1
|
Ying R, Stolzberg DJ, Caras ML. Neural Correlates of Perceptual Plasticity in the Auditory Midbrain and Thalamus. J Neurosci 2025; 45:e0691242024. [PMID: 39753303 PMCID: PMC11884394 DOI: 10.1523/jneurosci.0691-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 03/08/2025] Open
Abstract
Hearing is an active process in which listeners must detect and identify sounds, segregate and discriminate stimulus features, and extract their behavioral relevance. Adaptive changes in sound detection can emerge rapidly, during sudden shifts in acoustic or environmental context, or more slowly as a result of practice. Although we know that context- and learning-dependent changes in the sensitivity of auditory cortical (ACX) neurons support many aspects of perceptual plasticity, the contribution of subcortical auditory regions to this process is less understood. Here, we recorded single- and multiunit activity from the central nucleus of the inferior colliculus (ICC) and the ventral subdivision of the medial geniculate nucleus (MGV) of male and female Mongolian gerbils under two different behavioral contexts: as animals performed an amplitude modulation (AM) detection task and as they were passively exposed to AM sounds. Using a signal detection framework to estimate neurometric sensitivity, we found that neural thresholds in both regions improve during task performance, and this improvement is largely driven by changes in the firing rate rather than phase locking. We also found that ICC and MGV neurometric thresholds improve as animals learn to detect small AM depths during a multiday perceptual training paradigm. Finally, we revealed that in the MGV, but not the ICC, context-dependent enhancements in AM sensitivity grow stronger during perceptual training, mirroring prior observations in the ACX. Together, our results suggest that the auditory midbrain and thalamus contribute to changes in sound processing and perception over rapid and slow timescales.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland 20742
| | - Daniel J Stolzberg
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Melissa L Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland 20742
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
2
|
Failor SW, Carandini M, Harris KD. Visual experience orthogonalizes visual cortical stimulus responses via population code transformation. Cell Rep 2025; 44:115235. [PMID: 39888718 DOI: 10.1016/j.celrep.2025.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Abstract
Sensory and behavioral experience can alter visual cortical stimulus coding, but the precise form of this plasticity is unclear. We measured orientation tuning in 4,000-neuron populations of mouse V1 before and after training on a visuomotor task. Changes to single-cell tuning curves appeared complex, including development of asymmetries and of multiple peaks. Nevertheless, these complex tuning curve transformations can be explained by a simple equation: a convex transformation suppressing responses to task stimuli specifically in cells responding at intermediate levels. The strength of the transformation varies across trials, suggesting a dynamic circuit mechanism rather than static synaptic plasticity. The transformation results in sparsening and orthogonalization of population codes for task stimuli. It cannot improve the performance of an optimal stimulus decoder, which is already perfect even for naive codes, but it improves the performance of a suboptimal decoder model with inductive bias as might be found in downstream readout circuits.
Collapse
Affiliation(s)
- Samuel W Failor
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
3
|
Dai J, Sun QQ. Modulation of cortical representations of sensory and contextual information underlies aversive associative learning. Cell Rep 2024; 43:114672. [PMID: 39196779 PMCID: PMC11472654 DOI: 10.1016/j.celrep.2024.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 08/30/2024] Open
Abstract
Cortical neurons encode both sensory and contextual information, yet it remains unclear how experiences modulate these cortical representations. Here, we demonstrate that trace eyeblink conditioning (TEC), an aversive associative-learning paradigm linking conditioned (CS) with unconditioned stimuli (US), finely tunes cortical coding at both population and single-neuron levels. Initially, we show that the primary somatosensory cortex (S1) is necessary for TEC acquisition, as evidenced by local muscimol administration. At the population level, TEC enhances activity in a small subset (∼20%) of CS- or US-responsive primary neurons (rPNs) while diminishing activity in non-rPNs, including locomotion-tuned or unresponsive PNs. Crucially, TEC learning modulates the encoding of sensory versus contextual information in single rPNs: CS-responsive neurons become less responsive, while US-responsive neurons gain responses to CS. Moreover, we find that the cholinergic pathway, via nicotinic receptors, underlies TEC-induced modulations. These findings suggest that experiences dynamically tune cortical representations through cholinergic pathways.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
4
|
Tian GJ, Zhu O, Shirhatti V, Greenspon CM, Downey JE, Freedman DJ, Doiron B. Neuronal firing rate diversity lowers the dimension of population covariability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610535. [PMID: 39257801 PMCID: PMC11383671 DOI: 10.1101/2024.08.30.610535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Populations of neurons produce activity with two central features. First, neuronal responses are very diverse - specific stimuli or behaviors prompt some neurons to emit many action potentials, while other neurons remain relatively silent. Second, the trial-to-trial fluctuations of neuronal response occupy a low dimensional space, owing to significant correlations between the activity of neurons. These two features define the quality of neuronal representation. We link these two aspects of population response using a recurrent circuit model and derive the following relation: the more diverse the firing rates of neurons in a population, the lower the effective dimension of population trial-to-trial covariability. This surprising prediction is tested and validated using simultaneously recorded neuronal populations from numerous brain areas in mice, non-human primates, and in the motor cortex of human participants. Using our relation we present a theory where a more diverse neuronal code leads to better fine discrimination performance from population activity. In line with this theory, we show that neuronal populations across the brain exhibit both more diverse mean responses and lower-dimensional fluctuations when the brain is in more heightened states of information processing. In sum, we present a key organizational principle of neuronal population response that is widely observed across the nervous system and acts to synergistically improve population representation.
Collapse
|
5
|
Yang R, Zhao P, Wang L, Feng C, Peng C, Wang Z, Zhang Y, Shen M, Shi K, Weng S, Dong C, Zeng F, Zhang T, Chen X, Wang S, Wang Y, Luo Y, Chen Q, Chen Y, Jiang C, Jia S, Yu Z, Liu J, Wang F, Jiang S, Xu W, Li L, Wang G, Mo X, Zheng G, Chen A, Zhou X, Jiang C, Yuan Y, Yan B, Zhang J. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat Biomed Eng 2024; 8:1018-1039. [PMID: 37996614 DOI: 10.1038/s41551-023-01137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Retinal prostheses could restore image-forming vision in conditions of photoreceptor degeneration. However, contrast sensitivity and visual acuity are often insufficient. Here we report the performance, in mice and monkeys with induced photoreceptor degeneration, of subretinally implanted gold-nanoparticle-coated titania nanowire arrays providing a spatial resolution of 77.5 μm and a temporal resolution of 3.92 Hz in ex vivo retinas (as determined by patch-clamp recording of retinal ganglion cells). In blind mice, the arrays allowed for the detection of drifting gratings and flashing objects at light-intensity thresholds of 15.70-18.09 μW mm-2, and offered visual acuities of 0.3-0.4 cycles per degree, as determined by recordings of visually evoked potentials and optomotor-response tests. In monkeys, the arrays were stable for 54 weeks, allowed for the detection of a 10-μW mm-2 beam of light (0.5° in beam angle) in visually guided saccade experiments, and induced plastic changes in the primary visual cortex, as indicated by long-term in vivo calcium imaging. Nanomaterials as artificial photoreceptors may ameliorate visual deficits in patients with photoreceptor degeneration.
Collapse
Affiliation(s)
- Ruyi Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Peng Zhao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chenli Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Zhexuan Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yingying Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Kaiwen Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunqiong Dong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Tianyun Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Xingdong Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, P. R. China
| | - Yiheng Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuanyuan Luo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Qingyuan Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Shanshan Jia
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Zhaofei Yu
- School of Computer Science, Institute for Artificial Intelligence, Peking University, Beijing, P.R. China
| | - Jian Liu
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Fei Wang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Su Jiang
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Wendong Xu
- Department of Hand Surgery, the National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Fudan University, Shanghai, P.R. China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing, P. R. China
| | - Xiaofen Mo
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, P. R. China
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, P. R. China
| | - Xingtao Zhou
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Chunhui Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P.R. China.
