1
|
Ward C, Sjulson L, Batista-Brito R. The function of Mef2c toward the development of excitatory and inhibitory cortical neurons. Front Cell Neurosci 2024; 18:1465821. [PMID: 39376213 PMCID: PMC11456456 DOI: 10.3389/fncel.2024.1465821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are caused by abnormal brain development, leading to altered brain function and affecting cognition, learning, self-control, memory, and emotion. NDDs are often demarcated as discrete entities for diagnosis, but empirical evidence indicates that NDDs share a great deal of overlap, including genetics, core symptoms, and biomarkers. Many NDDs also share a primary sensitive period for disease, specifically the last trimester of pregnancy in humans, which corresponds to the neonatal period in mice. This period is notable for cortical circuit assembly, suggesting that deficits in the establishment of brain connectivity are likely a leading cause of brain dysfunction across different NDDs. Regulators of gene programs that underlie neurodevelopment represent a point of convergence for NDDs. Here, we review how the transcription factor MEF2C, a risk factor for various NDDs, impacts cortical development. Cortical activity requires a precise balance of various types of excitatory and inhibitory neuron types. We use MEF2C loss-of-function as a study case to illustrate how brain dysfunction and altered behavior may derive from the dysfunction of specific cortical circuits at specific developmental times.
Collapse
Affiliation(s)
- Claire Ward
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the surface: unmasking the brain's complexity exploiting optical scattering. NEUROPHOTONICS 2024; 11:S11510. [PMID: 38617592 PMCID: PMC11014413 DOI: 10.1117/1.nph.11.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Caio Vaz Rimoli
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Walther Akemann
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Cathie Ventalon
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Laurent Bourdieu
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Sylvain Gigan
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Hilton B. de Aguiar
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| |
Collapse
|
3
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the Surface: Unmasking the Brain's Complexity Exploiting Optical Scattering. ARXIV 2024:arXiv:2403.14809v1. [PMID: 38562443 PMCID: PMC10984001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
4
|
Feng C, Huang W, Xu K, Stewart JL, Camilleri JA, Yang X, Wei P, Gu R, Luo W, Eickhoff SB. Neural substrates of motivational dysfunction across neuropsychiatric conditions: Evidence from meta-analysis and lesion network mapping. Clin Psychol Rev 2022; 96:102189. [PMID: 35908312 PMCID: PMC9720091 DOI: 10.1016/j.cpr.2022.102189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023]
Abstract
Motivational dysfunction constitutes one of the fundamental dimensions of psychopathology cutting across traditional diagnostic boundaries. However, it is unclear whether there is a common neural circuit responsible for motivational dysfunction across neuropsychiatric conditions. To address this issue, the current study combined a meta-analysis on psychiatric neuroimaging studies of reward/loss anticipation and consumption (4308 foci, 438 contrasts, 129 publications) with a lesion network mapping approach (105 lesion cases). Our meta-analysis identified transdiagnostic hypoactivation in the ventral striatum (VS) for clinical/at-risk conditions compared to controls during the anticipation of both reward and loss. Moreover, the VS subserves a key node in a distributed brain network which encompasses heterogeneous lesion locations causing motivation-related symptoms. These findings do not only provide the first meta-analytic evidence of shared neural alternations linked to anticipatory motivation-related deficits, but also shed novel light on the role of VS dysfunction in motivational impairments in terms of both network integration and psychological functions. Particularly, the current findings suggest that motivational dysfunction across neuropsychiatric conditions is rooted in disruptions of a common brain network anchored in the VS, which contributes to motivational salience processing rather than encoding positive incentive values.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenhao Huang
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Kangli Xu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Julia A. Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Xiaofeng Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
5
|
Knox DK, Sabban EL, Morinobu S. Editorial: Examining Mechanisms via Which Traumatic Stress Leads to Post-traumatic Stress Disorder Using Animal Models: Advantages, Pitfalls, and Future Directions. Front Behav Neurosci 2022; 16:966147. [PMID: 35864849 PMCID: PMC9295714 DOI: 10.3389/fnbeh.2022.966147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Dayan Kessler Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, NJ, United States
- *Correspondence: Dayan Kessler Knox
| | | | - Shigeru Morinobu
- Department of Psychiatry and Neuroscience, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Li JM, Jiang CL. Biological Diagnosis of Depression: A Biomarker Panel from Several Nonspecial Indicators Instead of the Specific Biomarker(s). Neuropsychiatr Dis Treat 2022; 18:3067-3071. [PMID: 36606185 PMCID: PMC9809399 DOI: 10.2147/ndt.s393553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
It is a consensus that the diagnosis efficiency of depression is rather low in clinic. The traditional way of diagnosing depression by symptomatology is flawed. Recent years, a growing body of evidence has underlined the importance of physiological indicators in the diagnosis of depression. However, the diagnosis of depression is difficult to be like some common clinical diseases, which have clear physiological indicators. A single physiological index provides limited information to clinicians and is of little help in the diagnosis of depression. Thus, it is more rational and practical to diagnose depression with a biomarker panel, which covers a few non-specific indicators, such as hormones, cytokines, and neurotrophins. This open review suggested that biomarker panel had a bright future in creating a new model of depression diagnosis or at least providing a reference to the existing depression criteria. The viewpoint is also the future of other psychiatric diagnosis.
