1
|
Penunuri G, Wang P, Corbett-Detig R, Russell SL. A Structural Proteome Screen Identifies Protein Mimicry in Host-Microbe Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588793. [PMID: 38645127 PMCID: PMC11030372 DOI: 10.1101/2024.04.10.588793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Host-microbe systems are evolutionary niches that produce coevolved biological interactions and are a key component of global health. However, these systems have historically been a difficult field of biological research due to their experimental intractability. Impactful advances in global health will be obtained by leveraging in silico screens to identify genes involved in mediating interspecific interactions. These predictions will progress our understanding of these systems and lay the groundwork for future in vitro and in vivo experiments and bioengineering projects. A driver of host-manipulation and intracellular survival utilized by host-associated microbes is molecular mimicry, a critical mechanism that can occur at any level from DNA to protein structures. We applied protein structure prediction and alignment tools to explore host-associated bacterial structural proteomes for examples of protein structure mimicry. By leveraging the Legionella pneumophila proteome and its many known structural mimics, we developed and validated a screen that can be applied to virtually any host-microbe system to uncover signals of protein mimicry. These mimics represent candidate proteins that mediate host interactions in microbial proteomes. We successfully applied this screen to other microbes with demonstrated effects on global health, Helicobacter pylori and Wolbachia , identifying protein mimic candidates in each proteome. We discuss the roles these candidates may play in important Wolbachia -induced phenotypes and show that Wobachia infection can partially rescue the loss of one of these factors. This work demonstrates how a genome-wide screen for candidates of host-manipulation and intracellular survival offers an opportunity to identify functionally important genes in host-microbe systems.
Collapse
|
2
|
Feizy N, Leuchtenberg SF, Steiner C, Würtz B, Fliegner L, Huber A. In vivo identification of Drosophila rhodopsin interaction partners by biotin proximity labeling. Sci Rep 2024; 14:1986. [PMID: 38263196 PMCID: PMC10805788 DOI: 10.1038/s41598-024-52041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Proteins exert their function through protein-protein interactions. In Drosophila, G protein-coupled receptors like rhodopsin (Rh1) interact with a G protein to activate visual signal transduction and with arrestins to terminate activation. Also, membrane proteins like Rh1 engage in protein-protein interactions during folding within the endoplasmic reticulum, during their vesicular transport and upon removal from the cell surface and degradation. Here, we expressed a Rh1-TurboID fusion protein (Rh1::TbID) in Drosophila photoreceptors to identify in vivo Rh1 interaction partners by biotin proximity labeling. We show that Rh1::TbID forms a functional rhodopsin that mediates biotinylation of arrestin 2 in conditions where arrestin 2 interacts with rhodopsin. We also observed biotinylation of Rh1::TbID and native Rh1 as well as of most visual signal transduction proteins. These findings indicate that the signaling components in the rhabdomere approach rhodopsin closely, within a range of ca. 10 nm. Furthermore, we have detected proteins engaged in the maturation of rhodopsin and elements responsible for the trafficking of membrane proteins, resembling potential interaction partners of Rh1. Among these are chaperons of the endoplasmic reticulum, proteins involved in Clathrin-mediated endocytosis as well as previously unnoticed contributors to rhodopsin transportation, such as Rab32, Vap33, or PIP82.
Collapse
Affiliation(s)
- Nilofar Feizy
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | | | - Christine Steiner
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Berit Würtz
- Mass Spectrometry Unit, Core Facility Hohenheim, University of Hohenheim, Stuttgart, Germany
| | - Leo Fliegner
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
3
|
Gaspar CJ, Gomes T, Martins JC, Melo MN, Adrain C, Cordeiro TN, Domingos PM. Xport-A functions as a chaperone by stabilizing the first five transmembrane domains of rhodopsin-1. iScience 2023; 26:108309. [PMID: 38025784 PMCID: PMC10663829 DOI: 10.1016/j.isci.2023.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Rhodopsin-1 (Rh1), the main photosensitive protein of Drosophila, is a seven-transmembrane domain protein, which is inserted co-translationally in the endoplasmic reticulum (ER) membrane. Biogenesis of Rh1 occurs in the ER, where various chaperones interact with Rh1 to aid in its folding and subsequent transport from the ER to the rhabdomere, the light-sensing organelle of the photoreceptors. Xport-A has been proposed as a chaperone/transport factor for Rh1, but the exact molecular mechanism for Xport-A activity upon Rh1 is unknown. Here, we propose a model where Xport-A functions as a chaperone during the biogenesis of Rh1 in the ER by stabilizing the first five transmembrane domains (TMDs) of Rh1.