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
6
|
Abstract
The amygdala has long held the center seat in the neural basis of threat conditioning. However, a rapidly growing literature has elucidated extra-amygdala circuits in this process, highlighting the sensory cortex for its critical role in the mnemonic aspect of the process. While this literature is largely focused on the auditory system, substantial human and rodent findings on the olfactory system have emerged. The unique nature of the olfactory neuroanatomy and its intimate association with emotion compels a review of this recent literature to illuminate its special contribution to threat memory. Here, integrating recent evidence in humans and animal models, we posit that the olfactory (piriform) cortex is a primary and necessary component of the distributed threat memory network, supporting mnemonic ensemble coding of acquired threat. We further highlight the basic circuit architecture of the piriform cortex characterized by distributed, auto-associative connections, which is prime for highly efficient content-addressable memory computing to support threat memory. Given the primordial role of the piriform cortex in cortical evolution and its simple, well-defined circuits, we propose that olfaction can be a model system for understanding (transmodal) sensory cortical mechanisms underlying threat memory.
Collapse
Affiliation(s)
- Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
7
|
Zhu M, Kuhlman SJ, Barth AL. Transient enhancement of stimulus-evoked activity in neocortex during sensory learning. Learn Mem 2024; 31:a053870. [PMID: 38955432 PMCID: PMC11261211 DOI: 10.1101/lm.053870.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Synaptic potentiation has been linked to learning in sensory cortex, but the connection between this potentiation and increased sensory-evoked neural activity is not clear. Here, we used longitudinal in vivo Ca2+ imaging in the barrel cortex of awake mice to test the hypothesis that increased excitatory synaptic strength during the learning of a whisker-dependent sensory-association task would be correlated with enhanced stimulus-evoked firing. To isolate stimulus-evoked responses from dynamic, task-related activity, imaging was performed outside of the training context. Although prior studies indicate that multiwhisker stimuli drive robust subthreshold activity, we observed sparse activation of L2/3 pyramidal (Pyr) neurons in both control and trained mice. Despite evidence for excitatory synaptic strengthening at thalamocortical and intracortical synapses in this brain area at the onset of learning-indeed, under our imaging conditions thalamocortical axons were robustly activated-we observed that L2/3 Pyr neurons in somatosensory (barrel) cortex displayed only modest increases in stimulus-evoked activity that were concentrated at the onset of training. Activity renormalized over longer training periods. In contrast, when stimuli and rewards were uncoupled in a pseudotraining paradigm, stimulus-evoked activity in L2/3 Pyr neurons was significantly suppressed. These findings indicate that sensory-association training but not sensory stimulation without coupled rewards may briefly enhance sensory-evoked activity, a phenomenon that might help link sensory input to behavioral outcomes at the onset of learning.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Sandra J Kuhlman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
8
|
Wang M, Jendrichovsky P, Kanold PO. Auditory discrimination learning differentially modulates neural representation in auditory cortex subregions and inter-areal connectivity. Cell Rep 2024; 43:114172. [PMID: 38703366 PMCID: PMC11450637 DOI: 10.1016/j.celrep.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Changes in sound-evoked responses in the auditory cortex (ACtx) occur during learning, but how learning alters neural responses in different ACtx subregions and changes their interactions is unclear. To address these questions, we developed an automated training and widefield imaging system to longitudinally track the neural activity of all mouse ACtx subregions during a tone discrimination task. We find that responses in primary ACtx are highly informative of learned stimuli and behavioral outcomes throughout training. In contrast, representations of behavioral outcomes in the dorsal posterior auditory field, learned stimuli in the dorsal anterior auditory field, and inter-regional correlations between primary and higher-order areas are enhanced with training. Moreover, ACtx response changes vary between stimuli, and such differences display lag synchronization with the learning rate. These results indicate that learning alters functional connections between ACtx subregions, inducing region-specific modulations by propagating behavioral information from primary to higher-order areas.
Collapse
Affiliation(s)
- Mingxuan Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter Jendrichovsky
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Lopez-Ortega E, Choi JY, Hong I, Roth RH, Cudmore RH, Huganir RL. Stimulus-dependent synaptic plasticity underlies neuronal circuitry refinement in the mouse primary visual cortex. Cell Rep 2024; 43:113966. [PMID: 38507408 PMCID: PMC11210464 DOI: 10.1016/j.celrep.2024.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Perceptual learning improves our ability to interpret sensory stimuli present in our environment through experience. Despite its importance, the underlying mechanisms that enable perceptual learning in our sensory cortices are still not fully understood. In this study, we used in vivo two-photon imaging to investigate the functional and structural changes induced by visual stimulation in the mouse primary visual cortex (V1). Our results demonstrate that repeated stimulation leads to a refinement of V1 circuitry by decreasing the number of responsive neurons while potentiating their response. At the synaptic level, we observe a reduction in the number of dendritic spines and an overall increase in spine AMPA receptor levels in the same subset of neurons. In addition, visual stimulation induces synaptic potentiation in neighboring spines within individual dendrites. These findings provide insights into the mechanisms of synaptic plasticity underlying information processing in the neocortex.
Collapse
Affiliation(s)
- Elena Lopez-Ortega
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jung Yoon Choi
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ingie Hong
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard H Roth
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert H Cudmore
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Li W, Keil A. Sensing fear: fast and precise threat evaluation in human sensory cortex. Trends Cogn Sci 2023; 27:341-352. [PMID: 36732175 PMCID: PMC10023404 DOI: 10.1016/j.tics.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Animal models of threat processing have evolved beyond the amygdala to incorporate a distributed neural network. In human research, evidence has intensified in recent years to challenge the canonical threat circuitry centered on the amygdala, urging revision of threat conceptualization. A strong surge of research into threat processing in the sensory cortex in the past decade has generated particularly useful insights to inform the reconceptualization. Here, synthesizing findings from both animal and human research, we highlight sensitive, specific, and adaptable threat representations in the sensory cortex, arising from experience-based sculpting of sensory coding networks. We thus propose that the human sensory cortex can drive smart (fast and precise) threat evaluation, producing threat-imbued sensory afferents to elicit network-wide threat responses.
Collapse
Affiliation(s)
- Wen Li
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainsville, FL, USA
| |
Collapse
|
11
|
Benbenishty A, Peled-Hajaj S, Krishnaswamy VR, Har-Gil H, Havusha-Laufer S, Ruggiero A, Slutsky I, Blinder P, Sagi I. Longitudinal in vivo imaging of perineuronal nets. NEUROPHOTONICS 2023; 10:015008. [PMID: 36970015 PMCID: PMC10037344 DOI: 10.1117/1.nph.10.1.015008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Perineuronal nets (PNNs) are extracellular matrix structures implicated in learning, memory, information processing, synaptic plasticity, and neuroprotection. However, our understanding of mechanisms governing the evidently important contribution of PNNs to central nervous system function is lacking. A primary cause for this gap of knowledge is the absence of direct experimental tools to study their role in vivo. AIM We introduce a robust approach for quantitative longitudinal imaging of PNNs in brains of awake mice at subcellular resolution. APPROACH We label PNNs in vivo with commercially available compounds and monitor their dynamics with two-photon imaging. RESULTS Using our approach, we show that it is possible to longitudinally follow the same PNNs in vivo while monitoring degradation and reconstitution of PNNs. We demonstrate the compatibility of our method to simultaneously monitor neuronal calcium dynamics in vivo and compare the activity of neurons with and without PNNs. CONCLUSION Our approach is tailored for studying the intricate role of PNNs in vivo, while paving the road for elucidating their role in different neuropathological conditions.
