, Vertkin I, Milshtein-Parush H, Nelken I, Slutsky M, Slutsky I. Interplay between population firing stability and single neuron dynamics in hippocampal networks. eLife 2015; 4. [PMID: 25556699 PMCID: PMC4311497 DOI: 10.7554/elife.04378] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/31/2014] [Indexed: 11/13/2022] Open
Abstract
Neuronal circuits' ability to maintain the delicate balance between stability and flexibility in changing environments is critical for normal neuronal functioning. However, to what extent individual neurons and neuronal populations maintain internal firing properties remains largely unknown. In this study, we show that distributions of spontaneous population firing rates and synchrony are subject to accurate homeostatic control following increase of synaptic inhibition in cultured hippocampal networks. Reduction in firing rate triggered synaptic and intrinsic adaptive responses operating as global homeostatic mechanisms to maintain firing macro-stability, without achieving local homeostasis at the single-neuron level. Adaptive mechanisms, while stabilizing population firing properties, reduced short-term facilitation essential for synaptic discrimination of input patterns. Thus, invariant ongoing population dynamics emerge from intrinsically unstable activity patterns of individual neurons and synapses. The observed differences in the precision of homeostatic control at different spatial scales challenge cell-autonomous theory of network homeostasis and suggest the existence of network-wide regulation rules. DOI:http://dx.doi.org/10.7554/eLife.04378.001 The human brain contains more than 80 billion neurons, which are organised into extensive networks. Changes in the strength of connections between neurons are thought to underlie learning and memory: neuronal networks must therefore be sufficiently stable to allow existing memories to be stored, while remaining flexible enough to enable the brain to form new memories. Evidence suggests that the stability of neuronal networks is maintained by a process called homeostasis. If properties of the network—such as the average firing rate of all the neurons—deviate from a set point, changes occur to return the network the original set point. However, much less is known about the effects of homeostasis at the level of individual neurons within networks: do their firing rates also remain stable over time? Slomowitz, Styr et al. have now addressed this question by recording the activity of neuronal networks grown on an array of electrodes. Applying a drug that inhibits neuronal firing caused the average firing rate of the networks to decrease initially, as expected. However, after 2 days, homeostasis had restored the average firing rate to its original value, despite the continued presence of the drug. By contrast, the individual neurons within the networks behaved differently: on day 2 almost 90% of neurons had a firing rate that was different from their original firing rate. Similar behavior was seen when Slomowitz, Styr et al. studied the degree of synchronization between neurons as they fire: the average value for the network returned to its original value, but this did not happen at the level of individual neurons. Surprisingly, however, the ability of the network to undergo short-lived changes in average strength of the connections between neurons—which is thought to support short-term memory—was not subject to homeostasis. This suggests that the loss of short-term memory that occurs in many brain diseases may be an unfortunate consequence of the efforts of neuronal networks to keep their average responses stable. DOI:http://dx.doi.org/10.7554/eLife.04378.002
Collapse
Affiliation(s)
- Edden Slomowitz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irena Vertkin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Milshtein-Parush
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Israel Nelken
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | | | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Benke D, Balakrishnan K, Zemoura K. Regulation of Cell Surface GABAB Receptors. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:41-70. [DOI: 10.1016/bs.apha.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Liu QY, Wang CY, Cai ZL, Xu ST, Liu WX, Xiao P, Li CH. Effects of intrahippocampal GABAB receptor antagonist treatment on the behavioral long-term potentiation and Y-maze learning performance. Neurobiol Learn Mem 2014; 114:26-31. [DOI: 10.1016/j.nlm.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 01/10/2023]
|
27
|
Molecular dynamics simulation study of solvation effects of water and trifluoroethanol on gamma-aminobutyric acid (GABA). J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Fogel H, Frere S, Segev O, Bharill S, Shapira I, Gazit N, O'Malley T, Slomowitz E, Berdichevsky Y, Walsh DM, Isacoff EY, Hirsch JA, Slutsky I. APP homodimers transduce an amyloid-β-mediated increase in release probability at excitatory synapses. Cell Rep 2014; 7:1560-1576. [PMID: 24835997 DOI: 10.1016/j.celrep.2014.04.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/12/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022] Open
Abstract
Accumulation of amyloid-β peptides (Aβ), the proteolytic products of the amyloid precursor protein (APP), induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer's disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aβ40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD) mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aβ40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer's disease.
