1
|
Duan Z, Evans MH, Lawrence B, Curtis CE. Effector general representation of movement goals in human frontal and parietal cortex. Neuroimage 2025; 310:121124. [PMID: 40054761 DOI: 10.1016/j.neuroimage.2025.121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
In the nonhuman primate, discrete parts of premotor frontal and parietal cortex appear to code for movements of different effectors. However, the evidence regarding homologous effector selectivity within the human brain remains inconclusive. Here, we measured neural activity in the human brain using functional magnetic resonance imaging while participants remembered a target location and planned either saccades or reaches that matched the rich kinematics used in seminal monkey studies. We compared activity patterns during the planning period and used assumption-free multivariate searchlight analysis to identify brain regions that could decode the spatial goals of planned movements. Critically, we performed two types of decoding analyses to determine if the spatial information embedded in activation patterns was effector-specific or effector-general. For effector-specific spatial coding, we compared brain regions that could decode target locations within each effector. However, we did not identify areas that coded spatial information in one effector but not the other. For effector-general spatial coding, we performed spatial decoding using trials across effectors and conducted cross-effector decoding. Both analyses identified several areas in the frontal and parietal regions that encoded spatial information for both effectors, including precentral sulcus, superior parietal lobe, and intraparietal sulcus. Our results indicate that premotor frontal and parietal cortex encode the spatial metrics of movement goals that can be read out and converted into effector-specific motor metrics for saccades and reaches.
Collapse
Affiliation(s)
- Ziyi Duan
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Marissa H Evans
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Bonnie Lawrence
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Jurkiewicz T, Delporte L, Revol P, Rossetti Y, Pisella L. Effect of juggling expertise on pointing performance in peripheral vision. PLoS One 2024; 19:e0306630. [PMID: 38995902 PMCID: PMC11244809 DOI: 10.1371/journal.pone.0306630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Juggling is a very complex activity requiring motor, visual and coordination skills. Expert jugglers experience a "third eye" monitoring leftward and rightward ball zenith positions alternately, in the upper visual fields, while maintaining their gaze straight-ahead. This "third eye" reduces their motor noise (improved body stability and decrease in hand movement variability) as it avoids the numerous head and eye movements that add noise into the system and make trajectories more uncertain. Neuroimaging studies have shown that learning to juggle induces white and grey matter hypertrophy at the posterior intraparietal sulcus. Damage to this brain region leads to optic ataxia, a clinical condition characterised by peripheral pointing bias toward gaze position. We predicted that expert jugglers would, conversely, present better accuracy in a peripheral pointing task. The mean pointing accuracy of expert jugglers was better for peripheral pointing within the upper visual field, compatible with their subjective experience of the "third eye". Further analyses showed that experts exhibited much less between-subject variability than beginners, reinforcing the interpretation of a vertically asymmetrical calibration of peripheral space, characteristic of juggling and homogenous in the expert group. On the contrary, individual pointing variability did not differ between groups neither globally nor in any sector of space, showing that the reduced motor noise of experts in juggling did not transfer to pointing. It is concluded that the plasticity of the posterior intraparietal sulcus related to juggling expertise does not consist of globally improved visual-to-motor ability. It rather consists of peripheral space calibration by practicing horizontal covert shifts of the attentional spotlight within the upper visual field, between left and right ball zenith positions.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Centre d’Exploration de la Rétine Kléber, Ophthalmology Department, Lyon, France
| | - Ludovic Delporte
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Patrice Revol
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
| |
Collapse
|
3
|
Ugolini G, Graf W. Pathways from the superior colliculus and the nucleus of the optic tract to the posterior parietal cortex in macaque monkeys: Functional frameworks for representation updating and online movement guidance. Eur J Neurosci 2024; 59:2792-2825. [PMID: 38544445 DOI: 10.1111/ejn.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
The posterior parietal cortex (PPC) integrates multisensory and motor-related information for generating and updating body representations and movement plans. We used retrograde transneuronal transfer of rabies virus combined with a conventional tracer in macaque monkeys to identify direct and disynaptic pathways to the arm-related rostral medial intraparietal area (MIP), the ventral lateral intraparietal area (LIPv), belonging to the parietal eye field, and the pursuit-related lateral subdivision of the medial superior temporal area (MSTl). We found that these areas receive major disynaptic pathways via the thalamus from the nucleus of the optic tract (NOT) and the superior colliculus (SC), mainly ipsilaterally. NOT pathways, targeting MSTl most prominently, serve to process the sensory consequences of slow eye movements for which the NOT is the key sensorimotor interface. They potentially contribute to the directional asymmetry of the pursuit and optokinetic systems. MSTl and LIPv receive feedforward inputs from SC visual layers, which are potential correlates for fast detection of motion, perceptual saccadic suppression and visual spatial attention. MSTl is the target of efference copy pathways from saccade- and head-related compartments of SC motor layers and head-related reticulospinal neurons. They are potential sources of extraretinal signals related to eye and head movement in MSTl visual-tracking neurons. LIPv and rostral MIP receive efference copy pathways from all SC motor layers, providing online estimates of eye, head and arm movements. Our findings have important implications for understanding the role of the PPC in representation updating, internal models for online movement guidance, eye-hand coordination and optic ataxia.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Paris-Saclay Institute of Neuroscience (NeuroPSI), UMR9197 CNRS - Université Paris-Saclay, Campus CEA Saclay, Saclay, France
| | - Werner Graf
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| |
Collapse
|
4
|
Kang JU, Mooshagian E, Snyder LH. Functional organization of posterior parietal cortex circuitry based on inferred information flow. Cell Rep 2024; 43:114028. [PMID: 38581681 PMCID: PMC11090617 DOI: 10.1016/j.celrep.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
Many studies infer the role of neurons by asking what information can be decoded from their activity or by observing the consequences of perturbing their activity. An alternative approach is to consider information flow between neurons. We applied this approach to the parietal reach region (PRR) and the lateral intraparietal area (LIP) in posterior parietal cortex. Two complementary methods imply that across a range of reaching tasks, information flows primarily from PRR to LIP. This indicates that during a coordinated reach task, LIP has minimal influence on PRR and rules out the idea that LIP forms a general purpose spatial processing hub for action and cognition. Instead, we conclude that PRR and LIP operate in parallel to plan arm and eye movements, respectively, with asymmetric interactions that likely support eye-hand coordination. Similar methods can be applied to other areas to infer their functional relationships based on inferred information flow.
Collapse
Affiliation(s)
- Jung Uk Kang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric Mooshagian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Breveglieri R, Borgomaneri S, Bosco A, Filippini M, De Vitis M, Tessari A, Avenanti A, Galletti C, Fattori P. rTMS over the human medial parietal cortex impairs online reaching corrections. Brain Struct Funct 2024; 229:297-310. [PMID: 38141108 PMCID: PMC10917872 DOI: 10.1007/s00429-023-02735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Indirect correlational evidence suggests that the posteromedial sector of the human parietal cortex (area hV6A) is involved in reaching corrections. We interfered with hV6A functions using repetitive transcranial magnetic stimulation (rTMS) while healthy participants performed reaching movements and in-flight adjustments of the hand trajectory in presence of unexpected target shifts. rTMS over hV6A specifically altered action reprogramming, causing deviations of the shifted trajectories, particularly along the vertical dimension (i.e., distance). This study provides evidence of the functional relevance of hV6A in action reprogramming while a sudden event requires a change in performance and shows that hV6A also plays a role in state estimation during reaching. These findings are in line with neurological data showing impairments in actions performed along the distance dimension when lesions occur in the dorsal posterior parietal cortex.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy.