Collapse
Affiliation(s)
- Amit Benbenishty
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Shany Peled-Hajaj
- Tel Aviv University, Neurobiology, Biochemistry, and Biophysics School, Tel Aviv, Israel
- Tel Aviv University, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv, Israel
| | | | - Hagai Har-Gil
- Tel Aviv University, Neurobiology, Biochemistry, and Biophysics School, Tel Aviv, Israel
- Tel Aviv University, Sagol School of Neuroscience, Tel Aviv, Israel
| | - Sapir Havusha-Laufer
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| | - Antonella Ruggiero
- Tel Aviv University, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Inna Slutsky
- Tel Aviv University, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv, Israel
- Tel Aviv University, Sagol School of Neuroscience, Tel Aviv, Israel
| | - Pablo Blinder
- Tel Aviv University, Neurobiology, Biochemistry, and Biophysics School, Tel Aviv, Israel
- Tel Aviv University, Sagol School of Neuroscience, Tel Aviv, Israel
| | - Irit Sagi
- The Weizmann Institute of Science, Department of Immunology and Regenerative Biology, Rehovot, Israel
| |
Collapse
|
12
|
Ojala KE, Staib M, Gerster S, Ruff CC, Bach DR. Inhibiting Human Aversive Memory by Transcranial Theta-Burst Stimulation to the Primary Sensory Cortex. Biol Psychiatry 2022; 92:149-157. [PMID: 35410762 DOI: 10.1016/j.biopsych.2022.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Predicting adverse events from past experience is fundamental for many biological organisms. However, some individuals suffer from maladaptive memories that impair behavioral control and well-being, e.g., after psychological trauma. Inhibiting the formation and maintenance of such memories would have high clinical relevance. Previous preclinical research has focused on systemically administered pharmacological interventions, which cannot be targeted to specific neural circuits in humans. Here, we investigated the potential of noninvasive neural stimulation on the human sensory cortex in inhibiting aversive memory in a laboratory threat conditioning model. METHODS We build on an emerging nonhuman literature suggesting that primary sensory cortices may be crucially required for threat memory formation and consolidation. Immediately before conditioning innocuous somatosensory stimuli (conditioned stimuli [CS]) to aversive electric stimulation, healthy human participants received continuous theta-burst transcranial magnetic stimulation (cTBS) to individually localized primary somatosensory cortex in either the CS-contralateral (experimental) or CS-ipsilateral (control) hemisphere. We measured fear-potentiated startle to infer threat memory retention on the next day, as well as skin conductance and pupil size during learning. RESULTS After overnight consolidation, threat memory was attenuated in the experimental group compared with the control cTBS group. There was no evidence that this differed between simple and complex CS or that CS identification or initial learning were affected by cTBS. CONCLUSIONS Our results suggest that cTBS to the primary sensory cortex inhibits threat memory, likely by an impact on postlearning consolidation. We propose that noninvasive targeted stimulation of the sensory cortex may provide a new avenue for interfering with aversive memories in humans.
Collapse
Affiliation(s)
- Karita E Ojala
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland; Neuroscience Centre Zurich, University of Zürich, Zürich, Switzerland.
| | - Matthias Staib
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland; Neuroscience Centre Zurich, University of Zürich, Zürich, Switzerland
| | - Samuel Gerster
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Christian C Ruff
- Neuroscience Centre Zurich, University of Zürich, Zürich, Switzerland; Zurich Center for Neuroeconomics, Department of Economics, University of Zürich, Zürich, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland; Neuroscience Centre Zurich, University of Zürich, Zürich, Switzerland; Wellcome Centre for Human Neuroimaging and Max-Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Corbo J, McClure JP, Erkat OB, Polack PO. Dynamic Distortion of Orientation Representation after Learning in the Mouse Primary Visual Cortex. J Neurosci 2022; 42:4311-4325. [PMID: 35477902 PMCID: PMC9145234 DOI: 10.1523/jneurosci.2272-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Learning is an essential cognitive mechanism allowing behavioral adaptation through adjustments in neuronal processing. It is associated with changes in the activity of sensory cortical neurons evoked by task-relevant stimuli. However, the exact nature of those modifications and the computational advantages they may confer are still debated. Here, we investigated how learning an orientation discrimination task alters the neuronal representations of the cues orientations in the primary visual cortex (V1) of male and female mice. When comparing the activity evoked by the task stimuli in naive mice and the mice performing the task, we found that the representations of the orientation of the rewarded and nonrewarded cues were more accurate and stable in trained mice. This better cue representation in trained mice was associated with a distortion of the orientation representation space such that stimuli flanking the task-relevant orientations were represented as the task stimuli themselves, suggesting that those stimuli were generalized as the task cues. This distortion was context dependent as it was absent in trained mice passively viewing the task cues and enhanced in the behavioral sessions where mice performed best. Those modifications of the V1 population orientation representation in performing mice were supported by a suppression of the activity of neurons tuned for orientations neighboring the orientations of the task cues. Thus, visual processing in V1 is dynamically adapted to enhance the reliability of the representation of the learned cues and favor generalization in the task-relevant computational space.SIGNIFICANCE STATEMENT Performance improvement in a task often requires facilitating the extraction of the information necessary to its execution. Here, we demonstrate the existence of a suppression mechanism that improves the representation of the orientations of the task stimuli in the V1 of mice performing an orientation discrimination task. We also show that this mechanism distorts the V1 orientation representation space, leading stimuli flanking the task stimuli orientations to be generalized as the task stimuli themselves.
Collapse
Affiliation(s)
- Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| | - John P McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102
| | - O Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| |
Collapse
|
14
|
Poort J, Wilmes KA, Blot A, Chadwick A, Sahani M, Clopath C, Mrsic-Flogel TD, Hofer SB, Khan AG. Learning and attention increase visual response selectivity through distinct mechanisms. Neuron 2022; 110:686-697.e6. [PMID: 34906356 PMCID: PMC8860382 DOI: 10.1016/j.neuron.2021.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn their behavioral relevance and across seconds when animals switch attention. While both phenomena occur in the same circuit, it is unknown whether they rely on similar mechanisms. We imaged primary visual cortex as mice learned a visual discrimination task and subsequently performed an attention switching task. Selectivity changes due to learning and attention were uncorrelated in individual neurons. Selectivity increases after learning mainly arose from selective suppression of responses to one of the stimuli but from selective enhancement and suppression during attention. Learning and attention differentially affected interactions between excitatory and PV, SOM, and VIP inhibitory cells. Circuit modeling revealed that cell class-specific top-down inputs best explained attentional modulation, while reorganization of local functional connectivity accounted for learning-related changes. Thus, distinct mechanisms underlie increased discriminability of relevant sensory stimuli across longer and shorter timescales.
Collapse
Affiliation(s)
- Jasper Poort
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Antonin Blot
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | | | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Sonja B Hofer
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Adil G Khan
- Biozentrum, University of Basel, Basel, Switzerland; Centre for Developmental Neurobiology, King's College London, London, UK.
| |
Collapse
|
15
|
Lee J, Urban-Ciecko J, Park E, Zhu M, Myal SE, Margolis DJ, Barth AL. FosGFP expression does not capture a sensory learning-related engram in superficial layers of mouse barrel cortex. Proc Natl Acad Sci U S A 2021; 118:e2112212118. [PMID: 34930843 PMCID: PMC8719899 DOI: 10.1073/pnas.2112212118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on "engrams" in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP- neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.
Collapse
Affiliation(s)
- Jiseok Lee
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Joanna Urban-Ciecko
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Stephanie E Myal
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213;
| |
Collapse
|
16
|
Glas A, Hübener M, Bonhoeffer T, Goltstein PM. Spaced training enhances memory and prefrontal ensemble stability in mice. Curr Biol 2021; 31:4052-4061.e6. [PMID: 34324833 DOI: 10.1016/j.cub.2021.06.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022]
Abstract
It is commonly acknowledged that memory is substantially improved when learning is distributed over time, an effect called the "spacing effect". So far it has not been studied how spaced learning affects the neuronal ensembles presumably underlying memory. In the present study, we investigate whether trial spacing increases the stability or size of neuronal ensembles. Mice were trained in the "everyday memory" task, an appetitive, naturalistic, delayed matching-to-place task. Spacing trials by 60 min produced more robust memories than training with shorter or longer intervals. c-Fos labeling and chemogenetic inactivation established the involvement of the dorsomedial prefrontal cortex (dmPFC) in successful memory storage. In vivo calcium imaging of excitatory dmPFC neurons revealed that longer trial spacing increased the similarity of the population activity pattern on subsequent encoding trials and upon retrieval. Conversely, trial spacing did not affect the size of the total neuronal ensemble or the size of subpopulations dedicated to specific task-related behaviors and events. Thus, spaced learning promotes reactivation of prefrontal neuronal ensembles processing episodic-like memories.