Collapse
Affiliation(s)
- Jia-Mei Li
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, People's Republic of China.,Department of Neurology, the 971st Hospital, Qingdao, People's Republic of China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Frisch S. Why Biological Psychiatry Hasn't Delivered Yet - and Why Neurology Knows. Psychiatry Investig 2021; 18:1145-1148. [PMID: 34872239 PMCID: PMC8721299 DOI: 10.30773/pi.2021.0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
It is increasingly recognized that neuroscience has not delivered the revolutionary clinical possibilities for psychiatry that had been promised. Explanations differ, however: some proponents emphasize the divide between biopsychosocial psychiatry and mechanistic neurology. Others rely on further basic experimental neuroscience as only the most elementary level of explanation will allow us to fully understand and treat mental disorders. From a clinical-neuropsychological perspective, I shall argue that both views are mistaken. Diagnosis and treatment of neurological diseases demands a biopsychosocial perspective similar to psychiatry. Acknowledging this might help to bring both disciplines together and improve clinical outcome.
Collapse
Affiliation(s)
- Stefan Frisch
- Department of Geriatric Psychiatry, Psychosomatic Medicine, and Psychotherapy, Pfalzklinikum, Klingenmünster, Germany.,Institute of Psychology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
9
|
Bigler ED. Charting Brain Development in Graphs, Diagrams, and Figures from Childhood, Adolescence, to Early Adulthood: Neuroimaging Implications for Neuropsychology. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2021. [DOI: 10.1007/s40817-021-00099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Nam KH, Yi SA, Jang HJ, Han JW, Lee J. In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid. Arch Pharm Res 2020; 43:877-889. [PMID: 32761309 DOI: 10.1007/s12272-020-01260-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.
Collapse
Affiliation(s)
- Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ji Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Imnewrun Biosciences Inc., Suwon, 16419, Republic of Korea.
| |
Collapse
|
12
|
Li T, Wang L, Camilleri JA, Chen X, Li S, Stewart JL, Jiang Y, Eickhoff SB, Feng C. Mapping common grey matter volume deviation across child and adolescent psychiatric disorders. Neurosci Biobehav Rev 2020; 115:273-284. [DOI: 10.1016/j.neubiorev.2020.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/05/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
|
13
|
Rich MC, Sherwood J, Bartley AF, Whitsitt QA, Lee M, Willoughby WR, Dobrunz LE, Bao Y, Lubin FD, Bolding M. Focused ultrasound blood brain barrier opening mediated delivery of MRI-visible albumin nanoclusters to the rat brain for localized drug delivery with temporal control. J Control Release 2020; 324:172-180. [PMID: 32376461 DOI: 10.1016/j.jconrel.2020.04.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing need for noninvasive tools to manipulate brain activity with molecular, spatial and temporal specificity. Here we have investigated the use of MRI-visible, albumin-based nanoclusters for noninvasive, localized and temporally specific drug delivery to the rat brain. We demonstrated that IV injected nanoclusters could be deposited into target brain regions via focused ultrasound facilitated blood brain barrier opening. We showed that nanocluster location could be confirmed in vivo with MRI. Additionally, following confirmation of nanocluster delivery, release of the nanocluster payload into brain tissue can be triggered by a second focused ultrasound treatment performed without circulating microbubbles. Release of glutamate from nanoclusters in vivo caused enhanced c-Fos expression, indicating that the loading capacity of the nanoclusters is sufficient to induce neuronal activation. This novel technique for noninvasive stereotactic drug delivery to the brain with temporal specificity could provide a new way to study brain circuits in vivo preclinically with high relevance for clinical translation.