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Alessia Tessari
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
- Department of Psychology, University of Bologna, 40127, Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
- Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000, Talca, Chile
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Li J, Wang W, Cheng J, Li H, Feng L, Ren Y, Liu L, Qian Q, Wang Y. Relationships between sensory integration and the core symptoms of attention-deficit/hyperactivity disorder: the mediating effect of executive function. Eur Child Adolesc Psychiatry 2023; 32:2235-2246. [PMID: 35999304 DOI: 10.1007/s00787-022-02069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by executive function deficits and functional alterations in sensory integration. The present study aimed to investigate the relationship between ADHD core symptoms, executive function, and sensory integration in children with ADHD. A total of 228 children with ADHD were recruited for our study. The Sensory Organization Test (SOT) and Child Sensory Integration Scale (CSIS) evaluated the sensory integration ability from lab-based and scaled-based perspectives, respectively. Three core components of executive functions (inhibition, working memory, and set-shifting) were assessed using both lab-based tests and the relevant factors from the behavior rating inventory of executive function (BRIEF). Partial correlation analysis was performed to explore the correlation of sensory integration with EF and ADHD core symptoms. Based on the observed significant correlation, bootstrap analyses were further conducted to explore the potential mediating effect of EF on the relationship between sensory integration and ADHD core symptoms. ADHD symptoms and EF were significantly correlated with CSIS scores; no factors were significantly correlated with SOT performance. In detail, the vestibular-balance score was negatively correlated with both inattention and hyperactivity/impulsivity symptoms, while the hyper-sensory and proprioception scores were negatively correlated with only inattention symptoms. For the scaled-based EF, vestibular-balance was negatively correlated with inhibition and working memory, and the hyper-sensory score was negatively correlated with shift factor. No correlation was found for the lab-based EF tests. The subsequent mediation analysis found that inhibition partially mediated the relationship between vestibular balance and hyperactivity/impulsivity symptoms. Working memory completely mediated the relationship between vestibular-balance, hyper-sensory, proprioception, and inattention symptoms. These results were well validated in an independent sample. Our present findings demonstrated that the functional alteration in basic sensory integration might be associated with impairments of executive functions and then lead to the behavioral expression of ADHD. The present findings might provide a new perspective to understand the occurrence of ADHD symptoms and potential precise intervention methods.
Collapse
Affiliation(s)
- Jing Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenchen Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jia Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lei Feng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuanchun Ren
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China.
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
7
|
Souza-Couto D, Bretas R, Aversi-Ferreira TA. Neuropsychology of the parietal lobe: Luria's and contemporary conceptions. Front Neurosci 2023; 17:1226226. [PMID: 37928730 PMCID: PMC10623013 DOI: 10.3389/fnins.2023.1226226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
The parietal lobe, constituting approximately 20% of the human brain, comprises two main regions: the somatosensory cortex and the posterior parietal cortex. The former is responsible for receiving and processing information from the organism itself or its external environment, while the latter performs concurrent summaries and higher cognitive functions. The present study seeks to integrate modern research findings with Luria's previous discoveries in order to gain a nuanced understanding of the roles assigned to the parietal lobe as well as its lateralization differences.
Collapse
Affiliation(s)
- Dyecika Souza-Couto
- Laboratory of Biomathematics and Physical Anthropology, Federal University of Alfenas, Alfenas, Brazil
| | | | | |
Collapse
|
8
|
Breveglieri R, Borgomaneri S, Diomedi S, Tessari A, Galletti C, Fattori P. A Short Route for Reach Planning between Human V6A and the Motor Cortex. J Neurosci 2023; 43:2116-2125. [PMID: 36788027 PMCID: PMC10039742 DOI: 10.1523/jneurosci.1609-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023] Open
Abstract
In the macaque monkey, area V6A, located in the medial posterior parietal cortex, contains cells that encode the spatial position of a reaching target. It has been suggested that during reach planning this information is sent to the frontal cortex along a parieto-frontal pathway that connects V6A-premotor cortex-M1. A similar parieto-frontal network may also exist in the human brain, and we aimed here to study the timing of this functional connection during planning of a reaching movement toward different spatial positions. We probed the functional connectivity between human area V6A (hV6A) and the primary motor cortex (M1) using dual-site, paired-pulse transcranial magnetic stimulation with a short (4 ms) and a longer (10 ms) interstimulus interval while healthy participants (18 men and 18 women) planned a visually-guided or a memory-guided reaching movement toward positions located at different depths and directions. We found that, when the stimulation over hV6A is sent 4 ms before the stimulation over M1, hV6A inhibits motor-evoked potentials during planning of either rightward or leftward reaching movements. No modulations were found when the stimulation over hV6A was sent 10 ms before the stimulation over M1, suggesting that only short medial parieto-frontal routes are active during reach planning. Moreover, the short route of hV6A-premotor cortex-M1 is active during reach planning irrespectively of the nature (visual or memory) of the reaching target. These results agree with previous neuroimaging studies and provide the first demonstration of the flow of inhibitory signals between hV6A and M1.SIGNIFICANCE STATEMENT All our dexterous movements depend on the correct functioning of the network of brain areas. Knowing the functional timing of these networks is useful to gain a deeper understanding of how the brain works to enable accurate arm movements. In this article, we probed the parieto-frontal network and demonstrated that it takes 4 ms for the medial posterior parietal cortex to send inhibitory signals to the frontal cortex during reach planning. This fast flow of information seems not to be dependent on the availability of visual information regarding the reaching target. This study opens the way for future studies to test how this timing could be impaired in different neurological disorders.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, 00179 Rome, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessia Tessari
- Department of Psychology "Renzo Canestrari", University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Alma Mater Research Institute for Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Hand choice is unaffected by high frequency continuous theta burst transcranial magnetic stimulation to the posterior parietal cortex. PLoS One 2022; 17:e0275262. [PMID: 36227882 PMCID: PMC9560494 DOI: 10.1371/journal.pone.0275262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The current study used a high frequency TMS protocol known as continuous theta burst stimulation (cTBS) to test a model of hand choice that relies on competing interactions between the hemispheres of the posterior parietal cortex. Based on the assumption that cTBS reduces cortical excitability, the model predicts a significant decrease in the likelihood of selecting the hand contralateral to stimulation. An established behavioural paradigm was used to estimate hand choice in each individual, and these measures were compared across three stimulation conditions: cTBS to the left posterior parietal cortex, cTBS to the right posterior parietal cortex, or sham cTBS. Our results provide no supporting evidence for the interhemispheric competition model. We find no effects of cTBS on hand choice, independent of whether the left or right posterior parietal cortex was stimulated. Our results are nonetheless of value as a point of comparison against prior brain stimulation findings that, in contrast, provide evidence for a causal role for the posterior parietal cortex in hand choice.
Collapse
|
10
|
Bosco A, Bertini C, Filippini M, Foglino C, Fattori P. Machine learning methods detect arm movement impairments in a patient with parieto-occipital lesion using only early kinematic information. J Vis 2022; 22:3. [PMID: 36069943 PMCID: PMC9465938 DOI: 10.1167/jov.22.10.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with lesions of the parieto-occipital cortex typically misreach visual targets that they correctly perceive (optic ataxia). Although optic ataxia was described more than 30 years ago, distinguishing this condition from physiological behavior using kinematic data is still far from being an achievement. Here, combining kinematic analysis with machine learning methods, we compared the reaching performance of a patient with bilateral occipitoparietal damage with that of 10 healthy controls. They performed visually guided reaches toward targets located at different depths and directions. Using the horizontal, sagittal, and vertical deviation of the trajectories, we extracted classification accuracy in discriminating the reaching performance of patient from that of controls. Specifically, accurate predictions of the patient's deviations were detected after the 20% of the movement execution in all the spatial positions tested. This classification based on initial trajectory decoding was possible for both directional and depth components of the movement, suggesting the possibility of applying this method to characterize pathological motor behavior in wider frameworks.