Collapse
Affiliation(s)
- Annet Glas
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany
| | - Mark Hübener
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tobias Bonhoeffer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Pieter M Goltstein
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
17
|
Shapira R, Gdalyahu A, Gottfried I, Sasson E, Hadanny A, Efrati S, Blinder P, Ashery U. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer's disease mouse model and in elderly patients. Aging (Albany NY) 2021; 13:20935-20961. [PMID: 34499614 PMCID: PMC8457592 DOI: 10.18632/aging.203485] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/10/2021] [Indexed: 04/21/2023]
Abstract
Vascular dysfunction is entwined with aging and in the pathogenesis of Alzheimer's disease (AD) and contributes to reduced cerebral blood flow (CBF) and consequently, hypoxia. Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis. HBOT increased arteriolar luminal diameter and elevated CBF, thus contributing to reduced hypoxia. Furthermore, HBOT reduced amyloid burden by reducing the volume of pre-existing plaques and attenuating the formation of new ones. This was associated with changes in amyloid precursor protein processing, elevated degradation and clearance of Aß protein and improved behavior of 5XFAD mice. Hence, our findings are consistent with the effects of HBOT being mediated partially through a persistent structural change in blood vessels that reduces brain hypoxia. Motivated by these findings, we exposed elderly patients with significant memory loss at baseline to HBOT and observed an increase in CBF and improvement in cognitive performances. This study demonstrates HBOT efficacy in hypoxia-related neurological conditions, particularly in AD and aging.
Collapse
Affiliation(s)
- Ronit Shapira
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Amos Gdalyahu
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Shai Efrati
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
18
|
Monk KJ, Allard S, Hussain Shuler MG. Visual Cues Predictive of Behaviorally Neutral Outcomes Evoke Persistent but Not Interval Timing Activity in V1, Whereas Aversive Conditioning Suppresses This Activity. Front Syst Neurosci 2021; 15:611744. [PMID: 33746718 PMCID: PMC7973048 DOI: 10.3389/fnsys.2021.611744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022] Open
Abstract
Cue-evoked persistent activity is neural activity that persists beyond stimulation of a sensory cue and has been described in many regions of the brain, including primary sensory areas. Nonetheless, the functional role that persistent activity plays in primary sensory areas is enigmatic. However, one form of persistent activity in a primary sensory area is the representation of time between a visual stimulus and a water reward. This “reward timing activity”—observed within the primary visual cortex—has been implicated in informing the timing of visually cued, reward-seeking actions. Although rewarding outcomes are sufficient to engender interval timing activity within V1, it is unclear to what extent cue-evoked persistent activity exists outside of reward conditioning, and whether temporal relationships to other outcomes (such as behaviorally neutral or aversive outcomes) are able to engender timing activity. Here we describe the existence of cue-evoked persistent activity in mouse V1 following three conditioning strategies: pseudo-conditioning (where unpaired, monocular visual stimuli are repeatedly presented to an animal), neutral conditioning (where monocular visual stimuli are paired with a binocular visual stimulus, at a delay), and aversive conditioning (where monocular visual stimuli are paired with a tail shock, at a delay). We find that these conditioning strategies exhibit persistent activity that takes one of three forms, a sustained increase of activity; a sustained decrease of activity; or a delayed, transient peak of activity, as previously observed following conditioning with delayed reward. However, these conditioning strategies do not result in visually cued interval timing activity, as observed following appetitive conditioning. Moreover, we find that neutral conditioning increases the magnitude of cue-evoked responses whereas aversive conditioning strongly diminished both the response magnitude and the prevalence of cue-evoked persistent activity. These results demonstrate that cue-evoked persistent activity within V1 can exist outside of conditioning visual stimuli with delayed outcomes and that this persistent activity can be uniquely modulated across different conditioning strategies using unconditioned stimuli of varying behavioral relevance. Together, these data extend our understanding of cue-evoked persistent activity within a primary sensory cortical network and its ability to be modulated by salient outcomes.
Collapse
Affiliation(s)
- Kevin J Monk
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Baltimore, MD, United States
| | - Simon Allard
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Baltimore, MD, United States
| | - Marshall G Hussain Shuler
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Baltimore, MD, United States
| |
Collapse
|
19
|
Ho A, Khan Y, Fischberg G, Mahato D. Clinical Application of Brain Plasticity in Neurosurgery. World Neurosurg 2020; 146:31-39. [PMID: 32916359 DOI: 10.1016/j.wneu.2020.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/15/2023]
Abstract
Brain plasticity is an ongoing process of reorganization not only on the macroscopic level but also from underlying changes at the cellular and molecular levels of neurons. This evolution has not yet been fully understood. The objective of this paper is to review and understand neuroplasticity through the review of literature, imaging, and intraoperative evidence.
Collapse
Affiliation(s)
- Alison Ho
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, USA
| | - Yasir Khan
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, USA
| | - Glenn Fischberg
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, USA
| | - Deependra Mahato
- Department of Neurosurgery, Desert Regional Medical Center, Palm Springs, California, USA.
| |
Collapse
|
20
|
Monk KJ, Allard S, Hussain Shuler MG. Reward Timing and Its Expression by Inhibitory Interneurons in the Mouse Primary Visual Cortex. Cereb Cortex 2020; 30:4662-4676. [PMID: 32202618 DOI: 10.1093/cercor/bhaa068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
The primary sensory cortex has historically been studied as a low-level feature detector, but has more recently been implicated in many higher-level cognitive functions. For instance, after an animal learns that a light predicts water at a fixed delay, neurons in the primary visual cortex (V1) can produce "reward timing activity" (i.e., spike modulation of various forms that relate the interval between the visual stimulus and expected reward). Local manipulations to V1 implicate it as a site of learning reward timing activity (as opposed to simply reporting timing information from another region via feedback input). However, the manner by which V1 then produces these representations is unknown. Here, we combine behavior, in vivo electrophysiology, and optogenetics to investigate the characteristics of and circuit mechanisms underlying V1 reward timing in the head-fixed mouse. We find that reward timing activity is present in mouse V1, that inhibitory interneurons participate in reward timing, and that these representations are consistent with a theorized network architecture. Together, these results deepen our understanding of V1 reward timing and the manner by which it is produced.
Collapse
Affiliation(s)
- Kevin J Monk
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.,Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Simon Allard
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.,Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Marshall G Hussain Shuler
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.,Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Lee CR, Najafizadeh L, Margolis DJ. Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Struct Funct 2020; 225:467-480. [PMID: 32006147 DOI: 10.1007/s00429-019-02001-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from diverse brain regions that have been enabled by chronic in vivo cellular imaging. Insight into the neural basis of learning and decision-making, in particular, benefit from the ability to acquire longitudinal data from genetically identified neuronal populations, deep brain areas, and subcellular structures. We propose that combining chronic imaging with further experimental and computational innovations will advance our understanding of the neural circuit mechanisms of brain function.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
22
|
Todd RM, Miskovic V, Chikazoe J, Anderson AK. Emotional Objectivity: Neural Representations of Emotions and Their Interaction with Cognition. Annu Rev Psychol 2020; 71:25-48. [DOI: 10.1146/annurev-psych-010419-051044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in our understanding of information states in the human brain have opened a new window into the brain's representation of emotion. While emotion was once thought to constitute a separate domain from cognition, current evidence suggests that all events are filtered through the lens of whether they are good or bad for us. Focusing on new methods of decoding information states from brain activation, we review growing evidence that emotion is represented at multiple levels of our sensory systems and infuses perception, attention, learning, and memory. We provide evidence that the primary function of emotional representations is to produce unified emotion, perception, and thought (e.g., “That is a good thing”) rather than discrete and isolated psychological events (e.g., “That is a thing. I feel good”). The emergent view suggests ways in which emotion operates as a fundamental feature of cognition, by design ensuring that emotional outcomes are the central object of perception, thought, and action.