Collapse
Affiliation(s)
- Hilla Fogel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Oshik Segev
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Shashank Bharill
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Neta Gazit
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Tiernan O'Malley
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Republic of Ireland; Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Edden Slomowitz
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
29
|
Dvorzhak A, Gertler C, Harnack D, Grantyn R. High frequency stimulation of the subthalamic nucleus leads to presynaptic GABA(B)-dependent depression of subthalamo-nigral afferents. PLoS One 2013; 8:e82191. [PMID: 24376521 PMCID: PMC3871646 DOI: 10.1371/journal.pone.0082191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/31/2013] [Indexed: 12/24/2022] Open
Abstract
Patients with akinesia benefit from chronic high frequency stimulation (HFS) of the subthalamic nucleus (STN). Among the mechanisms contributing to the therapeutic success of HFS-STN might be a suppression of activity in the output region of the basal ganglia. Indeed, recordings in the substantia nigra pars reticulata (SNr) of fully adult mice revealed that HFS-STN consistently produced a reduction of compound glutamatergic excitatory postsynaptic currents at a time when the tetrodotoxin-sensitive components of the local field potentials had already recovered after the high frequency activation. These observations suggest that HFS-STN not only alters action potential conduction on the way towards the SNr but also modifies synaptic transmission within the SNr. A classical conditioning-test paradigm was then designed to better separate the causes from the indicators of synaptic depression. A bipolar platinum-iridium macroelectrode delivered conditioning HFS trains to a larger group of fibers in the STN, while a separate high-ohmic glass micropipette in the rostral SNr provided test stimuli at minimal intensity to single fibers. The conditioning-test interval was set to 100 ms, i.e. the time required to recover the excitability of subthalamo-nigral axons after HFS-STN. The continuity of STN axons passing from the conditioning to the test sites was examined by an action potential occlusion test. About two thirds of the subthalamo-nigral afferents were occlusion-negative, i.e. they were not among the fibers directly activated by the conditioning STN stimulation. Nonetheless, occlusion-negative afferents exhibited signs of presynaptic depression that could be eliminated by blocking GABA(B) receptors with CGP55845 (1 µM). Further analysis of single fiber-activated responses supported the proposal that the heterosynaptic depression of synaptic glutamate release during and after HFS-STN is mainly caused by the tonic release of GABA from co-activated striato-nigral afferents to the SNr. This mechanism would be consistent with a gain-of-function hypothesis of DBS.
Collapse
Affiliation(s)
- Anton Dvorzhak
- Cluster of Excellence NeuroCure, Department of Experimental Neurology, University Medicine Charité, Berlin, Germany
| | - Christoph Gertler
- Department of Experimental Neurology, University Medicine Charité, Berlin, Germany
| | - Daniel Harnack
- Department of Experimental Neurology, University Medicine Charité, Berlin, Germany
| | - Rosemarie Grantyn
- Cluster of Excellence NeuroCure, Department of Experimental Neurology, University Medicine Charité, Berlin, Germany
- * E-mail:
| |
Collapse
|
30
|
Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front Neural Circuits 2013; 7:188. [PMID: 24324407 PMCID: PMC3840359 DOI: 10.3389/fncir.2013.00188] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023] Open
Abstract
The extracellular concentration of the two main neurotransmitters glutamate and GABA is low but not negligible which enables a number of tonic actions. The effects of ambient GABA vary in a region-, cell-type, and age-dependent manner and can serve as indicators of disease-related alterations. Here we explored the tonic inhibitory actions of GABA in Huntington's disease (HD). HD is a devastating neurodegenerative disorder caused by a mutation in the huntingtin gene. Whole cell patch clamp recordings from striatal output neurons (SONs) in slices from adult wild type mice and two mouse models of HD (Z_Q175_KI homozygotes or R6/2 heterozygotes) revealed an HD-related reduction of the GABA(A) receptor-mediated tonic chloride current (ITonic(GABA)) along with signs of reduced GABA(B) receptor-mediated presynaptic depression of synaptic GABA release. About half of ITonic(GABA) depended on tetrodotoxin-sensitive synaptic GABA release, but the remaining current was still lower in HD. Both in WT and HD, ITonic(GABA) was more prominent during the first 4 h after preparing the slices, when astrocytes but not neurons exhibited a transient depolarization. All further tests were performed within 1–4 h in vitro. Experiments with SNAP5114, a blocker of the astrocytic GABA transporter GAT-3, suggest that in WT but not HD GAT-3 operated in the releasing mode. Application of a transportable substrate for glutamate transporters (D-aspartate 0.1–1 mM) restored the non-synaptic GABA release in slices from HD mice. ITonic(GABA) was also rescued by applying the hyperagonist gaboxadol (0.33 μM). The results lead to the hypothesis that lesion-induced astrocyte depolarization facilitates non-synaptic release of GABA through GAT-3. However, the capacity of depolarized astrocytes to provide GABA for tonic inhibition is strongly reduced in HD.