Collapse
Affiliation(s)
- Catarina J. Gaspar
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Joana C. Martins
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, BT9 7AE Belfast, UK
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro M. Domingos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
4
|
Gaspar CJ, Vieira LC, Santos CC, Christianson JC, Jakubec D, Strisovsky K, Adrain C, Domingos PM. EMC is required for biogenesis of Xport-A, an essential chaperone of Rhodopsin-1 and the TRP channel. EMBO Rep 2022; 23:e53210. [PMID: 34918864 PMCID: PMC8728618 DOI: 10.15252/embr.202153210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
The ER membrane protein complex (EMC) is required for the biogenesis of a subset of tail anchored (TA) and polytopic membrane proteins, including Rhodopsin-1 (Rh1) and the TRP channel. To understand the physiological implications of EMC-dependent membrane protein biogenesis, we perform a bioinformatic identification of Drosophila TA proteins. From 254 predicted TA proteins, screening in larval eye discs identified two proteins that require EMC for their biogenesis: fan and Xport-A. Fan is required for male fertility in Drosophila and we show that EMC is also required for this process. Xport-A is essential for the biogenesis of both Rh1 and TRP, raising the possibility that disruption of Rh1 and TRP biogenesis in EMC mutants is secondary to the Xport-A defect. We show that EMC is required for Xport-A TMD membrane insertion and that EMC-independent Xport-A mutants rescue Rh1 and TRP biogenesis in EMC mutants. Finally, our work also reveals a role for Xport-A in a glycosylation-dependent triage mechanism during Rh1 biogenesis in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Catarina J Gaspar
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
- Membrane Traffic LabInstituto Gulbenkian de Ciência (IGC)OeirasPortugal
| | - Lígia C Vieira
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
- Present address:
Center for Genomics and Systems BiologyNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Cristiana C Santos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - David Jakubec
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Colin Adrain
- Membrane Traffic LabInstituto Gulbenkian de Ciência (IGC)OeirasPortugal
- Patrick G Johnston Centre for Cancer ResearchQueen’s UniversityBelfastUK
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
| |
Collapse
|
5
|
Guérin DMA, Digilio A, Branda MM. Dimeric Rhodopsin R135L Mutant-Transducin-like Complex Sheds Light on Retinitis Pigmentosa Misfunctions. J Phys Chem B 2021; 125:12958-12971. [PMID: 34793169 DOI: 10.1021/acs.jpcb.1c06348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin (RHO) is a light-sensitive pigment in the retina and the main prototypical protein of the G-protein-coupled receptor (GCPR) family. After receiving a light stimulus, RHO and its cofactor retinylidene undergo a series of structural changes that initiate an intricate transduction mechanism. Along with RHO, other partner proteins play key roles in the signaling pathway. These include transducin, a GTPase, kinases that phosphorylate RHO, and arrestin (Arr), which ultimately stops the signaling process and promotes RHO regeneration. A large number of RHO genetic mutations may lead to very severe retinal dysfunction and eventually to impaired dark adaptation disease called autosomal dominant retinitis pigmentosa (adRP). In this study, we used molecular dynamics (MD) simulations to evaluate the different behaviors of the dimeric form of wild-type RHO (WT dRHO) and its mutant at position 135 of arginine to leucine (dR135L), both in the free (noncomplexed) and in complex with the transducin-like protein (Gtl). Gtl is a heterotrimeric model composed of a mixture of human and bovine G proteins. Our calculations allow us to explain how the mutation causes structural changes in the RHO dimer and how this can affect the signal that transducin generates when it is bound to RHO. Moreover, the structural modifications induced by the R135L mutation can also account for other misfunctions observed in the up- and downstream signaling pathways. The mechanism of these dysfunctions, together with the transducin activity reduction, provides structure-based explanations of the impairment of some key processes that lead to adRP.
Collapse
Affiliation(s)
- Diego M A Guérin
- Department of Biochemistry and Molecular Biology, University of the Basque Country (EHU) and Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Ayelen Digilio
- Department of Physics, National University of San Luis (UNSL), Av. Ejército de los Andes 950, 5700 San Luis, Argentina
| | - María Marta Branda
- Institute of Applied Physics (CONICET-UNSL), Av. Ejercito de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
6
|
Brandwine T, Ifrah R, Bialistoky T, Zaguri R, Rhodes-Mordov E, Mizrahi-Meissonnier L, Sharon D, Katanaev VL, Gerlitz O, Minke B. Knockdown of Dehydrodolichyl Diphosphate Synthase in the Drosophila Retina Leads to a Unique Pattern of Retinal Degeneration. Front Mol Neurosci 2021; 14:693967. [PMID: 34290587 PMCID: PMC8287061 DOI: 10.3389/fnmol.2021.693967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Dehydrodolichyl diphosphate synthase (DHDDS) is a ubiquitously expressed enzyme that catalyzes cis-prenyl chain elongation to produce the poly-prenyl backbone of dolichol. It appears in all tissues including the nervous system and it is a highly conserved enzyme that can be found in all animal species. Individuals who have biallelic missense mutations in the DHDDS gene are presented with non-syndromic retinitis pigmentosa with unknown underlying mechanism. We have used the Drosophila model to compromise DHDDS ortholog gene (CG10778) in order to look for cellular and molecular mechanisms that, when defective, might be responsible for this retinal disease. The Gal4/UAS system was used to suppress the expression of CG10778 via RNAi-mediated-knockdown in various tissues. The resulting phenotypes were assessed using q-RT-PCR, transmission-electron-microscopy (TEM), electroretinogram, antibody staining and Western blot analysis. Targeted knockdown of CG10778-mRNA in the early embryo using the actin promoter or in the developing wings using the nub promoter resulted in lethality, or wings loss, respectively. Targeted expression of CG10778-RNAi using the glass multiple reporter (GMR)-Gal4 driver (GMR-DHDDS-RNAi) in the larva eye disc and pupal retina resulted in a complex phenotype: (a) TEM retinal sections revealed a unique pattern of retinal-degeneration, where photoreceptors R2 and R5 exhibited a nearly normal structure of their signaling-compartment (rhabdomere), but only at the region of the nucleus, while all other photoreceptors showed retinal degeneration at all regions. (b) Western blot analysis revealed a drastic reduction in rhodopsin levels in GMR-DHDDS-RNAi-flies and TEM sections showed an abnormal accumulation of endoplasmic reticulum (ER). To conclude, compromising DHDDS in the developing retina, while allowing formation of the retina, resulted in a unique pattern of retinal degeneration, characterized by a dramatic reduction in rhodopsin protein level and an abnormal accumulation of ER membranes in the photoreceptors cells, thus indicating that DHDDS is essential for normal retinal formation.