Collapse
Affiliation(s)
- Rebecca M. Todd
- Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vladimir Miskovic
- Department of Psychology, State University of New York at Binghamton, Binghamton, New York 13902, USA
| | - Junichi Chikazoe
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Aichi 4448585, Japan
| | - Adam K. Anderson
- Department of Human Development, Human Neuroscience Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
23
|
Emotional learning promotes perceptual predictions by remodeling stimulus representation in visual cortex. Sci Rep 2019; 9:16867. [PMID: 31727912 PMCID: PMC6856165 DOI: 10.1038/s41598-019-52615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Emotions exert powerful effects on perception and memory, notably by modulating activity in sensory cortices so as to capture attention. Here, we examine whether emotional significance acquired by a visual stimulus can also change its cortical representation by linking neuronal populations coding for different memorized versions of the same stimulus, a mechanism that would facilitate recognition across different appearances. Using fMRI, we show that after pairing a given face with threat through conditioning, viewing this face activates the representation of another viewpoint of the same person, which itself was never conditioned, leading to robust repetition-priming across viewpoints in the ventral visual stream (including medial fusiform, lateral occipital, and anterior temporal cortex). We also observed a functional-anatomical segregation for coding view-invariant and view-specific identity information. These results indicate emotional signals may induce plasticity of stimulus representations in visual cortex, serving to generate new sensory predictions about different appearances of threat-associated stimuli.
Collapse
|
24
|
Dalmay T, Abs E, Poorthuis RB, Hartung J, Pu DL, Onasch S, Lozano YR, Signoret-Genest J, Tovote P, Gjorgjieva J, Letzkus JJ. A Critical Role for Neocortical Processing of Threat Memory. Neuron 2019; 104:1180-1194.e7. [PMID: 31727549 DOI: 10.1016/j.neuron.2019.09.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/10/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Memory of cues associated with threat is critical for survival and a leading model for elucidating how sensory information is linked to adaptive behavior by learning. Although the brain-wide circuits mediating auditory threat memory have been intensely investigated, it remains unclear whether the auditory cortex is critically involved. Here we use optogenetic activity manipulations in defined cortical areas and output pathways, viral tracing, pathway-specific in vivo 2-photon calcium imaging, and computational analyses of population plasticity to reveal that the auditory cortex is selectively required for conditioning to complex stimuli, whereas the adjacent temporal association cortex controls all forms of auditory threat memory. More temporal areas have a stronger effect on memory and more neurons projecting to the lateral amygdala, which control memory to complex stimuli through a balanced form of population plasticity that selectively supports discrimination of significant sensory stimuli. Thus, neocortical processing plays a critical role in cued threat memory.
Collapse
Affiliation(s)
- Tamas Dalmay
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Elisabeth Abs
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | | | - Jan Hartung
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - De-Lin Pu
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Sebastian Onasch
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Yave R Lozano
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Jérémy Signoret-Genest
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany; Department of Psychiatry, Center of Mental Health, 97078 Würzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | | |
Collapse
|
25
|
Camon J, Hugues S, Erlandson MA, Robbe D, Lagoun S, Marouane E, Bureau I. The Timing of Sensory-Guided Behavioral Response is Represented in the Mouse Primary Somatosensory Cortex. Cereb Cortex 2019; 29:3034-3047. [PMID: 30060069 DOI: 10.1093/cercor/bhy169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Whisker-guided decision making in mice is thought to critically depend on information processing occurring in the primary somatosensory cortex. However, it is not clear if neuronal activity in this "early" sensory region contains information about the timing and speed of motor response. To address this question we designed a new task in which freely moving mice learned to associate a whisker stimulus to reward delivery. The task was tailored in such a way that a wide range of delays between whisker stimulation and reward collection were observed due to differences of motivation and perception. After training, mice were anesthetized and neuronal responses evoked by stimulating trained and untrained whiskers were recorded across several cortical columns of barrel cortex. We found a strong correlation between the delay of the mouse behavioral response and the timing of multiunit activity evoked by the trained whisker, outside its principal cortical column, in layers 4 and 5A but not in layer 2/3. Circuit mapping ex vivo revealed this effect was associated with a weakening of layer 4 to layer 2/3 projection. We conclude that the processes controlling the propagation of key sensory inputs to naive cortical columns and the timing of sensory-guided action are linked.
Collapse
Affiliation(s)
- Jérémy Camon
- INMED, INSERM U1249, Université Aix-Marseille, Marseille, France
| | - Sandrine Hugues
- INMED, INSERM U1249, Université Aix-Marseille, Marseille, France
| | | | - David Robbe
- INMED, INSERM U1249, Université Aix-Marseille, Marseille, France
| | - Sabria Lagoun
- INMED, INSERM U1249, Université Aix-Marseille, Marseille, France
| | - Emna Marouane
- INMED, INSERM U1249, Université Aix-Marseille, Marseille, France
| | - Ingrid Bureau
- INMED, INSERM U1249, Université Aix-Marseille, Marseille, France
| |
Collapse
|
26
|
Ranjbar-Slamloo Y, Arabzadeh E. Diverse tuning underlies sparse activity in layer 2/3 vibrissal cortex of awake mice. J Physiol 2019; 597:2803-2817. [PMID: 30932197 DOI: 10.1113/jp277506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/22/2019] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Sparse population activity is a common feature observed across cortical areas, yet the implications for sensory coding are not clear. We recorded single neuron activity in the vibrissal somatosensory cortex of awake head-fixed mice using the cell-attached technique. Unlike the anaesthetised condition, in awake mice a high-velocity, piezo-controlled whisker deflection excited only a small fraction of neurons. Manual probing of whiskers revealed that the majority of these silent neurons could be activated by specific forms of whisker-object contact. Our results suggest that sparse coding in vibrissal cortex may be due to high dimensionality of the stimulus space and narrow tuning of individual neurons. ABSTRACT It is widely reported that superficial layers of the somatosensory cortex exhibit sparse firing. This sparseness could reflect weak feedforward sensory inputs that are not sufficient to generate action potentials in these layers. Alternatively, sparseness might reflect tuning to unknown or higher-level complex features that are not fully explored in the stimulus space. Here, we examined these hypotheses by applying a range of vibrotactile and manual vibrissal stimuli in awake, head-fixed mice while performing loose-seal cell-attached recordings from the vibrissal primary somatosensory (vS1) cortex. A high-velocity stimulus delivered by a piezo-electric actuator evoked activity in a small fraction of regular spiking supragranular neurons (23%) in the awake condition. However, a majority of the supragranular regular spiking neurons (84%) were driven by manual stimulation of whiskers. Our results suggest that most neurons in the superficial layers of vS1 cortex contribute to coding in the awake condition when neurons may encounter their preferred feature(s) during whisker-object interactions.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
27
|
Liu X, Chen C, Liu Y, Wang Z, Huang K, Wang F, Wang L. Gentle Handling Attenuates Innate Defensive Responses to Visual Threats. Front Behav Neurosci 2018; 12:239. [PMID: 30405368 PMCID: PMC6200862 DOI: 10.3389/fnbeh.2018.00239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
Innate defensive responses to threats are essential for animal survival. The complexity and variability of innate defensive behaviors can be due to individual experiences, environmental factors, and internal states. However, it is not completely understood if the gentle handling involved in sensory processing affects innate defensive responses to visual threats. Here, we report attenuation of innate defensive responses after gentle handling accompanied by de-excitation of the intermediate layer (IL) and deep layer (DL) of the superior colliculus (SC) but not of the superficial layer (SL). Our theoretical analysis of the c-Fos network revealed an increased correlation in module 1, which maybe generally functionally associated with fear emotional, a decreased correlation in module 2, which maybe generally functionally associated with sensory processing. The IL of the SC appeared to have the highest correlation with the two modules. We verified the dynamic activities of the IL of SC in response to overhead looming stimulus using fiber photometry. Retrograde labeling of 18 regions of interest (ROIs) showed that the IL received significant inputs from the cortical areas, thalamus, hypothalamus, and brainstem. These data suggest the sensory processing involved in the modulatory roles of the SC in innate fear processing.