Collapse
Affiliation(s)
- Anna M Wójtowicz
- Cluster of Excellence NeuroCure, University Medicine Charité Berlin, Germany ; Department of Experimental Neurology, University Medicine Charité Berlin, Germany
| | | | | | | |
Collapse
|
31
|
Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nat Neurosci 2013; 16:587-95. [PMID: 23563578 DOI: 10.1038/nn.3376] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/26/2013] [Indexed: 11/08/2022]
|
32
|
Ariel P, Hoppa MB, Ryan TA. Intrinsic variability in Pv, RRP size, Ca(2+) channel repertoire, and presynaptic potentiation in individual synaptic boutons. Front Synaptic Neurosci 2013; 4:9. [PMID: 23335896 PMCID: PMC3542534 DOI: 10.3389/fnsyn.2012.00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/24/2012] [Indexed: 11/23/2022] Open
Abstract
The strength of individual synaptic contacts is considered a key modulator of information flow across circuits. Presynaptically the strength can be parsed into two key parameters: the size of the readily releasable pool (RRP) and the probability that a vesicle in that pool will undergo exocytosis when an action potential fires (Pv). How these variables are controlled and the degree to which they vary across individual nerve terminals is crucial to understand synaptic plasticity within neural circuits. Here we report robust measurements of these parameters in rat hippocampal neurons and their variability across populations of individual synapses. We explore the diversity of presynaptic Ca2+ channel repertoires and evaluate their effect on synaptic strength at single boutons. Finally, we study the degree to which synapses can be differentially modified by a known potentiator of presynaptic function, forskolin. Our experiments revealed that both Pv and RRP spanned a large range, even for synapses made by the same axon, demonstrating that presynaptic efficacy is governed locally at the single synapse level. Synapses varied greatly in their dependence on N or P/Q type Ca2+ channels for neurotransmission, but there was no association between specific channel repertoires and synaptic efficacy. Increasing cAMP concentration using forskolin enhanced synaptic transmission in a Ca2+-independent manner that was inversely related with a synapse's initial Pv, and independent of its RRP size. We propose a simple model based on the relationship between Pv and calcium entry that can account for the variable potentiation of synapses based on initial probability of vesicle fusion.
Collapse
Affiliation(s)
- Pablo Ariel
- Department of Biochemistry, Weill Cornell Medical College New York, NY, USA ; David Rockefeller Graduate Program, The Rockefeller University New York, NY, USA
| | | | | |
Collapse
|
33
|
Benke D, Zemoura K, Maier PJ. Modulation of cell surface GABA(B) receptors by desensitization, trafficking and regulated degradation. World J Biol Chem 2012; 3:61-72. [PMID: 22558486 PMCID: PMC3342575 DOI: 10.4331/wjbc.v3.i4.61] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 02/05/2023] Open
Abstract
Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system, and mediates its effects via two classes of receptors: the GABA(A) and GABA(B) receptors. GABA(A) receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission. GABA(B) receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission. The extent of inhibitory neurotransmission is determined by a variety of factors, such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g., phosphorylation), as well as by the number of receptors present in the plasma membrane available for signal transduction. The level of GABA(B) receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation. In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA(B) receptors in the plasma membrane, and thereby signaling strength.