Collapse
Affiliation(s)
- Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Bologna, Italy
- CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Foglino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Abekawa N, Ito S, Gomi H. Gaze-specific motor memories for hand-reaching. Curr Biol 2022; 32:2747-2753.e6. [DOI: 10.1016/j.cub.2022.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
12
|
Goldring AB, Cooke DF, Pineda CR, Recanzone GH, Krubitzer LA. Functional characterization of the fronto-parietal reaching and grasping network: reversible deactivation of M1 and areas 2, 5, and 7b in awake behaving monkeys. J Neurophysiol 2022; 127:1363-1387. [PMID: 35417261 PMCID: PMC9109808 DOI: 10.1152/jn.00279.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
In the present investigation, we examined the role of different cortical fields in the fronto-parietal reaching and grasping network in awake, behaving macaque monkeys. This network is greatly expanded in primates compared to other mammals and coevolved with glabrous hands with opposable thumbs and the extraordinary dexterous behaviors employed by a number of primates, including humans. To examine this, we reversibly deactivated the primary motor area (M1), anterior parietal area 2, and posterior parietal areas 5L and 7b individually while monkeys were performing two types of reaching and grasping tasks. Reversible deactivation was accomplished with small microfluidic thermal regulators abutting specifically targeted cortical areas. Placement of these devices in the different cortical fields was confirmed post hoc in histologically processed tissue. Our results indicate that the different areas examined form a complex network of motor control that is overlapping. However, several consistent themes emerged that suggest the independent roles that motor cortex, area 2, area 7b, and area 5L play in the motor planning and execution of reaching and grasping movements. Area 5L is involved in the early stages and area 7b the later stages of a reaching and grasping movement, motor cortex is involved in all aspects of the execution of the movement, and area 2 provides proprioceptive feedback throughout the movement. We discuss our results in the context of previous studies that explored the fronto-parietal network, the overlapping (but also independent) functions of different nodes of this network, and the rapid compensatory plasticity of this network.NEW & NOTEWORTHY This is the first study to directly compare the results of cooling different portions of the fronto-parietal reaching and grasping network (motor cortex, anterior and posterior parietal cortex) in the same animals and the first to employ a complex, bimanual reaching and grasping task that is ethologically relevant. Whereas cooling area 7b or area 5L evoked deficits at distinct task phases, cooling M1 evoked a general set of deficits and cooling area 2 evoked proprioceptive deficits.
Collapse
Affiliation(s)
- Adam B Goldring
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Dylan F Cooke
- Center for Neuroscience, University of California, Davis, California
- Department of Biomedical Physiology and Kinesiology (BPK), Simon Fraser University, Burnaby, British Columbia, Canada
| | - Carlos R Pineda
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Leah A Krubitzer
- Department of Psychology, University of California, Davis, California
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
13
|
Hagan MA, Pesaran B. Modulation of inhibitory communication coordinates looking and reaching. Nature 2022; 604:708-713. [PMID: 35444285 PMCID: PMC9124440 DOI: 10.1038/s41586-022-04631-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
Looking and reaching are controlled by different brain regions and are coordinated during natural behaviour1. Understanding how flexible, natural behaviours such as coordinated looking and reaching are controlled depends on understanding how neurons in different regions of the brain communicate2. Neural coherence in a gamma-frequency (40-90 Hz) band has been implicated in excitatory multiregional communication3. Inhibitory control mechanisms are also required to flexibly control behaviour4, but little is known about how neurons in one region transiently suppress individual neurons in another to support behaviour. How neuronal firing in a sender region transiently suppresses firing in a receiver region remains poorly understood. Here we study inhibitory communication during a flexible, natural behaviour, termed gaze anchoring, in which saccades are transiently inhibited by coordinated reaches. During gaze anchoring, we found that neurons in the reach region of the posterior parietal cortex can inhibit neuronal firing in the parietal saccade region to suppress eye movements and improve reach accuracy. Suppression is transient, only present around the coordinated reach, and greatest when reach neurons fire spikes with respect to beta-frequency (15-25 Hz) activity, not gamma-frequency activity. Our work provides evidence in the activity of single neurons for a novel mechanism of inhibitory communication in which beta-frequency neural coherence transiently inhibits multiregional communication to flexibly coordinate natural behaviour.
Collapse
Affiliation(s)
- Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Center for Neural Science, New York University, New York, NY, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
14
|
Tanglay O, Young IM, Dadario NB, Briggs RG, Fonseka RD, Dhanaraj V, Hormovas J, Lin YH, Sughrue ME. Anatomy and white-matter connections of the precuneus. Brain Imaging Behav 2021; 16:574-586. [PMID: 34448064 DOI: 10.1007/s11682-021-00529-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Purpose Advances in neuroimaging have provided an understanding of the precuneus'(PCu) involvement in functions such as visuospatial processing and cognition. While the PCu has been previously determined to be apart of a higher-order default mode network (DMN), recent studies suggest the presence of possible dissociations from this model in order to explain the diverse functions the PCu facilitates, such as in episodic memory. An improved structural model of the white-matter anatomy of the PCu can demonstrate its unique cerebral connections with adjacent regions which can provide additional clarity on its role in integrating information across higher-order cerebral networks like the DMN. Furthermore, this information can provide clinically actionable anatomic information that can support clinical decision making to improve neurologic outcomes such as during cerebral surgery. Here, we sought to derive the relationship between the precuneus and underlying major white-mater bundles by characterizing its macroscopic connectivity. Methods Structural tractography was performed on twenty healthy adult controls from the Human Connectome Project (HCP) utilizing previously demonstrated methodology. All precuneus connections were mapped in both cerebral hemispheres and inter-hemispheric differences in resultant tract volumes were compared with an unpaired, corrected Mann-Whitney U test and a laterality index (LI) was completed. Ten postmortem dissections were then performed to serve as ground truth by using a modified Klingler technique with careful preservation of relevant white matter bundles. Results The precuneus is a heterogenous cortical region with five major types of connections that were present bilaterally. (1) Short association fibers connect the gyri of the precuneus and connect the precuneus to the superior parietal lobule and the occipital cortex. (2) Four distinct parts of the cingulum bundle connect the precuneus to the frontal lobe and the temporal lobe. (3) The middle longitudinal fasciculus from the precuneus connects to the superior temporal gyrus and the dorsolateral temporal pole. (4) Parietopontine fibers travel as part of the corticopontine fibers to connect the precuneus to pontine regions. (5) An extensive commissural bundle connects the precuneus bilaterally. Conclusion We present a summary of the anatomic connections of the precuneus as part of an effort to understand the function of the precuneus and highlight key white-matter pathways to inform surgical decision-making. Our findings support recent models suggesting unique fiber connections integrating at the precuneus which may suggest finer subsystems of the DMN or unique networks, but further study is necessary to refine our model in greater quantitative detail.
Collapse
Affiliation(s)
- Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | | | - Nicholas B Dadario
- Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Suite 19, Level 7 Prince of Wales Private Hospital, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
15
|
Hwang EJ, Sato TR, Sato TK. A Canonical Scheme of Bottom-Up and Top-Down Information Flows in the Frontoparietal Network. Front Neural Circuits 2021; 15:691314. [PMID: 34475815 PMCID: PMC8406690 DOI: 10.3389/fncir.2021.691314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Goal-directed behavior often involves temporal separation and flexible context-dependent association between sensory input and motor output. The control of goal-directed behavior is proposed to lie in the frontoparietal network, but the computational architecture of this network remains elusive. Based on recent rodent studies that measured and manipulated projection neurons in the frontoparietal network together with findings from earlier primate studies, we propose a canonical scheme of information flows in this network. The parietofrontal pathway transmits the spatial information of a sensory stimulus or internal motor bias to drive motor programs in the frontal areas. This pathway might consist of multiple parallel connections, each controlling distinct motor effectors. The frontoparietal pathway sends the spatial information of cognitively processed motor plans through multiple parallel connections. Each of these connections could support distinct spatial functions that use the motor target information, including attention allocation, multi-body part coordination, and forward estimation of movement state (i.e., forward models). The parallel pathways in the frontoparietal network enable dynamic interactions between regions that are tuned for specific goal-directed behaviors. This scheme offers a promising framework within which the computational architecture of the frontoparietal network and the underlying circuit mechanisms can be delineated in a systematic way, providing a holistic understanding of information processing in this network. Clarifying this network may also improve the diagnosis and treatment of behavioral deficits associated with dysfunctional frontoparietal connectivity in various neurological disorders including Alzheimer's disease.