Collapse
Affiliation(s)
- Xuemei Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanming Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhijie Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kang Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
28
|
Goltstein PM, Meijer GT, Pennartz CM. Conditioning sharpens the spatial representation of rewarded stimuli in mouse primary visual cortex. eLife 2018; 7:37683. [PMID: 30222107 PMCID: PMC6141231 DOI: 10.7554/elife.37683] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
Reward is often employed as reinforcement in behavioral paradigms but it is unclear how the visuospatial aspect of a stimulus-reward association affects the cortical representation of visual space. Using a head-fixed paradigm, we conditioned mice to associate the same visual pattern in adjacent retinotopic regions with availability and absence of reward. Time-lapse intrinsic optical signal imaging under anesthesia showed that conditioning increased the spatial separation of mesoscale cortical representations of reward predicting- and non-reward predicting stimuli. Subsequent in vivo two-photon calcium imaging revealed that this improved separation correlated with enhanced population coding for retinotopic location, specifically for the trained orientation and spatially confined to the V1 region where rewarded and non-rewarded stimulus representations bordered. These results are corroborated by conditioning-induced differences in the correlation structure of population activity. Thus, the cortical representation of visual space is sharpened as consequence of associative stimulus-reward learning while the overall retinotopic map remains unaltered.
Collapse
Affiliation(s)
- Pieter M Goltstein
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Guido T Meijer
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel Ma Pennartz
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Finnie PSB, Gamache K, Protopoulos M, Sinclair E, Baker AG, Wang SH, Nader K. Cortico-hippocampal Schemas Enable NMDAR-Independent Fear Conditioning in Rats. Curr Biol 2018; 28:2900-2909.e5. [PMID: 30197087 DOI: 10.1016/j.cub.2018.07.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023]
Abstract
The neurobiology of memory formation has been studied primarily in experimentally naive animals, but the majority of learning unfolds on a background of prior experience. Considerable evidence now indicates that the brain processes initial and subsequent learning differently. In rodents, a first instance of contextual fear conditioning requires NMDA receptor (NMDAR) activation in the dorsal hippocampus, but subsequent conditioning to another context does not. This shift may result from a change in molecular plasticity mechanisms or in the information required to learn the second task. To clarify how related events are encoded, it is critical to identify which aspect of a first task engages NMDAR-independent learning and the brain regions that maintain this state. Here, we show in rats that the requirement for NMDARs in hippocampus depends neither on prior exposure to context nor footshock alone but rather on the procedural similarity between two conditioning tasks. Importantly, NMDAR-independent learning requires the memory of the first task to remain hippocampus dependent. Furthermore, disrupting memory maintenance in the anterior cingulate cortex after the first task also reinstates NMDAR dependency. These results reveal cortico-hippocampal interactions supporting experience-dependent learning.
Collapse
Affiliation(s)
- Peter S B Finnie
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Karine Gamache
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Maria Protopoulos
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Elizabeth Sinclair
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Andrew G Baker
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building GU507c, Edinburgh EH16 4SB, UK.
| | - Karim Nader
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
30
|
Neural Coding of Whisker-Mediated Touch in Primary Somatosensory Cortex Is Altered Following Early Blindness. J Neurosci 2018; 38:6172-6189. [PMID: 29807911 DOI: 10.1523/jneurosci.0066-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022] Open
Abstract
Sensory systems do not develop and function independently of one another, yet they are typically studied in isolation. Effects of multisensory interactions on the developing neocortex can be revealed by altering the ratios of incoming sensory inputs associated with different modalities. We investigated neural responses in primary somatosensory cortex (S1) of short-tailed opossums (Monodelphis domestica; either sex) after the elimination of visual input through bilateral enucleation very early in development. To assess the influence of tactile experience after vision loss, we also examined naturally occurring patterns of exploratory behavior. In early blind (EB) animals, overall levels of tactile experience were similar to those of sighted controls (SC); locomotor activity was unimpaired and accompanied by whisking. Using extracellular single-unit recording techniques under anesthesia, we found that EB animals exhibited a reduction in the magnitude of neural responses to whisker stimuli in S1, coupled with spatial sharpening of receptive fields, in comparison to SC animals. These alterations manifested as two different effects on sensory processing in S1 of EB animals: the ability of neurons to detect single whisker stimulation was decreased, whereas their ability to discriminate between stimulation of neighboring whiskers was enhanced. The increased selectivity of S1 neurons in EB animals was reflected in improved population decoding performance for whisker stimulus position, particularly along the rostrocaudal axis of the snout, which aligns with the primary axis of natural whisker motion. These findings suggest that a functionally distinct form of somatosensory plasticity occurs when vision is lost early in development.SIGNIFICANCE STATEMENT After sensory loss, compensatory behavior mediated through the spared senses could be generated entirely through the recruitment of brain areas associated with the deprived sense. Alternatively, functional compensation in spared modalities may be achieved through a combination of plasticity in brain areas corresponding to both spared and deprived sensory modalities. Although activation of neurons in cortex associated with a deprived sense has been described frequently, it is unclear whether this is the only substrate available for compensation or if plasticity within cortical fields corresponding to spared modalities, particularly primary sensory cortices, may also contribute. Here, we demonstrate empirically that early loss of vision alters coding of sensory inputs in primary somatosensory cortex in a manner that supports enhanced tactile discrimination.
Collapse
|
31
|
Khan AG, Poort J, Chadwick A, Blot A, Sahani M, Mrsic-Flogel TD, Hofer SB. Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex. Nat Neurosci 2018; 21:851-859. [PMID: 29786081 DOI: 10.1038/s41593-018-0143-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
Abstract
How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Adil G Khan
- Biozentrum, University of Basel, Basel, Switzerland. .,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Jasper Poort
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Antonin Blot
- Biozentrum, University of Basel, Basel, Switzerland.,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Basel, Switzerland. .,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Sonja B Hofer
- Biozentrum, University of Basel, Basel, Switzerland. .,Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
32
|
Todd RM, Manaligod MG. Implicit guidance of attention: The priority state space framework. Cortex 2018; 102:121-138. [DOI: 10.1016/j.cortex.2017.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/09/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023]
|
33
|
Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice. J Neurosci 2018; 38:4623-4640. [PMID: 29669746 DOI: 10.1523/jneurosci.3559-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing nonspecifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and nonconditioned odors, potentially priming the system toward generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings.SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning-independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important implications for altered sensory processing in fear generalization.
Collapse
|
34
|
Abstract
Rewiring is a plasticity mechanism that alters connectivity between neurons. Evidence for rewiring has been difficult to obtain. New evidence indicates that local circuitry is rewired during learning. Harnessing rewiring offers new ways to treat psychiatric and neurological diseases.
Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the “connectome” to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought. To what extent can neural circuitry be rewired in the healthy adult brain? The connectome has been subdivided into multiple levels of scale, from synapses and microcircuits through to long-range tracts. Here, we examine the evidence for rewiring at each level. We then consider the role played by rewiring during learning. We conclude that harnessing rewiring offers new avenues to treat brain diseases.
Collapse
Affiliation(s)
- Sophie H Bennett
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Alastair J Kirby
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Gerald T Finnerty
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
35
|
Abstract
Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.