Collapse
Affiliation(s)
- Dietmar Benke
- Dietmar Benke, Khaled Zemoura, Patrick J Maier, Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
34
|
Pauker MH, Hassan N, Noy E, Reicher B, Barda-Saad M. Studying the dynamics of SLP-76, Nck, and Vav1 multimolecular complex formation in live human cells with triple-color FRET. Sci Signal 2012; 5:rs3. [PMID: 22534133 DOI: 10.1126/scisignal.2002423] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions regulate and control many cellular functions. A multimolecular complex consisting of the adaptor proteins SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kD), Nck, and the guanine nucleotide exchange factor Vav1 is recruited to the T cell side of the interface with an antigen-presenting cell during initial T cell activation. This complex is crucial for regulation of the actin machinery, antigen recognition, and signaling in T cells. We studied the interactions between these proteins as well as the dynamics of their recruitment into a complex that governs cytoskeletal reorganization. We developed a triple-color Förster resonance energy transfer (3FRET) system to observe the dynamics of the formation of this trimolecular signaling complex in live human T cells and to follow the three molecular interactions in parallel. Using the 3FRET system, we demonstrated that dimers of Nck and Vav1 were constitutively formed independently of both T cell activation and the association between SLP-76 and Nck. After T cell receptor stimulation, SLP-76 was phosphorylated, which enabled the binding of Nck. A point mutation in the proline-rich site of Vav1, which abolishes its binding to Nck, impaired actin rearrangement, suggesting that Nck-Vav1 dimers play a critical role in regulation of the actin machinery. We suggest that these findings revise the accepted model of the formation of a complex of SLP-76, Nck, and Vav1 and demonstrate the use of 3FRET as a tool to study signal transduction in live cells.
Collapse
Affiliation(s)
- Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
35
|
de Jong APH, Schmitz SK, Toonen RFG, Verhage M. Dendritic position is a major determinant of presynaptic strength. ACTA ACUST UNITED AC 2012; 197:327-37. [PMID: 22492722 PMCID: PMC3328377 DOI: 10.1083/jcb.201112135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent.
Collapse
Affiliation(s)
- Arthur P H de Jong
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| | | | | | | |
Collapse
|
36
|
Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses. J Neurosci 2011; 31:12523-32. [PMID: 21880914 DOI: 10.1523/jneurosci.1527-11.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Presynaptic inhibition via G-protein-coupled receptors (GPCRs) and voltage-gated Ca(2+) channels constitutes a widespread regulatory mechanism of synaptic strength. Yet, the mechanism of intermolecular coupling underlying GPCR-mediated signaling at central synapses remains unresolved. Using FRET spectroscopy, we provide evidence for formation of spatially restricted (<100 Å) complexes between GABA(B) receptors composed of GB(1a)/GB(2) subunits, Gα(o)β(1)γ(2) G-protein heterotrimer, and Ca(V)2.2 channels in hippocampal boutons. GABA release was not required for the assembly but for structural reorganization of the precoupled complex. Unexpectedly, GB(1a) deletion disrupted intermolecular associations within the complex. The GB(1a) proximal C-terminal domain was essential for association of the receptor, Ca(V)2.2 and Gβγ, but was dispensable for agonist-induced receptor activation and cAMP inhibition. Functionally, boutons lacking this complex-formation domain displayed impaired presynaptic inhibition of Ca(2+) transients and synaptic vesicle release. Thus, compartmentalization of the GABA(B1a) receptor, Gβγ, and Ca(V)2.2 channel in a signaling complex is required for presynaptic inhibition at hippocampal synapses.