Collapse
Affiliation(s)
- Eun Jung Hwang
- Stanson Toshok Center for Brain Function and Repair, Brain Science Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Takashi R. Sato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Tatsuo K. Sato
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
16
|
Greulich RS, Adam R, Everling S, Scherberger H. Shared functional connectivity between the dorso-medial and dorso-ventral streams in macaques. Sci Rep 2020; 10:18610. [PMID: 33122655 PMCID: PMC7596572 DOI: 10.1038/s41598-020-75219-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/07/2020] [Indexed: 12/04/2022] Open
Abstract
Manipulation of an object requires us to transport our hand towards the object (reach) and close our digits around that object (grasp). In current models, reach-related information is propagated in the dorso-medial stream from posterior parietal area V6A to medial intraparietal area, dorsal premotor cortex, and primary motor cortex. Grasp-related information is processed in the dorso-ventral stream from the anterior intraparietal area to ventral premotor cortex and the hand area of primary motor cortex. However, recent studies have cast doubt on the validity of this separation in separate processing streams. We investigated in 10 male rhesus macaques the whole-brain functional connectivity of these areas using resting state fMRI at 7-T. Although we found a clear separation between dorso-medial and dorso-ventral network connectivity in support of the two-stream hypothesis, we also found evidence of shared connectivity between these networks. The dorso-ventral network was distinctly correlated with high-order somatosensory areas and feeding related areas, whereas the dorso-medial network with visual areas and trunk/hindlimb motor areas. Shared connectivity was found in the superior frontal and precentral gyrus, central sulcus, intraparietal sulcus, precuneus, and insular cortex. These results suggest that while sensorimotor processing streams are functionally separated, they can access information through shared areas.
Collapse
Affiliation(s)
- R Stefan Greulich
- Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077, Göttingen, Germany. .,Faculty of Biology and Psychology, University of Goettingen, Göttingen, Germany.
| | - Ramina Adam
- Robarts Research Institute, University of Western Ontario, London, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Hansjörg Scherberger
- Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077, Göttingen, Germany. .,Faculty of Biology and Psychology, University of Goettingen, Göttingen, Germany.
| |
Collapse
|
17
|
Kurtzer IL, Muraoka T, Singh T, Prasad M, Chauhan R, Adhami E. Reaching movements are automatically redirected to nearby options during target split. J Neurophysiol 2020; 124:1013-1028. [PMID: 32783570 DOI: 10.1152/jn.00336.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor behavior often occurs in environments with multiple goal options that can vary during the ongoing action. We explored this situation by requiring subjects to select between different target options during an ongoing reach. During split trials the original target was replaced with a left and a right flanking target, and participants had to select between them. This contrasted with the standard jump trials, where the original target would be replaced with a single flanking target, left or right. When participants were instructed to follow their natural tendency, they all tended to select the split target nearest the original. The near-target preference was more prominent with increased spatial disparity between the options and when participants could preview the potential options. Moreover, explicit instruction to obtain the "far" target during split trials resulted many errors compared with a "near" instruction, ~50% vs. ~15%. Online reaction times to target change were delayed in split trials compared with jump trials, ~200 ms vs. ~150 ms, but also highly automatic. Trials in which the instructed far target was correctly obtained were delayed by a further ~50 ms, unlike those in which the near target was incorrectly obtained. We also observed nonspecific responses from arm muscles at the jump trial latency during split trials. Taken together, our results indicate that online selection of reach targets is automatically linked to the spatial distribution of the options, though at greater delays than redirecting to a single target.NEW & NOTEWORTHY This work demonstrates that target selection during an ongoing reach is automatically linked to the option nearest a voided target. Online reaction times for two options are longer than redirection to a single option. Attempts to override the near-target tendency result in a high number of errors at the normal delay and further delays when the attempt is successful.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Tetsuro Muraoka
- College of Economics, Nihon University, Chiyoda City, Tokyo, Japan
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Prasad
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Riddhi Chauhan
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| | - Elan Adhami
- Department of Biomedical Science, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York
| |
Collapse
|
18
|
Berger M, Agha NS, Gail A. Wireless recording from unrestrained monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex. eLife 2020; 9:e51322. [PMID: 32364495 PMCID: PMC7228770 DOI: 10.7554/elife.51322] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
System neuroscience of motor cognition regarding the space beyond immediate reach mandates free, yet experimentally controlled movements. We present an experimental environment (Reach Cage) and a versatile visuo-haptic interaction system (MaCaQuE) for investigating goal-directed whole-body movements of unrestrained monkeys. Two rhesus monkeys conducted instructed walk-and-reach movements towards targets flexibly positioned in the cage. We tracked 3D multi-joint arm and head movements using markerless motion capture. Movements show small trial-to-trial variability despite being unrestrained. We wirelessly recorded 192 broad-band neural signals from three cortical sensorimotor areas simultaneously. Single unit activity is selective for different reach and walk-and-reach movements. Walk-and-reach targets could be decoded from premotor and parietal but not motor cortical activity during movement planning. The Reach Cage allows systems-level sensorimotor neuroscience studies with full-body movements in a configurable 3D spatial setting with unrestrained monkeys. We conclude that the primate frontoparietal network encodes reach goals beyond immediate reach during movement planning.
Collapse
Affiliation(s)
- Michael Berger
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz-Institute for Primate ResearchGoettingenGermany
- Faculty of Biology and Psychology, University of GoettingenGoettingenGermany
| | - Naubahar Shahryar Agha
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz-Institute for Primate ResearchGoettingenGermany
| | - Alexander Gail
- Cognitive Neuroscience Laboratory, German Primate Center – Leibniz-Institute for Primate ResearchGoettingenGermany
- Faculty of Biology and Psychology, University of GoettingenGoettingenGermany
- Leibniz-ScienceCampus Primate CognitionGoettingenGermany
- Bernstein Center for Computational NeuroscienceGoettingenGermany
| |
Collapse
|
19
|
Chen X, Zirnsak M, Vega GM, Govil E, Lomber SG, Moore T. Parietal Cortex Regulates Visual Salience and Salience-Driven Behavior. Neuron 2020; 106:177-187.e4. [PMID: 32048996 DOI: 10.1016/j.neuron.2020.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
Abstract
Unique stimuli stand out. Despite an abundance of competing sensory stimuli, the detection of the most salient ones occurs without effort, and that detection contributes to the guidance of adaptive behavior. Neurons sensitive to the salience of visual stimuli are widespread throughout the primate visual system and are thought to shape the selection of visual targets. However, a neural source of salience remains elusive. In an attempt to identify a source of visual salience, we reversibly inactivated parietal cortex and simultaneously recorded salience signals in prefrontal cortex. Inactivation of parietal cortex not only caused pronounced and selective reductions of salience signals in prefrontal cortex but also diminished the influence of salience on visually guided behavior. These observations demonstrate a causal role of parietal cortex in regulating salience signals within the brain and in controlling salience-driven behavior.
Collapse
Affiliation(s)
- Xiaomo Chen
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marc Zirnsak
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriel M Vega
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eshan Govil
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen G Lomber
- Department of Physiology and Pharmacology, Department of Psychology, and Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5K8, Canada; Department of Physiology, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Hwang EJ, Link TD, Hu YY, Lu S, Wang EHJ, Lilascharoen V, Aronson S, O'Neil K, Lim BK, Komiyama T. Corticostriatal Flow of Action Selection Bias. Neuron 2019; 104:1126-1140.e6. [PMID: 31706697 PMCID: PMC6923603 DOI: 10.1016/j.neuron.2019.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/05/2019] [Accepted: 09/17/2019] [Indexed: 10/25/2022]
Abstract
The posterior parietal cortex (PPC) performs many functions, including decision making and movement control. It remains unknown which input and output pathways of PPC support different functions. We addressed this issue in mice, focusing on PPC neurons projecting to the dorsal striatum (PPC-STR) and the posterior secondary motor cortex (PPC-pM2). Projection-specific, retrograde labeling showed that PPC-STR and PPC-pM2 represent largely distinct subpopulations, with PPC-STR receiving stronger inputs from association areas and PPC-pM2 receiving stronger sensorimotor inputs. Two-photon calcium imaging during decision making revealed that the PPC-STR population encodes history-dependent choice bias more strongly than PPC-pM2 or general PPC populations. Furthermore, optogenetic inactivation of PPC-STR neurons or their terminals in STR decreased history-dependent bias, while inactivation of PPC-pM2 neurons altered movement kinematics. Therefore, PPC biases action selection through its STR projection while controlling movements through PPC-pM2 neurons. PPC may support multiple functions through parallel subpopulations, each with distinct input-output connectivity.