Collapse
Affiliation(s)
- Megan C Rich
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA
| | - Aundrea F Bartley
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Quentin A Whitsitt
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Magdelene Lee
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA
| | - W R Willoughby
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Yuping Bao
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA.
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Mark Bolding
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
A Caenorhabditis elegans Model for Integrating the Functions of Neuropsychiatric Risk Genes Identifies Components Required for Normal Dendritic Morphology. G3-GENES GENOMES GENETICS 2020; 10:1617-1628. [PMID: 32132169 PMCID: PMC7202017 DOI: 10.1534/g3.119.400925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Analysis of patient-derived DNA samples has identified hundreds of variants that are likely involved in neuropsychiatric diseases such as autism spectrum disorder (ASD) and schizophrenia (SCZ). While these studies couple behavioral phenotypes to individual genotypes, the number and diversity of candidate genes implicated in these disorders highlights the fact that the mechanistic underpinnings of these disorders are largely unknown. Here, we describe a RNAi-based screening platform that uses C. elegans to screen candidate neuropsychiatric risk genes (NRGs) for roles in controlling dendritic arborization. To benchmark this approach, we queried published lists of NRGs whose variants in ASD and SCZ are predicted to result in complete or partial loss of gene function. We found that a significant fraction (>16%) of these candidate NRGs are essential for dendritic development. Furthermore, these gene sets are enriched for dendritic arbor phenotypes (>14 fold) when compared to control RNAi datasets of over 500 human orthologs. The diversity of PVD structural abnormalities observed in these assays suggests that the functions of diverse NRGs (encoding transcription factors, chromatin remodelers, molecular chaperones and cytoskeleton-related proteins) converge to regulate neuronal morphology and that individual NRGs may play distinct roles in dendritic branching. We also demonstrate that the experimental value of this platform by providing additional insights into the molecular frameworks of candidate NRGs. Specifically, we show that ANK2/UNC-44 function is directly integrated with known regulators of dendritic arborization and suggest that altering the dosage of ARID1B/LET-526 expression during development affects neuronal morphology without diminishing aspects of cell fate specification.
Collapse
|
15
|
Mansur RB, Lee Y, McIntyre RS, Brietzke E. What is bipolar disorder? A disease model of dysregulated energy expenditure. Neurosci Biobehav Rev 2020; 113:529-545. [PMID: 32305381 DOI: 10.1016/j.neubiorev.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/24/2022]
Abstract
Advances in the understanding and management of bipolar disorder (BD) have been slow to emerge. Despite notable recent developments in neurosciences, our conceptualization of the nature of this mental disorder has not meaningfully progressed. One of the key reasons for this scenario is the continuing lack of a comprehensive disease model. Within the increasing complexity of modern research methods, there is a clear need for an overarching theoretical framework, in which findings are assimilated and predictions are generated. In this review and hypothesis article, we propose such a framework, one in which dysregulated energy expenditure is a primary, sufficient cause for BD. Our proposed model is centered on the disruption of the molecular and cellular network regulating energy production and expenditure, as well its potential secondary adaptations and compensatory mechanisms. We also focus on the putative longitudinal progression of this pathological process, considering its most likely periods for onset, such as critical periods that challenges energy homeostasis (e.g. neurodevelopment, social isolation), and the resulting short and long-term phenotypical manifestations.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Kingston General Hospital, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| |
Collapse
|
16
|
Hilland E, Landrø NI, Kraft B, Tamnes CK, Fried EI, Maglanoc LA, Jonassen R. Exploring the links between specific depression symptoms and brain structure: A network study. Psychiatry Clin Neurosci 2020; 74:220-221. [PMID: 31858667 DOI: 10.1111/pcn.12969] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Eva Hilland
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway.,Clinical Neuroscience Research Group, Department of Psychology, Oslo, Norway
| | - Nils I Landrø
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway.,Clinical Neuroscience Research Group, Department of Psychology, Oslo, Norway
| | - Brage Kraft
- Clinical Neuroscience Research Group, Department of Psychology, Oslo, Norway
| | - Christian K Tamnes
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway.,NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, Oslo, Norway.,PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Eiko I Fried
- Clinical Psychology Unit, Institute of Psychology, University of Leiden, Leiden, The Netherlands
| | - Luigi A Maglanoc
- Clinical Neuroscience Research Group, Department of Psychology, Oslo, Norway.,NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, Oslo, Norway
| | - Rune Jonassen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
17
|
Sylvester CM, Yu Q, Srivastava AB, Marek S, Zheng A, Alexopoulos D, Smyser CD, Shimony JS, Ortega M, Dierker DL, Patel GH, Nelson SM, Gilmore AW, McDermott KB, Berg JJ, Drysdale AT, Perino MT, Snyder AZ, Raut RV, Laumann TO, Gordon EM, Barch DM, Rogers CE, Greene DJ, Raichle ME, Dosenbach NUF. Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry. Proc Natl Acad Sci U S A 2020; 117:3808-3818. [PMID: 32015137 PMCID: PMC7035483 DOI: 10.1073/pnas.1910842117] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cingulo-opercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala-cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.