Collapse
Affiliation(s)
- Dominik Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
36
|
Kass MD, McGann JP. Persistent, generalized hypersensitivity of olfactory bulb interneurons after olfactory fear generalization. Neurobiol Learn Mem 2017; 146:47-57. [PMID: 29104178 PMCID: PMC5886010 DOI: 10.1016/j.nlm.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022]
Abstract
Generalization of fear from previously threatening stimuli to novel but related stimuli can be beneficial, but if fear overgeneralizes to inappropriate situations it can produce maladaptive behaviors and contribute to pathological anxiety. Appropriate fear learning can selectively facilitate early sensory processing of threat-predictive stimuli, but it is unknown if fear generalization has similarly generalized neurosensory consequences. We performed in vivo optical neurophysiology to visualize odor-evoked neural activity in populations of periglomerular interneurons in the olfactory bulb 1 day before, 1 day after, and 1 month after each mouse underwent an olfactory fear conditioning paradigm designed to promote generalized fear of odors. Behavioral and neurophysiological changes were assessed in response to a panel of odors that varied in similarity to the threat-predictive odor at each time point. After conditioning, all odors evoked similar levels of freezing behavior, regardless of similarity to the threat-predictive odor. Freezing significantly correlated with large changes in odor-evoked periglomerular cell activity, including a robust, generalized facilitation of the response to all odors, broadened odor tuning, and increased neural responses to lower odor concentrations. These generalized effects occurred within 24 h of a single conditioning session, persisted for at least 1 month, and were detectable even in the first moments of the brain's response to odors. The finding that generalized fear includes altered early sensory processing of not only the threat-predictive stimulus but also novel though categorically-similar stimuli may have important implications for the etiology and treatment of anxiety disorders with sensory sequelae.
Collapse
Affiliation(s)
- Marley D Kass
- Behavioral & Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - John P McGann
- Behavioral & Systems Neuroscience Section, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
37
|
Makino H, Hwang EJ, Hedrick NG, Komiyama T. Circuit Mechanisms of Sensorimotor Learning. Neuron 2017; 92:705-721. [PMID: 27883902 DOI: 10.1016/j.neuron.2016.10.029] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022]
Abstract
The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process into three hierarchical levels with distinct goals: (1) sensory perceptual learning, (2) sensorimotor associative learning, and (3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior.
Collapse
Affiliation(s)
- Hiroshi Makino
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Jung Hwang
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan G Hedrick
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Rhodes LJ, Ruiz A, Ríos M, Nguyen T, Miskovic V. Differential aversive learning enhances orientation discrimination. Cogn Emot 2017; 32:885-891. [PMID: 28683593 DOI: 10.1080/02699931.2017.1347084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A number of recent studies have documented rapid changes in behavioural sensory acuity induced by aversive learning in the olfactory and auditory modalities. The effect of aversive learning on the discrimination of low-level features in the visual system of humans remains unclear. Here, we used a psychophysical staircase procedure to estimate discrimination thresholds for oriented grating stimuli, before and after differential aversive learning. We discovered that when a target grating orientation was conditioned with an aversive loud noise, it subsequently led to an improvement of discrimination acuity in nearly all subjects. However, no such change was observed in a control group conditioned to an orientation shifted by ±90° from the target. Our findings cannot be explained by contextual learning or sensitisation factors. The results converge with those reported in the olfactory modality and provide further evidence that early sensory systems can be rapidly modified by recently experienced reinforcement histories.
Collapse
Affiliation(s)
- L Jack Rhodes
- a Department of Psychology , State University of New York (SUNY) at Binghamton , Binghamton , NY , USA
| | - Aholibama Ruiz
- a Department of Psychology , State University of New York (SUNY) at Binghamton , Binghamton , NY , USA
| | - Matthew Ríos
- a Department of Psychology , State University of New York (SUNY) at Binghamton , Binghamton , NY , USA
| | - Thomas Nguyen
- a Department of Psychology , State University of New York (SUNY) at Binghamton , Binghamton , NY , USA
| | - Vladimir Miskovic
- a Department of Psychology , State University of New York (SUNY) at Binghamton , Binghamton , NY , USA.,b Center for Affective Science , State University of New York (SUNY) at Binghamton , Binghamton , NY , USA
| |
Collapse
|
39
|
Iram T, Trudler D, Kain D, Kanner S, Galron R, Vassar R, Barzilai A, Blinder P, Fishelson Z, Frenkel D. Astrocytes from old Alzheimer's disease mice are impaired in Aβ uptake and in neuroprotection. Neurobiol Dis 2016; 96:84-94. [DOI: 10.1016/j.nbd.2016.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/11/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022] Open
|
40
|
Kastellakis G, Silva AJ, Poirazi P. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell Rep 2016; 17:1491-1504. [PMID: 27806290 PMCID: PMC5149530 DOI: 10.1016/j.celrep.2016.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022] Open
Abstract
Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1) learning of a single associative memory, (2) rescuing of a weak memory when paired with a strong one, and (3) linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.
Collapse
Affiliation(s)
- George Kastellakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), N. Plastira 100, P.O. Box 1385, Heraklion, Crete 70013, Greece; Department of Biology, University of Crete, P.O. Box 2208, Heraklion, Crete 70013, Greece
| | - Alcino J Silva
- Integrative Center for Learning and Memory, Departments of Neurobiology, Psychology, and Psychiatry, and Brain Research Institute, UCLA, 2554 Gonda Center, Los Angeles, CA 90095, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology, Hellas (FORTH), N. Plastira 100, P.O. Box 1385, Heraklion, Crete 70013, Greece.
| |
Collapse
|
41
|
Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 2016; 19:1553-1562. [PMID: 27749830 DOI: 10.1038/nn.4418] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Learning and memory are associated with the formation and modification of neuronal assemblies: populations of neurons that encode what has been learned and mediate memory retrieval upon recall. Functional studies of neuronal assemblies have progressed dramatically thanks to recent technological advances. Here we discuss how a focus on assembly formation and consolidation has provided a powerful conceptual framework to relate mechanistic studies of synaptic and circuit plasticity to behaviorally relevant aspects of learning and memory. Neurons are likely recruited to particular learning-related assemblies as a function of their relative excitabilities and synaptic activation, followed by selective strengthening of pre-existing synapses, formation of new connections and elimination of outcompeted synapses to ensure memory formation. Mechanistically, these processes involve linking transcription to circuit modification. They include the expression of immediate early genes and specific molecular and cellular events, supported by network-wide activities that are shaped and modulated by local inhibitory microcircuits.
Collapse
|
42
|
Lebida K, Mozrzymas JW. Spike Timing-Dependent Plasticity in the Mouse Barrel Cortex Is Strongly Modulated by Sensory Learning and Depends on Activity of Matrix Metalloproteinase 9. Mol Neurobiol 2016; 54:6723-6736. [PMID: 27744572 PMCID: PMC5622912 DOI: 10.1007/s12035-016-0174-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Experience and learning in adult primary somatosensory cortex are known to affect neuronal circuits by modifying both excitatory and inhibitory transmission. Synaptic plasticity phenomena provide a key substrate for cognitive processes, but precise description of the cellular and molecular correlates of learning is hampered by multiplicity of these mechanisms in various projections and in different types of neurons. Herein, we investigated the impact of associative learning on neuronal plasticity in distinct types of postsynaptic neurons by checking the impact of classical conditioning (pairing whisker stroking with tail shock) on the spike timing-dependent plasticity (t-LTP and t-LTD) in the layer IV to II/III vertical pathway of the mouse barrel cortex. Learning in this paradigm practically prevented t-LTP measured in pyramidal neurons but had no effect on t-LTD. Since classical conditioning is known to affect inhibition in the barrel cortex, we examined its effect on tonic GABAergic currents and found a strong downregulation of these currents in the layer II/III interneurons but not in pyramidal cells. Matrix metalloproteinases emerged as crucial players in synaptic plasticity and learning. We report that the blockade of MMP-9 (but not MMP-3) abolished t-LTP having no effect on t-LTD. Moreover, associative learning resulted in an upregulation of gelatinolytic activity within the "trained" barrel. We conclude that LTP induced by spike timing-dependent plasticity (STDP) paradigm is strongly correlated with associative learning and critically depends on the activity of MMP-9.
Collapse
Affiliation(s)
- Katarzyna Lebida
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3a, 50-368, Wroclaw, Poland.