Collapse
Affiliation(s)
- Tal Brandwine
- Department of Medical Neurobiology, Faculty of Medicine and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Ifrah
- Department of Medical Neurobiology, Faculty of Medicine and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tzofia Bialistoky
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Zaguri
- Department of Medical Neurobiology, Faculty of Medicine and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elisheva Rhodes-Mordov
- Department of Medical Neurobiology, Faculty of Medicine and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liliana Mizrahi-Meissonnier
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Offer Gerlitz
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Baruch Minke
- Department of Medical Neurobiology, Faculty of Medicine and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Moutaoufik MT, Tanguay RM. Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress Chaperones 2021; 26:265-274. [PMID: 32888179 PMCID: PMC7736433 DOI: 10.1007/s12192-020-01156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Robert M Tanguay
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada.
| |
Collapse
|
8
|
A Family of Auxiliary Subunits of the TRP Cation Channel Encoded by the Complex inaF Locus. Genetics 2020; 215:713-728. [PMID: 32434796 DOI: 10.1534/genetics.120.303268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
TRP channels function in many types of sensory receptor cells. Despite extensive analyses, an open question is whether there exists a family of auxiliary subunits, which could influence localization, trafficking, and function of TRP channels. Here, using Drosophila melanogaster, we reveal a previously unknown TRP interacting protein, INAF-C, which is expressed exclusively in the ultraviolet-sensing R7 photoreceptor cells. INAF-C is encoded by an unusual locus comprised of four distinct coding regions, which give rise to four unique single-transmembrane-containing proteins. With the exception of INAF-B, roles for the other INAF proteins were unknown. We found that both INAF-B and INAF-C are required for TRP stability and localization in R7 cells. Conversely, loss of just INAF-B greatly reduced TRP from other types of photoreceptor cells, but not R7. The requirements for TRP and INAF are reciprocal, since loss of TRP decreased the concentrations of both INAF-B and INAF-C. INAF-A, which is not normally expressed in photoreceptor cells, can functionally substitute for INAF-B, indicating that it is a third TRP auxiliary protein. Reminiscent of the structural requirements between Kv channels and KCNE auxiliary subunits, the codependencies of TRP and INAF depended on several transmembrane domains (TMDs) in TRP, and the TMD and the C-terminus of INAF-B. Our studies support a model in which the inaF locus encodes a family of at least three TRP auxiliary subunits.
Collapse
|
9
|
Xiong L, Zhang L, Yang Y, Li N, Lai W, Wang F, Zhu X, Wang T. ER complex proteins are required for rhodopsin biosynthesis and photoreceptor survival in Drosophila and mice. Cell Death Differ 2019; 27:646-661. [PMID: 31263175 PMCID: PMC7206144 DOI: 10.1038/s41418-019-0378-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022] Open
Abstract
Defective rhodopsin homeostasis is one of the major causes of retinal degeneration, including the disease Retinitis pigmentosa. To identify cellular factors required for the biosynthesis of rhodopsin, we performed a genome-wide genetic screen in Drosophila for mutants with reduced levels of rhodopsin. We isolated loss-of-function alleles in endoplasmic reticulum membrane protein complex 3 (emc3), emc5, and emc6, each of which exhibited defective phototransduction and photoreceptor cell degeneration. EMC3, EMC5, and EMC6 were essential for rhodopsin synthesis independent of the ER associated degradation (ERAD) pathway, which eliminates misfolded proteins. We generated null mutations for all EMC subunits, and further demonstrated that different EMC subunits play roles in different cellular functions. Conditional knockout of the Emc3 gene in mice led to mislocalization of rhodopsin protein and death of cone and rod photoreceptor cells. These data indicate conserved roles for EMC subunits in maintaining rhodopsin homeostasis and photoreceptor function, and suggest that retinal degeneration may also be caused by defects in early biosynthesis of rhodopsin.
Collapse
Affiliation(s)
- Liangyao Xiong
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, 100871, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Na Li
- Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100871, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China. .,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China. .,Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, China. .,Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Henan, China.
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100871, China.
| |
Collapse
|
10
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
11
|
Zhao H, Wang J, Wang T. The V-ATPase V1 subunit A1 is required for rhodopsin anterograde trafficking in Drosophila. Mol Biol Cell 2018; 29:1640-1651. [PMID: 29742016 PMCID: PMC6080656 DOI: 10.1091/mbc.e17-09-0546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis and maturation of the light sensor, rhodopsin, are critical for the maintenance of light sensitivity and for photoreceptor homeostasis. In Drosophila, the main rhodopsin, Rh1, is synthesized in the endoplasmic reticulum and transported to the rhabdomere through the secretory pathway. In an unbiased genetic screen for factors involved in rhodopsin homeostasis, we identified mutations in vha68-1, which encodes the vacuolar proton-translocating ATPase (V-ATPase) catalytic subunit A isoform 1 of the V1 component. Loss of vha68-1 in photoreceptor cells disrupted post-Golgi anterograde trafficking of Rh1, reduced light sensitivity, increased secretory vesicle pH, and resulted in incomplete Rh1 deglycosylation. In addition, vha68-1 was required for activity-independent photoreceptor cell survival. Importantly, vha68-1 mutants exhibited phenotypes similar to those exhibited by mutations in the V0 component of V-ATPase, vha100-1. These data demonstrate that the V1 and V0 components of V-ATPase play key roles in post-Golgi trafficking of Rh1 and that Drosophila may represent an important animal model system for studying diseases associated with V-ATPase dysfunction.