Collapse
Affiliation(s)
- Eun Jung Hwang
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Trevor D Link
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yvonne Yuling Hu
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shan Lu
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric Hou-Jen Wang
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92039, USA
| | - Varoth Lilascharoen
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sage Aronson
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Neurophotometrics, San Diego, CA 92121, USA
| | - Keelin O'Neil
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Byung Kook Lim
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Tamura K, Osada T, Ogawa A, Tanaka M, Suda A, Shimo Y, Hattori N, Kamagata K, Hori M, Aoki S, Shimizu T, Enomoto H, Hanajima R, Ugawa Y, Konishi S. MRI-based visualization of rTMS-induced cortical plasticity in the primary motor cortex. PLoS One 2019; 14:e0224175. [PMID: 31648225 PMCID: PMC6812785 DOI: 10.1371/journal.pone.0224175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces changes in cortical excitability for minutes to hours after the end of intervention. However, it has not been precisely determined to what extent cortical plasticity prevails spatially in the cortex. Recent studies have shown that rTMS induces changes in “interhemispheric” functional connectivity, the resting-state functional connectivity between the stimulated region and the symmetrically corresponding region in the contralateral hemisphere. In the present study, quadripulse stimulation (QPS) was applied to the index finger representation in the left primary motor cortex (M1), while the position of the stimulation coil was constantly monitored by an online navigator. After QPS application, resting-state functional magnetic resonance imaging was performed, and the interhemispheric functional connectivity was compared with that before QPS. A cluster of connectivity changes was observed in the stimulated region in the central sulcus. The cluster was spatially extended approximately 10 mm from the center [half width at half maximum (HWHM): approximately 3 mm] and was extended approximately 20 mm long in depth (HWHM: approximately 7 mm). A localizer scan of the index finger motion confirmed that the cluster of interhemispheric connectivity changes overlapped spatially with the activation related to the index finger motion. These results indicate that cortical plasticity in M1 induced by rTMS was relatively restricted in space and suggest that rTMS can reveal functional dissociation associated with adjacent small areas by inducing neural plasticity in restricted cortical regions.
Collapse
Affiliation(s)
- Kaori Tamura
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akimitsu Suda
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Shimizu
- Department of Neurology, Tottori University School of Medicine, Tottori, Japan
| | - Hiroyuki Enomoto
- Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan
| | - Ritsuko Hanajima
- Department of Neurology, Tottori University School of Medicine, Tottori, Japan
| | - Yoshikazu Ugawa
- Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Nelissen K, Fiave PA, Vanduffel W. Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate. Cereb Cortex 2019; 28:1245-1259. [PMID: 28334082 DOI: 10.1093/cercor/bhx037] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/01/2017] [Indexed: 11/12/2022] Open
Abstract
Prehension movements typically include a reaching phase, guiding the hand toward the object, and a grip phase, shaping the hand around it. The dominant view posits that these components rely upon largely independent parieto-frontal circuits: a dorso-medial circuit involved in reaching and a dorso-lateral circuit involved in grasping. However, mounting evidence suggests a more complex arrangement, with dorso-medial areas contributing to both reaching and grasping. To investigate the role of the dorso-medial reaching circuit in grasping, we trained monkeys to reach-and-grasp different objects in the dark and determined if hand configurations could be decoded from functional magnetic resonance imaging (MRI) responses obtained from the reaching and grasping circuits. Indicative of their established role in grasping, object-specific grasp decoding was found in anterior intraparietal (AIP) area, inferior parietal lobule area PFG and ventral premotor region F5 of the lateral grasping circuit, and primary motor cortex. Importantly, the medial reaching circuit also conveyed robust grasp-specific information, as evidenced by significant decoding in parietal reach regions (particular V6A) and dorsal premotor region F2. These data support the proposed role of dorso-medial "reach" regions in controlling aspects of grasping and demonstrate the value of complementing univariate with more sensitive multivariate analyses of functional MRI (fMRI) data in uncovering information coding in the brain.
Collapse
Affiliation(s)
- Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Prosper Agbesi Fiave
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martino's Center for Biomedical Imaging, Charlestown, MA 02129, USA
| |
Collapse
|
23
|
Ugolini G, Prevosto V, Graf W. Ascending vestibular pathways to parietal areas MIP and LIPv and efference copy inputs from the medial reticular formation: Functional frameworks for body representations updating and online movement guidance. Eur J Neurosci 2019; 50:2988-3013. [DOI: 10.1111/ejn.14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ugolini
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Vincent Prevosto
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
- Department of Biomedical Engineering Pratt School of Engineering Durham North Carolina
- Department of Neurobiology Duke School of Medicine Duke University Durham North Carolina
| | - Werner Graf
- Department of Physiology and Biophysics Howard University Washington District of Columbia
| |
Collapse
|
24
|
Allart E, Devanne H, Delval A. Contribution of transcranial magnetic stimulation in assessing parietofrontal connectivity during gesture production in healthy individuals and brain-injured patients. Neurophysiol Clin 2019; 49:115-123. [DOI: 10.1016/j.neucli.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/30/2023] Open
|
25
|
Hadjidimitrakis K, Bakola S, Wong YT, Hagan MA. Mixed Spatial and Movement Representations in the Primate Posterior Parietal Cortex. Front Neural Circuits 2019; 13:15. [PMID: 30914925 PMCID: PMC6421332 DOI: 10.3389/fncir.2019.00015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements. However, experimental evidence obtained primarily from single neuron recording studies in non-human primates has demonstrated a rich mixing of signals processed by parietal neurons, calling into question ideas for a strict functional specialization. Here, we present a brief account of this line of research together with the basic trends in the anatomical connectivity patterns of the parietal subregions. We review, the evidence related to the functional communication between subregions of the PPC and describe progress towards using parietal neuron activity in neuroprosthetic applications. Recent literature suggests a role for the PPC not as a constellation of specialized functional subdomains, but as a dynamic network of sensorimotor loci that combine multiple signals and work in concert to guide motor behavior.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Department of Electrical and Computer Science Engineering, Monash University, Clayton, VIC, Australia
| | - Maureen A Hagan
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| |
Collapse
|
26
|
Delhaye BP, Long KH, Bensmaia SJ. Neural Basis of Touch and Proprioception in Primate Cortex. Compr Physiol 2018; 8:1575-1602. [PMID: 30215864 PMCID: PMC6330897 DOI: 10.1002/cphy.c170033] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sense of proprioception allows us to keep track of our limb posture and movements and the sense of touch provides us with information about objects with which we come into contact. In both senses, mechanoreceptors convert the deformation of tissues-skin, muscles, tendons, ligaments, or joints-into neural signals. Tactile and proprioceptive signals are then relayed by the peripheral nerves to the central nervous system, where they are processed to give rise to percepts of objects and of the state of our body. In this review, we first examine briefly the receptors that mediate touch and proprioception, their associated nerve fibers, and pathways they follow to the cerebral cortex. We then provide an overview of the different cortical areas that process tactile and proprioceptive information. Next, we discuss how various features of objects-their shape, motion, and texture, for example-are encoded in the various cortical fields, and the susceptibility of these neural codes to attention and other forms of higher-order modulation. Finally, we summarize recent efforts to restore the senses of touch and proprioception by electrically stimulating somatosensory cortex. © 2018 American Physiological Society. Compr Physiol 8:1575-1602, 2018.
Collapse
Affiliation(s)
- Benoit P Delhaye
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA
| | - Katie H Long
- Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, USA.,Committee on Computational Neuroscience, University of Chicago, Chicago, USA
| |
Collapse
|
27
|
Mooshagian E, Wang C, Holmes CD, Snyder LH. Single Units in the Posterior Parietal Cortex Encode Patterns of Bimanual Coordination. Cereb Cortex 2018; 28:1549-1567. [PMID: 28369392 PMCID: PMC5907348 DOI: 10.1093/cercor/bhx052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/12/2022] Open
Abstract
Bimanual coordination is critical for a broad array of behaviors. Drummers, for example, must carefully coordinate movements of their 2 arms, sometimes beating on the same drum and sometimes on different ones. While coordinated behavior is well-studied, the early stages of planning are not well understood. In the parietal reach region (PRR) of the posterior parietal cortex (PPC), the presence of neurons that modulate when either arm moves by itself has been taken as evidence for a role in bimanual coordination. To test this notion, we recorded neurons during both unilateral and bimanual movements. We find that the activity that precedes an ipsilateral arm movement is primarily a sensory response to a target in the neuron's visual receptive field and not a plan to move the ipsilateral arm. In contrast, the activity that precedes a contralateral arm movement is the sum of a movement plan plus a sensory response. Despite not coding ipsilateral arm movements, about half of neurons discriminate between different patterns of bimanual movements. These results provide direct evidence that PRR neurons represent bimanual reach plans, and suggest that bimanual coordination originates in the sensory-to-motor processing stream prior to the motor cortex, within the PPC.