Collapse
|
37
|
Galvan A, Hu X, Smith Y, Wichmann T. Localization and pharmacological modulation of GABA-B receptors in the globus pallidus of parkinsonian monkeys. Exp Neurol 2011; 229:429-39. [PMID: 21419765 PMCID: PMC3100374 DOI: 10.1016/j.expneurol.2011.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 01/11/2023]
Abstract
Changes in GABAergic transmission in the external and internal segments of the globus pallidus (GPe and GPi) contribute to the pathophysiology of the basal ganglia network in Parkinson's disease. Because GABA-B receptors are involved in the modulation of GABAergic transmission in GPe and GPi, it is possible that changes in the functions or localization of these receptors contribute to the changes in GABAergic transmission. To further examine this question, we investigated the anatomical localization of GABA-B receptors and the electrophysiologic effects of microinjections of GABA-B receptor ligands in GPe and GPi of MPTP-treated (parkinsonian) monkeys. We found that the pattern of cellular and ultrastructural localization of the GABA-BR1 subunit of the GABA-B receptor in GPe and GPi was not significantly altered in parkinsonian monkeys. However, the magnitude of reduction in firing rate of GPe and GPi neurons produced by microinjections of the GABA-B receptor agonist baclofen was larger in MPTP-treated animals than in normal monkeys. Injections of the GABA-B receptor antagonist CGP55845A were more effective in reducing the firing rate of GPi neurons in parkinsonian monkeys than in normal animals. In addition, the injections of baclofen in GPe and GPi, or of CGP55845A in GPi lead to a significant increase in the proportion of spikes in rebound bursts in parkinsonian animals, but not in normal monkeys. Thus, despite the lack of changes in the localization of GABA-BR1 subunits in the pallidum, GABA-B receptor-mediated effects are altered in the GPe and GPi of parkinsonian monkeys. These changes in GABA-B receptor function may contribute to bursting activities in the parkinsonian state.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, 954 Gatewood Road NE, Emory University Atlanta, GA 30329, USA.
| | | | | | | |
Collapse
|
38
|
Béracochéa D, Tronche C, Coutan M, Dorey R, Chauveau F, Piérard C. Interaction between Diazepam and Hippocampal Corticosterone after Acute Stress: Impact on Memory in Middle-Aged Mice. Front Behav Neurosci 2011; 5:14. [PMID: 21516247 PMCID: PMC3079857 DOI: 10.3389/fnbeh.2011.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/08/2011] [Indexed: 01/12/2023] Open
Abstract
Benzodiazepines (BDZ) are widely prescribed in the treatment of anxiety disorders associated to aging. Interestingly, whereas a reciprocal interaction between the GABAergic system and HPA axis has been evidenced, there is to our knowledge no direct evaluation of the impact of BDZ on both hippocampus (HPC) corticosterone concentrations and HPC-dependent memory in stressed middle-aged subjects. We showed previously that an acute stress induced in middle-aged mice severe memory impairments in a hippocampus-dependent task, and increased in parallel hippocampus corticosterone concentrations, as compared to non-stressed middle-aged controls (Tronche et al., 2010). Based on these findings, the aims of the present study were to evidence the impact of diazepam (a positive allosteric modulator of the GABA-A receptor) on HPC glucocorticoids concentrations and in parallel on HPC-dependent memory in acutely stressed middle-aged mice. Microdialysis experiments showed an interaction between diazepam doses and corticosterone concentrations into the HPC. From 0.25 to 0.5 mg/kg, diazepam dose-dependently reduces intra-HPC corticosterone concentrations and in parallel, dose-dependently increased hippocampal-dependent memory performance. In contrast, the highest (1.0 mg/kg) diazepam dose induces a reduction in HPC corticosterone concentration, which was of greater magnitude as compared to the two other diazepam doses, but however decreased the hippocampal-dependent memory performance. In summary, our study provides first evidence that diazepam restores in stressed middle-aged animals the hippocampus-dependent response, in relation with HPC corticosterone concentrations. Overall, our data illustrate how stress and benzodiazepines could modulate cognitive functions depending on hippocampus activity.
Collapse
Affiliation(s)
- Daniel Béracochéa
- UMR-CNRS 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Universités de Bordeaux Talence, France
| | | | | | | | | | | |
Collapse
|
39
|
Chalifoux JR, Carter AG. GABAB receptor modulation of synaptic function. Curr Opin Neurobiol 2011; 21:339-44. [PMID: 21376567 PMCID: PMC3092847 DOI: 10.1016/j.conb.2011.02.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 01/17/2023]
Abstract
Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection of neurotransmitters. Here we describe recent advances in our understanding of synaptic modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic spines. These new findings highlight the importance of GABAB receptors in regulating many aspects of synaptic transmission. They also point to novel questions about the spatiotemporal dynamics and sources of synaptic modulation in the brain.
Collapse
Affiliation(s)
- Jason R. Chalifoux
- Center for Neural Science New York University 4 Washington Place New York, NY 10003
| | - Adam G. Carter
- Center for Neural Science New York University 4 Washington Place New York, NY 10003
| |
Collapse
|
40
|
|