Collapse
Affiliation(s)
- Haifang Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Jing Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
12
|
Ortíz-Rentería M, Juárez-Contreras R, González-Ramírez R, Islas LD, Sierra-Ramírez F, Llorente I, Simon SA, Hiriart M, Rosenbaum T, Morales-Lázaro SL. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain. Proc Natl Acad Sci U S A 2018; 115:E1657-E1666. [PMID: 29378958 PMCID: PMC5816171 DOI: 10.1073/pnas.1715972115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.
Collapse
Affiliation(s)
- Miguel Ortíz-Rentería
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Rebeca Juárez-Contreras
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Ricardo González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General Dr. Manuel Gea González, Secretaría de Salud, 14080 Tlalpan, Ciudad de México, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Félix Sierra-Ramírez
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Sidney A Simon
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México;
| |
Collapse
|
13
|
Larderet I, Fritsch PM, Gendre N, Neagu-Maier GL, Fetter RD, Schneider-Mizell CM, Truman JW, Zlatic M, Cardona A, Sprecher SG. Organization of the Drosophila larval visual circuit. eLife 2017; 6:28387. [PMID: 30726702 PMCID: PMC5577918 DOI: 10.7554/elife.28387] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.
Collapse
Affiliation(s)
- Ivan Larderet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Nanae Gendre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Schopf K, Huber A. Membrane protein trafficking in Drosophila photoreceptor cells. Eur J Cell Biol 2016; 96:391-401. [PMID: 27964885 DOI: 10.1016/j.ejcb.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022] Open
Abstract
Membrane protein trafficking occurs throughout the lifetime of neurons and includes the initial protein synthesis and anterograde transport to the plasma membrane as well as internalization, degradation, and recycling of plasma membrane proteins. Defects in protein trafficking can result in neuronal degeneration and underlie blinding diseases such as retinitis pigmentosa as well as other neuronal disorders. Drosophila photoreceptor cells have emerged as a model system for identifying the components and mechanisms involved in membrane protein trafficking in neurons. Here we summarize the current knowledge about trafficking of three Drosophila phototransduction proteins, the visual pigment rhodopsin and the two light-activated ion channels TRP (transient receptor potential) and TRPL (TRP-like). Despite some common requirements shared by rhodopsin and TRP, details in the trafficking of these proteins differ considerably, suggesting the existence of several trafficking pathways for these photoreceptor proteins.
Collapse
Affiliation(s)
- Krystina Schopf
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany
| | - Armin Huber
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany.
| |
Collapse
|
15
|
Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Sci Rep 2016; 6:33112. [PMID: 27612191 PMCID: PMC5017144 DOI: 10.1038/srep33112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Heat-activated transient receptor potential channel TRPV1 is one of the most studied eukaryotic proteins involved in temperature sensation. Upon heating, it exhibits rapid reversible pore gating, which depolarizes neurons and generates action potentials. Underlying molecular details of such effects in the pore region of TRPV1 is of a crucial importance to control temperature responses of the organism. Despite the spatial structure of the channel in both open (O) and closed (C) states is known, microscopic nature of channel gating and mechanism of thermal sensitivity are still poorly understood. In this work, we used unrestrained atomistic molecular dynamics simulations of TRPV1 (without N- and C-terminal cytoplasmic domains) embedded into explicit lipid bilayer in its O- and C-states. We found that the pore domain with its neighboring loops undergoes large temperature-dependent conformational transitions in an asymmetric way, when fragments of only one monomer move with large amplitude, freeing the pore upon heating. Such an asymmetrical gating looks rather biologically relevant because it is faster and more reliable than traditionally proposed “iris-like” symmetric scheme of channel opening. Analysis of structural, dynamic, and hydrophobic organization of the pore domain revealed entropy growth upon TRPV1 gating, which is in line with current concepts of thermal sensitivity.
Collapse
|
16
|
The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells. PLoS Genet 2015; 11:e1005578. [PMID: 26509977 PMCID: PMC4624897 DOI: 10.1371/journal.pgen.1005578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14), which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L) in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3)P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14P75L mutant. The ttd14P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane. Protein trafficking in neurons occurs throughout the lifetime of a cell and includes the internalization and redistribution of plasma membrane proteins. Regulated protein trafficking controls the equipment of the plasma membrane with receptors and ion channels and thereby attenuates or enhances neuronal function. Defects in recycling of plasma membrane proteins can cause detrimental neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and Down´s syndrome. In Drosophila photoreceptors, the TRPL ion channel, together with the TRP channel, mediates vision and light-dependently shuttles between an endomembrane storage compartment and the apical plasma membrane. Here, we report the identification of a mutation in the ttd14 gene that inhibits TRPL-trafficking in both directions and also results in photoreceptor degeneration. The TTD14 protein contains a region with weak homology to a PX-domain, which is also found in proteins that sort cargo in the endosome and enable protein recycling. We characterize TTD14 as a new regulator of photoreceptor maintenance and ion channel trafficking that binds to GTP and PtdIns(3)P, a phospholipid enriched in early endosomes.