Collapse
Affiliation(s)
- Eric Mooshagian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cunguo Wang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles D Holmes
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
28
|
Spatial eye-hand coordination during bimanual reaching is not systematically coded in either LIP or PRR. Proc Natl Acad Sci U S A 2018; 115:E3817-E3826. [PMID: 29610356 PMCID: PMC5910835 DOI: 10.1073/pnas.1718267115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
When we reach for something, we also look at it. If we reach for two objects at once, one with each hand, we look first at one and then the other. It is not known which brain areas underlie this coordination. We studied two parietal areas known to be involved in eye and arm movements. Neither area was sensitive to the order in which the targets were looked at. This implies that coordinated saccades are driven by downstream areas and not by the parietal cortex as is commonly assumed. We often orient to where we are about to reach. Spatial and temporal correlations in eye and arm movements may depend on the posterior parietal cortex (PPC). Spatial representations of saccade and reach goals preferentially activate cells in the lateral intraparietal area (LIP) and the parietal reach region (PRR), respectively. With unimanual reaches, eye and arm movement patterns are highly stereotyped. This makes it difficult to study the neural circuits involved in coordination. Here, we employ bimanual reaching to two different targets. Animals naturally make a saccade first to one target and then the other, resulting in different patterns of limb–gaze coordination on different trials. Remarkably, neither LIP nor PRR cells code which target the eyes will move to first. These results suggest that the parietal cortex plays at best only a permissive role in some aspects of eye–hand coordination and makes the role of LIP in saccade generation unclear.
Collapse
|
29
|
Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C. Vision for Prehension in the Medial Parietal Cortex. Cereb Cortex 2018; 27:1149-1163. [PMID: 26656999 DOI: 10.1093/cercor/bhv302] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the last 2 decades, the medial posterior parietal area V6A has been extensively studied in awake macaque monkeys for visual and somatosensory properties and for its involvement in encoding of spatial parameters for reaching, including arm movement direction and amplitude. This area also contains populations of neurons sensitive to grasping movements, such as wrist orientation and grip formation. Recent work has shown that V6A neurons also encode the shape of graspable objects and their affordance. In other words, V6A seems to encode object visual properties specifically for the purpose of action, in a dynamic sequence of visuomotor transformations that evolve in the course of reach-to-grasp action.We propose a model of cortical circuitry controlling reach-to-grasp actions, in which V6A acts as a comparator that monitors differences between current and desired hand positions and configurations. This error signal could be used to continuously update the motor output, and to correct reach direction, hand orientation, and/or grip aperture as required during the act of prehension.In contrast to the generally accepted view that the dorsomedial component of the dorsal visual stream encodes reaching, but not grasping, the functional properties of V6A neurons strongly suggest the view that this area is involved in encoding all phases of prehension, including grasping.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
30
|
Wilke M, Schneider L, Dominguez-Vargas AU, Schmidt-Samoa C, Miloserdov K, Nazzal A, Dechent P, Cabral-Calderin Y, Scherberger H, Kagan I, Bähr M. Reach and grasp deficits following damage to the dorsal pulvinar. Cortex 2018; 99:135-149. [DOI: 10.1016/j.cortex.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/17/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
31
|
Rossit S, Harvey M, Butler SH, Szymanek L, Morand S, Monaco S, McIntosh RD. Impaired peripheral reaching and on-line corrections in patient DF: Optic ataxia with visual form agnosia. Cortex 2018; 98:84-101. [DOI: 10.1016/j.cortex.2017.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/15/2017] [Accepted: 04/07/2017] [Indexed: 11/16/2022]
|
32
|
Abstract
In 1992, Goodale and Milner proposed a division of labor in the visual pathways of the primate cerebral cortex. According to their account, the ventral pathway, which projects to occipitotemporal cortex, constructs our visual percepts, while the dorsal pathway, which projects to posterior parietal cortex, mediates the visual control of action. Although the framing of the two-visual-system hypothesis has not been without controversy, it is clear that vision for action and vision for perception have distinct computational requirements, and significant support for the proposed neuroanatomic division has continued to emerge over the last two decades from human neuropsychology, neuroimaging, behavioral psychophysics, and monkey neurophysiology. In this chapter, we review much of this evidence, with a particular focus on recent findings from human neuroimaging and monkey neurophysiology, demonstrating a specialized role for parietal cortex in visually guided behavior. But even though the available evidence suggests that dedicated circuits mediate action and perception, in order to produce adaptive goal-directed behavior there must be a close coupling and seamless integration of information processing across these two systems. We discuss such ventral-dorsal-stream interactions and argue that the two pathways play different, yet complementary, roles in the production of skilled behavior.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Melvyn A Goodale
- Department of Psychology, University of Western Ontario, London, Ontario, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. eNeuro 2017; 4:eN-NWR-0344-17. [PMID: 29379868 PMCID: PMC5779118 DOI: 10.1523/eneuro.0344-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
The parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip). Analysis of corticocortical connections revealed that both V6Ad and MIP receive inputs from visual area V6; the ventral subdivision of V6A (V6Av); medial (PGm, 31), superior (PEc), and inferior (PFG/PF) parietal association areas; and intraparietal areas AIP and VIP. They also receive long-range projections from the superior temporal sulcus (MST, TPO), cingulate area 23, and the dorsocaudal (area F2) and ventral (areas F4/F5) premotor areas. In comparison with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex (PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with V6A.
Collapse
|
34
|
Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses. J Neurosci 2017; 37:10882-10893. [PMID: 29118218 DOI: 10.1523/jneurosci.1838-17.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/21/2022] Open
Abstract
How consciousness (experience) arises from and relates to material brain processes (the "mind-body problem") has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience. Since the 1980s, however, novel methods and theoretical advances have yielded remarkable results, opening up the field for scientific and clinical progress. Since a seminal paper by Crick and Koch (1998) claimed that a science of consciousness should first search for its neural correlates (NCC), a variety of correlates have been suggested, including both content-specific NCCs, determining particular phenomenal components within an experience, and the full NCC, the neural substrates supporting entire conscious experiences. In this review, we present recent progress on theoretical, experimental, and clinical issues. Specifically, we (1) review methodological advances that are important for dissociating conscious experience from related enabling and executive functions, (2) suggest how critically reconsidering the role of the frontal cortex may further delineate NCCs, (3) advocate the need for general, objective, brain-based measures of the capacity for consciousness that are independent of sensory processing and executive functions, and (4) show how animal studies can reveal population and network phenomena of relevance for understanding mechanisms of consciousness.
Collapse
|
35
|
Hwang EJ, Dahlen JE, Mukundan M, Komiyama T. History-based action selection bias in posterior parietal cortex. Nat Commun 2017; 8:1242. [PMID: 29089500 PMCID: PMC5663966 DOI: 10.1038/s41467-017-01356-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 11/08/2022] Open
Abstract
Making decisions based on choice-outcome history is a crucial, adaptive ability in life. However, the neural circuit mechanisms underlying history-dependent decision-making are poorly understood. In particular, history-related signals have been found in many brain areas during various decision-making tasks, but the causal involvement of these signals in guiding behavior is unclear. Here we addressed this issue utilizing behavioral modeling, two-photon calcium imaging, and optogenetic inactivation in mice. We report that a subset of neurons in the posterior parietal cortex (PPC) closely reflect the choice-outcome history and history-dependent decision biases, and PPC inactivation diminishes the history dependency of choice. Specifically, many PPC neurons show history- and bias-tuning during the inter-trial intervals (ITI), and history dependency of choice is affected by PPC inactivation during ITI and not during trial. These results indicate that PPC is a critical region mediating the subjective use of history in biasing action selection.