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Chalubinskiego 3a, 50-368, Wroclaw, Poland.,Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
43
|
Juszczak GR. The low-frequency (delta and theta) oscillations model of hallucinations integrating neuronal mechanism of object representation, emotions, plasticity, memory and noise signal. Med Hypotheses 2016; 88:34. [PMID: 26880633 DOI: 10.1016/j.mehy.2016.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/24/2015] [Accepted: 01/16/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| |
Collapse
|
44
|
McGann JP. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? ACTA ACUST UNITED AC 2015; 22:567-76. [PMID: 26472647 PMCID: PMC4749728 DOI: 10.1101/lm.039636.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/03/2015] [Indexed: 01/31/2023]
Abstract
Historically, the body's sensory systems have been presumed to provide the brain with raw information about the external environment, which the brain must interpret to select a behavioral response. Consequently, studies of the neurobiology of learning and memory have focused on circuitry that interfaces between sensory inputs and behavioral outputs, such as the amygdala and cerebellum. However, evidence is accumulating that some forms of learning can in fact drive stimulus-specific changes very early in sensory systems, including not only primary sensory cortices but also precortical structures and even the peripheral sensory organs themselves. This review synthesizes evidence across sensory modalities to report emerging themes, including the systems’ flexibility to emphasize different aspects of a sensory stimulus depending on its predictive features and ability of different forms of learning to produce similar plasticity in sensory structures. Potential functions of this learning-induced neuroplasticity are discussed in relation to the challenges faced by sensory systems in changing environments, and evidence for absolute changes in sensory ability is considered. We also emphasize that this plasticity may serve important nonsensory functions, including balancing metabolic load, regulating attentional focus, and facilitating downstream neuroplasticity.
Collapse
Affiliation(s)
- John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
45
|
Projections from neocortex mediate top-down control of memory retrieval. Nature 2015; 526:653-9. [PMID: 26436451 DOI: 10.1038/nature15389] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Top-down prefrontal cortex inputs to the hippocampus have been hypothesized to be important in memory consolidation, retrieval, and the pathophysiology of major psychiatric diseases; however, no such direct projections have been identified and functionally described. Here we report the discovery of a monosynaptic prefrontal cortex (predominantly anterior cingulate) to hippocampus (CA3 to CA1 region) projection in mice, and find that optogenetic manipulation of this projection (here termed AC-CA) is capable of eliciting contextual memory retrieval. To explore the network mechanisms of this process, we developed and applied tools to observe cellular-resolution neural activity in the hippocampus while stimulating AC-CA projections during memory retrieval in mice behaving in virtual-reality environments. Using this approach, we found that learning drives the emergence of a sparse class of neurons in CA2/CA3 that are highly correlated with the local network and that lead synchronous population activity events; these neurons are then preferentially recruited by the AC-CA projection during memory retrieval. These findings reveal a sparsely implemented memory retrieval mechanism in the hippocampus that operates via direct top-down prefrontal input, with implications for the patterning and storage of salient memory representations.
Collapse
|
46
|
Makino H, Komiyama T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat Neurosci 2015; 18:1116-22. [PMID: 26167904 PMCID: PMC4523093 DOI: 10.1038/nn.4061] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Theories have proposed that, in sensory cortices, learning can enhance top-down modulation by higher brain areas while reducing bottom-up sensory drives. To address circuit mechanisms underlying this process, we examined the activity of layer 2/3 (L2/3) excitatory neurons in the mouse primary visual cortex (V1) as well as L4 excitatory neurons, the main bottom-up source, and long-range top-down projections from the retrosplenial cortex (RSC) during associative learning over days using chronic two-photon calcium imaging. During learning, L4 responses gradually weakened, whereas RSC inputs became stronger. Furthermore, L2/3 acquired a ramp-up response temporal profile, potentially encoding the timing of the associated event, which coincided with a similar change in RSC inputs. Learning also reduced the activity of somatostatin-expressing inhibitory neurons (SOM-INs) in V1 that could potentially gate top-down inputs. Finally, RSC inactivation or SOM-IN activation was sufficient to partially reverse the learning-induced changes in L2/3. Together, these results reveal a learning-dependent dynamic shift in the balance between bottom-up and top-down information streams and uncover a role of SOM-INs in controlling this process.
Collapse
Affiliation(s)
- Hiroshi Makino
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Takaki Komiyama
- 1] Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California, USA. [2] JST, PRESTO, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
47
|
Poort J, Khan AG, Pachitariu M, Nemri A, Orsolic I, Krupic J, Bauza M, Sahani M, Keller GB, Mrsic-Flogel TD, Hofer SB. Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. Neuron 2015; 86:1478-90. [PMID: 26051421 PMCID: PMC4503798 DOI: 10.1016/j.neuron.2015.05.037] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/07/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli.
Collapse
Affiliation(s)
- Jasper Poort
- University College London, 21 University Street, London WC1E 6DE, UK
| | - Adil G Khan
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; University College London, 21 University Street, London WC1E 6DE, UK
| | - Marius Pachitariu
- Gatsby Computational Neuroscience Unit, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Abdellatif Nemri
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; University College London, 21 University Street, London WC1E 6DE, UK
| | - Ivana Orsolic
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Julija Krupic
- University College London, 21 University Street, London WC1E 6DE, UK
| | - Marius Bauza
- University College London, 21 University Street, London WC1E 6DE, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, 17 Queen Square, London WC1N 3AR, UK
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; University College London, 21 University Street, London WC1E 6DE, UK
| | - Sonja B Hofer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; University College London, 21 University Street, London WC1E 6DE, UK.
| |
Collapse
|
48
|
Gdalyahu A, Lazaro M, Penagarikano O, Golshani P, Trachtenberg JT, Gescwind DH. The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2) Stabilizes New Spines: An In Vivo Mouse Study. PLoS One 2015; 10:e0125633. [PMID: 25951243 PMCID: PMC4423902 DOI: 10.1371/journal.pone.0125633] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
The establishment and maintenance of neuronal circuits depends on tight regulation of synaptic contacts. We hypothesized that CNTNAP2, a protein associated with autism, would play a key role in this process. Indeed, we found that new dendritic spines in mice lacking CNTNAP2 were formed at normal rates, but failed to stabilize. Notably, rates of spine elimination were unaltered, suggesting a specific role for CNTNAP2 in stabilizing new synaptic circuitry.
Collapse
Affiliation(s)
- Amos Gdalyahu
- Department of Neurobiology, Integrative Center for Learning and Memory, Semel Institute for Neuroscience and Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
- * E-mail:
| | - Maria Lazaro
- Department of Neurology, Semel Institute for Neuroscience and Behavior, Program in Neurogenetics and Neurobehavioral Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Olga Penagarikano
- Department of Neurology, Semel Institute for Neuroscience and Behavior, Program in Neurogenetics and Neurobehavioral Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Peyman Golshani
- Department of Neurology, Semel Institute for Neuroscience and Behavior, Program in Neurogenetics and Neurobehavioral Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Joshua T. Trachtenberg
- Department of Neurobiology, Integrative Center for Learning and Memory, Semel Institute for Neuroscience and Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Daniel H. Gescwind
- Department of Neurology, Semel Institute for Neuroscience and Behavior, Program in Neurogenetics and Neurobehavioral Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
49
|
Grosso A, Cambiaghi M, Concina G, Sacco T, Sacchetti B. Auditory cortex involvement in emotional learning and memory. Neuroscience 2015; 299:45-55. [PMID: 25943482 DOI: 10.1016/j.neuroscience.2015.04.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/16/2023]
Abstract
Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged.
Collapse
Affiliation(s)
- A Grosso
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - M Cambiaghi
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - G Concina
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - T Sacco
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | - B Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy; National Institute of Neuroscience, Italy.
| |
Collapse
|
50
|
Abstract
Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers. Single whisker deflection elicited low-probability spikes in highly distributed, shifting neural ensembles spanning multiple cortical columns. Whisker-evoked response probability correlated strongly with spontaneous firing rate, but weakly with tuning properties, indicating a spectrum of inherent responsiveness across pyramidal cells. L2 neurons projecting to motor and secondary somatosensory cortex differed in whisker tuning and responsiveness, and carried different amounts of information about columnar whisker deflection. From these data, we derive a quantitative, fine-scale picture of the distributed point representation in L2.
Collapse
|