Collapse
|
17
|
TRP and Rhodopsin Transport Depends on Dual XPORT ER Chaperones Encoded by an Operon. Cell Rep 2015; 13:573-584. [PMID: 26456832 DOI: 10.1016/j.celrep.2015.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022] Open
Abstract
TRP channels and G protein-coupled receptors (GPCRs) play critical roles in sensory reception. However, the identities of the chaperones that assist GPCRs in translocating from the endoplasmic reticulum (ER) are limited, and TRP ER chaperones are virtually unknown. The one exception for TRPs is Drosophila XPORT. Here, we show that the xport locus is bicistronic and encodes unrelated transmembrane proteins, which enable the signaling proteins that initiate and culminate phototransduction, rhodopsin 1 (Rh1) and TRP, to traffic to the plasma membrane. XPORT-A and XPORT-B are ER proteins, and loss of either has a profound impact on TRP and Rh1 targeting to the light-sensing compartment of photoreceptor cells. XPORT-B complexed in vivo with the Drosophila homolog of the mammalian HSP70 protein, GRP78/BiP, which, in turn, associated with Rh1. Our work highlights a coordinated network of chaperones required for the biosynthesis of the TRP channel and rhodopsin in Drosophila photoreceptor cells.
Collapse
|
18
|
Carnes MU, Campbell T, Huang W, Butler DG, Carbone MA, Duncan LH, Harbajan SV, King EM, Peterson KR, Weitzel A, Zhou S, Mackay TFC. The Genomic Basis of Postponed Senescence in Drosophila melanogaster. PLoS One 2015; 10:e0138569. [PMID: 26378456 PMCID: PMC4574564 DOI: 10.1371/journal.pone.0138569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
Natural populations harbor considerable genetic variation for lifespan. While evolutionary theory provides general explanations for the existence of this variation, our knowledge of the genes harboring naturally occurring polymorphisms affecting lifespan is limited. Here, we assessed the genetic divergence between five Drosophila melanogaster lines selected for postponed senescence for over 170 generations (O lines) and five lines from the same base population maintained at a two week generation interval for over 850 generations (B lines). On average, O lines live 70% longer than B lines, are more productive at all ages, and have delayed senescence for other traits than reproduction. We performed population sequencing of pools of individuals from all B and O lines and identified 6,394 genetically divergent variants in or near 1,928 genes at a false discovery rate of 0.068. A 2.6 Mb region at the tip of the X chromosome contained many variants fixed for alternative alleles in the two populations, suggestive of a hard selective sweep. We also assessed genome wide gene expression of O and B lines at one and five weeks of age using RNA sequencing and identified genes with significant (false discovery rate < 0.05) effects on gene expression with age, population and the age by population interaction, separately for each sex. We identified transcripts that exhibited the transcriptional signature of postponed senescence and integrated the gene expression and genetic divergence data to identify 98 (175) top candidate genes in females (males) affecting postponed senescence and increased lifespan. While several of these genes have been previously associated with Drosophila lifespan, most are novel and constitute a rich resource for future functional validation.
Collapse
Affiliation(s)
- Megan Ulmer Carnes
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Terry Campbell
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Daniel G. Butler
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Mary Anna Carbone
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Laura H. Duncan
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Sasha V. Harbajan
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Edward M. King
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Kara R. Peterson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Alexander Weitzel
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Shanshan Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| | - Trudy F. C. Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America
| |
Collapse
|
19
|
Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK. dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. eLife 2015; 4. [PMID: 25715730 PMCID: PMC4341237 DOI: 10.7554/elife.06306] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
In eukaryotes, most integral membrane proteins are synthesized, integrated into the membrane, and folded properly in the endoplasmic reticulum (ER). We screened the mutants affecting rhabdomeric expression of rhodopsin 1 (Rh1) in the Drosophila photoreceptors and found that dPob/EMC3, EMC1, and EMC8/9, Drosophila homologs of subunits of ER membrane protein complex (EMC), are essential for stabilization of immature Rh1 in an earlier step than that at which another Rh1-specific chaperone (NinaA) acts. dPob/EMC3 localizes to the ER and associates with EMC1 and calnexin. Moreover, EMC is required for the stable expression of other multi-pass transmembrane proteins such as minor rhodopsins Rh3 and Rh4, transient receptor potential, and Na+K+-ATPase, but not for a secreted protein or type I single-pass transmembrane proteins. Furthermore, we found that dPob/EMC3 deficiency induces rhabdomere degeneration in a light-independent manner. These results collectively indicate that EMC is a key factor in the biogenesis of multi-pass transmembrane proteins, including Rh1, and its loss causes retinal degeneration. DOI:http://dx.doi.org/10.7554/eLife.06306.001 The membranes that surround cells contain many proteins, and those that span the entire width of the membrane are known as transmembrane proteins. Rhodopsin is one such transmembrane protein that is found in the light-sensitive ‘photoreceptor’ cells of the eye, where it plays an essential role in vision. Transmembrane proteins are made inside the cell and are inserted into the membrane surrounding a compartment called the endoplasmic reticulum. Here, they mature and ‘fold’ into their correct three-dimensional shape with help from chaperone proteins. Once correctly folded, the transmembrane proteins can be transported to the cell membrane. Incorrect folding of proteins can have severe consequences; if rhodopsin is incorrectly folded the photoreceptor cells can die, leading to blindness in humans and other animals. Experiments carried out in zebrafish have shown that the chaperone