Collapse
Affiliation(s)
- Eun Jung Hwang
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jeffrey E Dahlen
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Madan Mukundan
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- JST, PRESTO, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
36
|
Overton JA, Cooke DF, Goldring AB, Lucero SA, Weatherford C, Recanzone GH. Improved methods for acrylic-free implants in nonhuman primates for neuroscience research. J Neurophysiol 2017; 118:3252-3270. [PMID: 28855286 DOI: 10.1152/jn.00191.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/22/2022] Open
Abstract
Traditionally, head fixation devices and recording cylinders have been implanted in nonhuman primates (NHP) using dental acrylic despite several shortcomings associated with acrylic. The use of more biocompatible materials such as titanium and PEEK is becoming more prevalent in NHP research. We describe a cost-effective set of procedures that maximizes the integration of headposts and recording cylinders with the animal's tissues while reducing surgery time. Nine rhesus monkeys were implanted with titanium headposts, and one of these was also implanted with a recording chamber. In each case, a three-dimensional printed replica of the skull was created based on computerized tomography scans. The titanium feet of the headposts were shaped, and the skull thickness was measured preoperatively, reducing surgery time by up to 70%. The recording cylinder was manufactured to conform tightly to the skull, which was fastened to the skull with four screws and remained watertight for 8.5 mo. We quantified the amount of regression of the skin edge at the headpost. We found a large degree of variability in the timing and extent of skin regression that could not be explained by any single recorded factor. However, there was not a single case of bone exposure; although skin retracted from the titanium, skin also remained adhered to the skull adjacent to those regions. The headposts remained fully functional and free of complications for the experimental life of each animal, several of which are still participating in experiments more than 4 yr after implant.NEW & NOTEWORTHY Cranial implants are often necessary for performing neurophysiology research with nonhuman primates. We present methods for using three-dimensional printed monkey skulls to form and fabricate acrylic-free implants preoperatively to decrease surgery times and the risk of complications and increase the functional life of the implant. We focused on reducing costs, creating a feasible timeline, and ensuring compatibility with existing laboratory systems. We discuss the importance of using more biocompatible materials and enhancing osseointegration.
Collapse
Affiliation(s)
| | - Dylan F Cooke
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Adam B Goldring
- Center for Neuroscience, University of California, Davis, California
| | - Steven A Lucero
- Department of Biomedical Engineering, University of California, Davis, California; and
| | - Conor Weatherford
- Center for Neuroscience, University of California, Davis, California
| | - Gregg H Recanzone
- Center for Neuroscience, University of California, Davis, California.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| |
Collapse
|
37
|
Makino H, Hwang EJ, Hedrick NG, Komiyama T. Circuit Mechanisms of Sensorimotor Learning. Neuron 2017; 92:705-721. [PMID: 27883902 DOI: 10.1016/j.neuron.2016.10.029] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022]
Abstract
The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process into three hierarchical levels with distinct goals: (1) sensory perceptual learning, (2) sensorimotor associative learning, and (3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior.
Collapse
Affiliation(s)
- Hiroshi Makino
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Jung Hwang
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan G Hedrick
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Zhang CY, Aflalo T, Revechkis B, Rosario ER, Ouellette D, Pouratian N, Andersen RA. Partially Mixed Selectivity in Human Posterior Parietal Association Cortex. Neuron 2017; 95:697-708.e4. [PMID: 28735750 DOI: 10.1016/j.neuron.2017.06.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/05/2017] [Accepted: 06/24/2017] [Indexed: 01/09/2023]
Abstract
To clarify the organization of motor representations in posterior parietal cortex, we test how three motor variables (body side, body part, cognitive strategy) are coded in the human anterior intraparietal cortex. All tested movements were encoded, arguing against strict anatomical segregation of effectors. Single units coded for diverse conjunctions of variables, with different dimensions anatomically overlapping. Consistent with recent studies, neurons encoding body parts exhibited mixed selectivity. This mixed selectivity resulted in largely orthogonal coding of body parts, which "functionally segregate" the effector responses despite the high degree of anatomical overlap. Body side and strategy were not coded in a mixed manner as effector determined their organization. Mixed coding of some variables over others, what we term "partially mixed coding," argues that the type of functional encoding depends on the compared dimensions. This structure is advantageous for neuroprosthetics, allowing a single array to decode movements of a large extent of the body.
Collapse
Affiliation(s)
- Carey Y Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Tyson Aflalo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Boris Revechkis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Emily R Rosario
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA 91767, USA
| | - Debra Ouellette
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA 91767, USA
| | - Nader Pouratian
- Department of Neurosurgery, Interdepartmental Program in Neuroscience, and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
39
|
Khasnobish A, Konar A, Tibarewala DN, Nagar AK. Bypassing the Natural Visual-Motor Pathway to Execute Complex Movement Related Tasks Using Interval Type-2 Fuzzy Sets. IEEE Trans Neural Syst Rehabil Eng 2016; 25:88-102. [PMID: 27323367 DOI: 10.1109/tnsre.2016.2580580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In visual-motor coordination, the human brain processes visual stimuli representative of complex motion-related tasks at the occipital lobe to generate the necessary neuronal signals for the parietal and pre-frontal lobes, which in turn generates movement related plans to excite the motor cortex to execute the actual tasks. The paper introduces a novel approach to provide rehabilitative support to patients suffering from neurological damage in their pre-frontal, parietal and/or motor cortex regions. An attempt to bypass the natural visual-motor pathway is undertaken using interval type-2 fuzzy sets to generate the approximate EEG response of the damaged pre-frontal/parietal/motor cortex from the occipital EEG signals. The approximate EEG response is used to trigger a pre-trained joint coordinate generator to obtain the desired joint coordinates of the link end-points of a robot imitating the human subject. The robot arm is here employed as a rehabilitative aid in order to move each link end-points to the desired locations in the reference coordinate system by appropriately activating its links using the well-known inverse kinematics approach. The mean-square positional errors obtained for each link end-points is found within acceptable limits for all experimental subjects including subjects with partial parietal damage, indicating a possible impact of the proposed approach in rehabilitative robotics. Subjective variation in EEG features over different sessions of experimental trials is modeled here using interval type-2 fuzzy sets for its inherent power to handle uncertainty. Experiments undertaken confirm that interval type-2 fuzzy realization outperforms its classical type-1 counterpart and back-propagation neural approaches in all experimental cases, considering link positional error as a metric. The proposed research offers a new opening for the development of possible rehabilitative aids for people with partial impairment in visual-motor coordination.
Collapse
|
40
|
Coherent neuronal ensembles are rapidly recruited when making a look-reach decision. Nat Neurosci 2016; 19:327-34. [PMID: 26752158 PMCID: PMC4731255 DOI: 10.1038/nn.4210] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022]
Abstract
Selecting and planning actions recruits neurons across many areas of the brain but how ensembles of neurons work together to make decisions is unknown. Temporally-coherent neural activity may provide a mechanism by which neurons coordinate their activity in order to make decisions. If so, neurons that are part of coherent ensembles may predict movement choices before other ensembles of neurons. We recorded neuronal activity in the lateral and medial banks of the intraparietal sulcus (IPS) of the posterior parietal cortex, while monkeys made choices about where to look and reach and decoded the activity to predict the choices. Ensembles of neurons that displayed coherent patterns of spiking activity extending across the IPS, “dual coherent” ensembles, predicted movement choices substantially earlier than other neuronal ensembles. We propose that dual-coherent spike timing reflects interactions between groups of neurons that play an important role in how we make decisions.
Collapse
|
41
|
Tsuchiya N, Wilke M, Frässle S, Lamme VA. No-Report Paradigms: Extracting the True Neural Correlates of Consciousness. Trends Cogn Sci 2015; 19:757-770. [DOI: 10.1016/j.tics.2015.10.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/04/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
|
42
|
Bridge H, Leopold DA, Bourne JA. Adaptive Pulvinar Circuitry Supports Visual Cognition. Trends Cogn Sci 2015; 20:146-157. [PMID: 26553222 DOI: 10.1016/j.tics.2015.10.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/27/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The pulvinar is the largest thalamic nucleus in primates and one of the most mysterious. Endeavors to understand its role in vision have focused on its abundant connections with the visual cortex. While its connectivity mapping in the cortex displays a broad topographic organization, its projections are also marked by considerable convergence and divergence. As a result, the pulvinar is often regarded as a central forebrain hub. Moreover, new evidence suggests that its comparatively modest input from structures such as the retina and superior colliculus may critically shape the functional organization of the visual cortex, particularly during early development. Here we review recent studies that cast fresh light on how the many convergent pathways through the pulvinar contribute to visual cognition.