protein Pob is required for the survival of photoreceptor cells. Pob is part of a group or ‘complex’ of chaperone proteins in the endoplasmic reticulum called the EMC complex. This suggests that the EMC complex may be involved in folding rhodopsin, but the details remain unclear. Here, Satoh et al. studied the role of the EMC complex in the folding of rhodopsin in fruit flies. This involved examining hundreds of flies that carried a variety of genetic mutations and that also had low levels of rhodopsin. The experiments show that dPob—the fly version of Pob—and two other proteins in the EMC complex are required for newly-made rhodopsin to be stabilized. If photoreceptor cells are missing proteins from the complex, the light-sensitive structures in the eye degenerate. Rhodopsin is known as a ‘multi-pass’ membrane protein because it crosses the membrane multiple times. Satoh et al. found that the EMC complex is also required for the folding of other multi-pass membrane proteins in photoreceptor cells. The next challenge will be to reveal how the EMC complex is able to specifically target this type of transmembrane protein. DOI:http://dx.doi.org/10.7554/eLife.06306.002
Collapse
Affiliation(s)
- Takunori Satoh
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Aya Ohba
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ziguang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Tsuyoshi Inagaki
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akiko K Satoh
- Graduate School of Integrated Arts and Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
20
|
Arrigo AP, Ducarouge B, Lavial F, Gibert B. Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Rosenbaum EE, Vasiljevic E, Cleland SC, Flores C, Colley NJ. The Gos28 SNARE protein mediates intra-Golgi transport of rhodopsin and is required for photoreceptor survival. J Biol Chem 2014; 289:32392-409. [PMID: 25261468 PMCID: PMC4239595 DOI: 10.1074/jbc.m114.585166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
SNARE proteins play indispensable roles in membrane fusion events in many cellular processes, including synaptic transmission and protein trafficking. Here, we characterize the Golgi SNARE protein, Gos28, and its role in rhodopsin (Rh1) transport through Drosophila photoreceptors. Mutations in gos28 lead to defective Rh1 trafficking and retinal degeneration. We have pinpointed a role for Gos28 in the intra-Golgi transport of Rh1, downstream from α-mannosidase-II in the medial- Golgi. We have confirmed the necessity of key residues in Gos28's SNARE motif and demonstrate that its transmembrane domain is not required for vesicle fusion, consistent with Gos28 functioning as a t-SNARE for Rh1 transport. Finally, we show that human Gos28 rescues both the Rh1 trafficking defects and retinal degeneration in Drosophila gos28 mutants, demonstrating the functional conservation of these proteins. Our results identify Gos28 as an essential SNARE protein in Drosophila photoreceptors and provide mechanistic insights into the role of SNAREs in neurodegenerative disease.
Collapse
Affiliation(s)
- Erica E Rosenbaum
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Eva Vasiljevic
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Spencer C Cleland
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Carlos Flores
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| | - Nansi Jo Colley
- From the Department of Ophthalmology and Visual Sciences, Department of Genetics and The McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin 53792
| |
Collapse
|
23
|
Rosenbaum EE, Vasiljevic E, Brehm KS, Colley NJ. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster. PLoS Genet 2014; 10:e1004349. [PMID: 24785692 PMCID: PMC4006722 DOI: 10.1371/journal.pgen.1004349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway.
Collapse
Affiliation(s)
- Erica E. Rosenbaum
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva Vasiljevic
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kimberley S. Brehm
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nansi Jo Colley
- Department of Ophthalmology & Visual Sciences and Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
24
|
Binda C, Génier S, Cartier A, Larrivée JF, Stankova J, Young JC, Parent JL. A G protein-coupled receptor and the intracellular synthase of its agonist functionally cooperate. ACTA ACUST UNITED AC 2014; 204:377-93. [PMID: 24493589 PMCID: PMC3912537 DOI: 10.1083/jcb.201304015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The GPCR DP1 promotes the activity of L-PGDS, the enzyme that produces the DP1 agonist PGD2, while at the same time L-PGDS promotes the export and activity of DP1 in response to PGD2. Export of newly synthesized G protein–coupled receptors (GPCRs) remains poorly characterized. We show in this paper that lipocalin-type prostaglandin D2 (PGD2) synthase (L-PGDS) interacts intracellularly with the GPCR DP1 in an agonist-independent manner. L-PGDS promotes cell surface expression of DP1, but not of other GPCRs, in HEK293 and HeLa cells, independent of L-PGDS enzyme activity. In addition, formation of a DP1–Hsp90 complex necessary for DP1 export to the cell surface is dependent on the interaction between L-PGDS and the C-terminal MEEVD residues of Hsp90. Surprisingly, PGD2 synthesis by L-PGDS is promoted by coexpression of DP1, suggesting a possible intracrine/autocrine signaling mechanism. In this regard, L-PGDS increases the formation of a DP1–ERK1/2 complex and increases DP1-mediated ERK1/2 signaling. Our findings define a novel cooperative mechanism in which a GPCR (DP1) promotes the activity of the enzyme (L-PGDS) that produces its agonist (PGD2) and in which this enzyme in turn acts as a cofactor (of Hsp90) to promote export and agonist-dependent activity of the receptor.
Collapse
Affiliation(s)
- Chantal Binda
- Service de Rhumatologie, Département de Médecine, 2 Programme d'Immunologie, Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, and 3 Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang S, Tan KL, Agosto MA, Xiong B, Yamamoto S, Sandoval H, Jaiswal M, Bayat V, Zhang K, Charng WL, David G, Duraine L, Venkatachalam K, Wensel TG, Bellen HJ. The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biol 2014; 12:e1001847. [PMID: 24781186 PMCID: PMC4004542 DOI: 10.1371/journal.pbio.1001847] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/21/2014] [Indexed: 12/22/2022] Open
Abstract
Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity.
Collapse
Affiliation(s)
- Shiuan Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kai Li Tan
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Melina A. Agosto
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Manish Jaiswal
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gabriela David
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, Texas, United States of America
| | - Theodore G. Wensel
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
26
|
An ER complex of ODR-4 and ODR-8/Ufm1 specific protease 2 promotes GPCR maturation by a Ufm1-independent mechanism. PLoS Genet 2014; 10:e1004082. [PMID: 24603482 PMCID: PMC3945108 DOI: 10.1371/journal.pgen.1004082] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022] Open
Abstract
Despite the importance of G-protein coupled receptors (GPCRs) their biogenesis is poorly understood. Like vertebrates, C. elegans uses a large family of GPCRs as chemoreceptors. A subset of these receptors, such as ODR-10, requires the odr-4 and odr-8 genes to be appropriately localized to sensory cilia. The odr-4 gene encodes a conserved tail-anchored transmembrane protein; the molecular identity of odr-8 is unknown. Here, we show that odr-8 encodes the C. elegans ortholog of Ufm1-specific protease 2 (UfSP2). UfSPs are cysteine proteases identified biochemically by their ability to liberate the ubiquitin-like modifier Ufm1 from its pro-form and protein conjugates. ODR-8/UfSP2 and ODR-4 are expressed in the same set of twelve chemosensory neurons, and physically interact at the ER membrane. ODR-4 also binds ODR-10, suggesting that an ODR-4/ODR-8 complex promotes GPCR folding, maturation, or export from the ER. The physical interaction between human ODR4 and UfSP2 suggests that this complex's role in GPCR biogenesis may be evolutionarily conserved. Unexpectedly, mutant versions of ODR-8/UfSP2 lacking catalytic residues required for protease activity can rescue all odr-8 mutant phenotypes tested. Moreover, deleting C. elegans ufm-1 does not alter chemoreceptor traffic to cilia, either in wild type or in odr-8 mutants. Thus, UfSP2 proteins have protease- and Ufm1-independent functions in GPCR biogenesis. Despite the importance of G-protein coupled receptors (GPCRs), we know little about their biogenesis. Olfactory receptors form a large and divergent group of GPCRs. We investigate their biogenesis in C. elegans. We show that maturation of a subset of these GPCRs, including the diacetyl receptor ODR-10, requires Ufm1 specific protease 2 (UfSP2), which corresponds to odr-8. Biochemical studies suggest mouse UfSP2 activates the Ubiquitin-like molecule Ufm1 and cleaves it from protein conjugates. However, neither the protease active site nor ufm-1 is required for UfSP2/ODR-8 to promote ODR-10 maturation. C. elegans UfSP2 is expressed in the same chemosensory neurons as ODR-4, a tail-anchored transmembrane protein also required for ODR-10 maturation. ODR-4 resides in the endoplasmic reticulum (ER); UfSP2 is cytosolic but associates with ER membranes. In odr-4 and odr-8 mutants ODR-10-GFP is retained in the ER, suggesting these genes are required to fold GPCRs or traffic them out of the ER. ODR-4 interacts biochemically with ODR-8 and ODR-10 to form an ER complex. ODR-4 and UfSP2 are conserved from plants to man, and human ODR4 can bind human UfSP2 and recruit it to ER membranes. Both proteins are expressed widely in mammals, suggesting a broader role in GPCR biogenesis.
Collapse
|
27
|
Abstract
The Drosophila "transient receptor potential" channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly's photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive "rhabdomere"-a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2's bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca(2+) selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca(2+) permeability (P Ca:P Cs ~5:1). Ca(2+) influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca(2+) rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca(2+) influx required to inhibit PLC. This accounts for the "transient receptor potential" phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca(2+) influx also undergo retinal degeneration due to Ca(2+) cytotoxicity. In vertebrate retina, mice knockout studies suggest that TRPC6 and TRPC7 mediate a PLCβ4-activated transducer current in intrinsically photosensitive retinal ganglion cells, expressing melanopsin. TRPA1 has been implicated as a "photo-sensing" TRP channel in human melanocytes and light-sensitive neurons in the body wall of Drosophila.
Collapse
|
28
|
Xiong B, Bellen HJ. Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci 2013; 36:652-60. [PMID: 24012059 DOI: 10.1016/j.tins.2013.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 11/16/2022]
Abstract
Rhodopsins (Rh) are G protein-coupled receptors that function as light-sensors in photoreceptors. In humans, Rh mutations cause retinitis pigmentosa (RP), a degenerative disease that ultimately results in blindness. Studies in Drosophila have provided many insights into basic Rh biology and have identified pathways that lead to retinal degeneration. It has been shown that, because Rh is very abundant in photoreceptors, its accumulation in numerous organelles induces severe stress and results in degeneration of these cells. Moreover, genetic lesions that affect proper activation of membrane-bound Rh lead to disruption in Ca(2+) homeostasis which also causes photoreceptor degeneration. We review here the molecular signals involved in Rh homeostasis and the mechanisms underlying retinal degeneration in flies, and discuss possible links to human diseases.
Collapse
Affiliation(s)
- Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
29
|
Athanasiou D, Aguilà M, Bevilacqua D, Novoselov SS, Parfitt DA, Cheetham ME. The cell stress machinery and retinal degeneration. FEBS Lett 2013; 587:2008-17. [PMID: 23684651 PMCID: PMC4471140 DOI: 10.1016/j.febslet.2013.05.020] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness.