Collapse
Affiliation(s)
- Holly Bridge
- FMRIB Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
43
|
Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions. J Neurosci 2015; 35:11719-28. [PMID: 26290248 DOI: 10.1523/jneurosci.1068-15.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. SIGNIFICANCE STATEMENT There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact. These results cannot be explained as a deficit in attention, since the temporary lesion affected only the reach choices. Thus, PRR is a part of a network for making reach decisions.
Collapse
|
44
|
Asher DE, Oros N, Krichmar JL. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans. PLoS One 2015; 10:e0134669. [PMID: 26252871 PMCID: PMC4529220 DOI: 10.1371/journal.pone.0134669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC) in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1) feedforward from sensory input to the PPC to a motor output area, 2) feedforward with the addition of an efference copy from the motor area, 3) feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4) feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.
Collapse
Affiliation(s)
- Derrik E. Asher
- Department of Cognitive Sciences, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Nicolas Oros
- Department of Cognitive Sciences, University of California Irvine, Irvine, California, United States of America
| | - Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
45
|
Caminiti R, Innocenti GM, Battaglia-Mayer A. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 2015; 56:73-96. [PMID: 26112130 DOI: 10.1016/j.neubiorev.2015.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/08/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
Abstract
The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution.
Collapse
Affiliation(s)
- Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Brain and Mind Institute, Federal Institute of Technology, EPFL, Lausanne, Switzerland
| | - Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
46
|
Hutchison RM, Culham JC, Flanagan JR, Everling S, Gallivan JP. Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI. Neuroimage 2015; 116:10-29. [PMID: 25970649 DOI: 10.1016/j.neuroimage.2015.04.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022] Open
Abstract
Based on its diverse and wide-spread patterns of connectivity, primate posteromedial cortex (PMC) is well positioned to support roles in several aspects of sensory-, cognitive- and motor-related processing. Previous work in both humans and non-human primates (NHPs) using resting-state functional MRI (rs-fMRI) suggests that a subregion of PMC, the medial parieto-occipital cortex (mPOC), by virtue of its intrinsic functional connectivity (FC) with visual cortex, may only play a role in higher-order visual processing. Recent neuroanatomical tracer studies in NHPs, however, demonstrate that mPOC also has prominent cortico-cortical connections with several frontoparietal structures involved in movement planning and control, a finding consistent with increasing observations of reach- and grasp-related activity in the mPOC of both NHPs and humans. To reconcile these observations, here we used rs-fMRI data collected from both awake humans and anesthetized macaque monkeys to more closely examine and compare parcellations of mPOC across species and explore the FC patterns associated with these subdivisions. Seed-based and voxel-wise hierarchical cluster analyses revealed four broad spatially separated functional boundaries that correspond with graded differences in whole-brain FC patterns in each species. The patterns of FC observed are consistent with mPOC forming a critical hub of networks involved in action planning and control, spatial navigation, and working memory. In addition, our comparison between species indicates that while there are several similarities, there may be some species-specific differences in functional neural organization. These findings and the associated theoretical implications are discussed.
Collapse
Affiliation(s)
- R Matthew Hutchison
- Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Brain Science, Harvard University, Cambridge, MA, USA; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | - Jody C Culham
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
47
|
Abstract
Decisions are often made by accumulating evidence for and against the alternatives. The momentary evidence represented by sensory neurons is accumulated by downstream structures to form a decision variable, linking the evolving decision to the formation of a motor plan. When decisions are communicated by eye movements, neurons in the lateral intraparietal area (LIP) represent the accumulation of evidence bearing on the potential targets for saccades. We now show that reach-related neurons from the medial intraparietal area (MIP) exhibit a gradual modulation of their firing rates consistent with the representation of an evolving decision variable. When decisions were communicated by saccades instead of reaches, decision-related activity was attenuated in MIP, whereas LIP neurons were active while monkeys communicated decisions by saccades or reaches. Thus, for decisions communicated by a hand movement, a parallel flow of sensory information is directed to parietal areas MIP and LIP during decision formation.
Collapse
|
48
|
Gertz H, Fiehler K. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task. J Neurophysiol 2015; 114:170-83. [PMID: 25904714 DOI: 10.1152/jn.01039.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/22/2015] [Indexed: 11/22/2022] Open
Abstract
Previous research on reach planning in humans has implicated a frontoparietal network, including the precuneus (PCu), a putative human homolog of the monkey parietal reach region (PRR), and the dorsal premotor cortex (PMd). Using a pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the movement goal rather than the location of the visual cue is encoded in PRR and PMd. However, if only the effector but not the movement goal is specified (underspecified condition), the PRR and PMd have been shown to represent all potential movement goals. In this functional magnetic resonance imaging study, we investigated whether the human PCu and PMd likewise encode the movement goal, and whether these reach-related areas also engage in situations with underspecified compared with specified movement goals. By using a pro-/anti-reach task, we spatially dissociated the location of the visual cue from the location of the movement goal. In the specified conditions, pro- and anti-reaches activated similar parietal and premotor areas. In the PCu contralateral to the moving arm, we found directionally selective activation fixed to the movement goal. In the underspecified conditions, we observed activation in reach-related areas of the posterior parietal cortex, including PCu. However, the activation was substantially weaker in parietal areas and lacking in PMd. Our results suggest that human PCu encodes the movement goal rather than the location of the visual cue if the movement goal is specified and even engages in situations when only the visual cue but not the movement goal is defined.
Collapse
Affiliation(s)
- Hanna Gertz
- Department of Psychology, Justus-Liebig University Giessen, Giessen, Germany
| | - Katja Fiehler
- Department of Psychology, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
49
|
Battaglia-Mayer A, Ferrari-Toniolo S, Visco-Comandini F. Timing and communication of parietal cortex for visuomotor control. Curr Opin Neurobiol 2015; 33:103-9. [PMID: 25841091 DOI: 10.1016/j.conb.2015.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Abstract
In both monkeys and humans, motor cognition emerges from a parietal-frontal network containing discrete dominant domains of visual, eye and hand signals, where neurons are responsible for goal and effector selection. Within these domains, the combination of different inputs shape the tuning properties of neurons, while local and long cortico-cortical connections outline the architecture of the distributed network and determine the conduction time underlying eye-hand coordination, necessary for visually guided operations in the action space. The analysis of the communication timing between parietal and frontal nodes of the network helps understanding the sensorimotor cortical delays associated to different functions, such as online control of movement and eye-hand coordination, and opens a new perspective to the study of the parieto-frontal interactions.
Collapse
Affiliation(s)
- Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Simone Ferrari-Toniolo
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federica Visco-Comandini
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
50
|
Human posterior parietal cortex mediates hand-specific planning. Neuroimage 2015; 114:226-38. [PMID: 25842294 DOI: 10.1016/j.neuroimage.2015.03.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/28/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022] Open
Abstract
The processes underlying action planning are fundamental to adaptive behavior and can be influenced by recent motor experience. Here, we used a novel fMRI Repetition Suppression (RS) design to test the hypotheses that action planning unfolds more efficiently for successive actions made with the same hand. More efficient processing was predicted to correspond with both faster response times (RTs) to initiate actions and reduced fMRI activity levels - RS. Consistent with these predictions, we detected faster RTs for actions made with the same hand and accompanying fMRI-RS within bilateral posterior parietal cortex and right-lateralized parietal operculum. Within posterior parietal cortex, these RS effects were localized to intraparietal and superior parietal cortices. These same areas were more strongly activated for actions involving the contralateral hand. The findings provide compelling new evidence for the specification of action plans in hand-specific terms, and indicate that these processes are sensitive to recent motor history. Consistent with computational efficiency accounts of motor history effects, the findings are interpreted as evidence for comparatively more efficient processing underlying action planning when successive actions involve the same versus opposite hand.
Collapse
|