Collapse
Affiliation(s)
| | - Monica Aguilà
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Dalila Bevilacqua
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | - David A. Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | | |
Collapse
|
30
|
Arrigo AP, Gibert B. Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperthermia 2013; 29:409-22. [DOI: 10.3109/02656736.2013.792956] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Arrigo AP. Human small heat shock proteins: Protein interactomes of homo- and hetero-oligomeric complexes: An update. FEBS Lett 2013; 587:1959-69. [DOI: 10.1016/j.febslet.2013.05.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
32
|
Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 2013; 77:667-79. [PMID: 23439120 DOI: 10.1016/j.neuron.2012.12.016] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/20/2023]
Abstract
The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP(2)), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP(2), PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other "receptor-operated" TRP channels.
Collapse
Affiliation(s)
- Erhu Cao
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Transient receptor potential (TRP) cation channel superfamily plays important roles in variety cellular processes including polymodal cellular sensing, cell adhesion, cell polarity, proliferation, differentiation and apoptosis. One of its subfamilies are TRPM channels. mRNA expression of its founding member, TRPM1 (melastatin), correlates with terminal melanocytic differentiation and loss of its expression has been identified as an important diagnostic and prognostic marker for primary cutaneous melanoma. Because TRPM1 gene codes two transcripts: TRPM1 channel protein in its exons and miR-211 in one of its introns, we propose a dual role for TRPM1 gene where the loss of TRPM1 channel protein is an excellent marker of melanoma aggressiveness, while the expression of miR-211 is linked to the tumor suppressor function of TRPM1. In addition, three other members of this subfamily, TRPM 2, 7 and 8 are implicated in the regulation of melanocytic behaviour. TRPM2 is capable of inducing melanoma apoptosis and necrosis. TRPM7 can be a protector and detoxifier in both melanocytes and melanoma cells. TRPM8 can mediate agonist-induced melanoma cell death. Therefore, we propose that TRPM1, TRPM2, TRPM7 and TRPM8 play crucial roles in melanocyte physiology and melanoma oncology and are excellent diagnostic markers and theraputic targets.
Collapse
Affiliation(s)
- Huazhang Guo
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | | | | |
Collapse
|
34
|
Xiong B, Bayat V, Jaiswal M, Zhang K, Sandoval H, Charng WL, Li T, David G, Duraine L, Lin YQ, Neely GG, Yamamoto S, Bellen HJ. Crag is a GEF for Rab11 required for rhodopsin trafficking and maintenance of adult photoreceptor cells. PLoS Biol 2012; 10:e1001438. [PMID: 23226104 PMCID: PMC3514319 DOI: 10.1371/journal.pbio.1001438] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Rhodopsins (Rhs) are light sensors, and Rh1 is the major Rh in the Drosophila photoreceptor rhabdomere membrane. Upon photoactivation, a fraction of Rh1 is internalized and degraded, but it remains unclear how the rhabdomeric Rh1 pool is replenished and what molecular players are involved. Here, we show that Crag, a DENN protein, is a guanine nucleotide exchange factor for Rab11 that is required for the homeostasis of Rh1 upon light exposure. The absence of Crag causes a light-induced accumulation of cytoplasmic Rh1, and loss of Crag or Rab11 leads to a similar photoreceptor degeneration in adult flies. Furthermore, the defects associated with loss of Crag can be partially rescued with a constitutive active form of Rab11. We propose that upon light stimulation, Crag is required for trafficking of Rh from the trans-Golgi network to rhabdomere membranes via a Rab11-dependent vesicular transport.
Collapse
Affiliation(s)
- Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Manish Jaiswal
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gabriela David
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yong-Qi Lin
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - G. Gregory Neely
- Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Neurological Research Institute, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
35
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
36
|
Hibbard KL, O’Tousa JE. A role for the cytoplasmic DEAD box helicase Dbp21E2 in rhodopsin maturation and photoreceptor viability. J Neurogenet 2012; 26:177-88. [PMID: 22794106 PMCID: PMC3680124 DOI: 10.3109/01677063.2012.692412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Dbp21E2 (DEAD box protein 21E2) is a member of a family of DEAD box helicases active in RNA processing and stability. The authors used genetic mosaics to identify mutants in Dbp21E2 that affect rhodopsin biogenesis and the maintenance of photoreceptor structure. Analysis of a green fluorescent protein (GFP)-tagged Rh1 rhodopsin construct placed under control of a heat shock promoter showed that Dbp21E21 fails to efficiently transport Rh1 from the photoreceptor cell body to the rhabdomere. Retinal degeneration is not dependent on the Rh1 transport defects. The authors also showed that GFP- and red fluorescent protein (RFP)-tagged Dbp21E2 proteins are localized to discrete cytoplasmic structures that are not associated with organelles known to be active in rhodopsin transport. The molecular genetic analysis described here reveals an unexpected role for the Dbp21E2 helicase and provides an experimental system to further characterize its function.
Collapse
Affiliation(s)
- Karen L. Hibbard
- Dept. of Biological Sciences, Univ. of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
37
|
Montell C. Drosophila visual transduction. Trends Neurosci 2012; 35:356-63. [PMID: 22498302 DOI: 10.1016/j.tins.2012.03.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/06/2012] [Accepted: 03/11/2012] [Indexed: 11/26/2022]
Abstract
Visual transduction in the Drosophila compound eye functions through a pathway that couples rhodopsin to phospholipase C (PLC) and the opening of transient receptor potential (TRP) channels. This cascade differs from phototransduction in mammalian rods and cones, but is remarkably similar to signaling in mammalian intrinsically photosensitive retinal ganglion cells (ipRGCs). In this review, I focus on recent advances in the fly visual system, including the discovery of a visual cycle and insights into the machinery and mechanisms involved in generating a light response in photoreceptor cells.
Collapse
Affiliation(s)
- Craig Montell
- Departments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|