Collapse
Affiliation(s)
- Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110;
| | - Qiongru Yu
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - A Benjamin Srivastava
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Psychiatry, Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Annie Zheng
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
| | | | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Mario Ortega
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Teva Pharmaceuticals, North Wales, PA 19454
| | - Donna L Dierker
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Gaurav H Patel
- Department of Psychiatry, Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Doris Miller VA Medical Center, Waco, TX 76711
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706
| | - Adrian W Gilmore
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY 10003
| | - Andrew T Drysdale
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael T Perino
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Ryan V Raut
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Doris Miller VA Medical Center, Waco, TX 76711
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110;
| | - Nico U F Dosenbach
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
18
|
Li M, Liang Y, Yang L, Wang H, Yang Z, Zhao K, Shang Z, Wan H. Automatic bad channel detection in implantable brain-computer interfaces using multimodal features based on local field potentials and spike signals. Comput Biol Med 2020; 116:103572. [DOI: 10.1016/j.compbiomed.2019.103572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/12/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022]
|
19
|
Costamagna G, Andreoli L, Corti S, Faravelli I. iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells 2019; 8:E1438. [PMID: 31739555 PMCID: PMC6912470 DOI: 10.3390/cells8111438] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/26/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs)-based two-dimensional (2D) protocols have offered invaluable insights into the pathophysiology of neurological diseases. However, these systems are unable to reproduce complex cytoarchitectural features, cell-cell and tissue-tissue interactions like their in vivo counterpart. Three-dimensional (3D)-based culture protocols, though in their infancy, have offered new insights into modeling human diseases. Human neural organoids try to recapitulate the cellular diversity of complex tissues and can be generated from iPSCs to model the pathophysiology of a wide spectrum of pathologies. The engraftment of iPSCs into mice models and the improvement of differentiation protocols towards 3D cultures has enabled the generation of more complex multicellular systems. Consequently, models of neuropsychiatric disorders, infectious diseases, brain cancer and cerebral hypoxic injury can now be investigated from new perspectives. In this review, we consider the advancements made in modeling neuropsychiatric and neurological diseases with iPSC-derived organoids and their potential use to develop new drugs.
Collapse
Affiliation(s)
| | | | | | - Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (L.A.); (S.C.)
| |
Collapse
|
20
|
Schwarz JM. Frank Beach Award Winner - The future of mental health research: Examining the interactions of the immune, endocrine and nervous systems between mother and infant and how they affect mental health. Horm Behav 2019; 114:104521. [PMID: 30981689 PMCID: PMC7367439 DOI: 10.1016/j.yhbeh.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Pregnancy and the postpartum period are periods of significant change in the immune and endocrine systems. This period of life is also associated with an increased risk of mental health disorders in the mother, and an increased risk of developmental and neuropsychiatric disorders in her infant. The collective data described here supports the idea that peripartum mood disorders in mother and developmental disorders in her infant likely reflects multiple pathogeneses, stemming from various interactions between the immune, endocrine and nervous systems, thereby resulting in various symptom constellations. In this case, testing the mechanisms underlying specific symptoms of these disorders (e.g. deficits in specific types of learning or anhedonia) may provide a better understanding of the various physiological interactions and multiple etiologies that most likely underlie the risk of mental health disorders during this unique time in life. The goal here is to summarize the current understanding of how immune and endocrine factors contribute to maternal mental health, while simultaneously understanding the impact these unique interactions have on the developing brain of her infant.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
21
|
Blackburn TP. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol Res Perspect 2019; 7:e00472. [PMID: 31065377 PMCID: PMC6498411 DOI: 10.1002/prp2.472] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Depression like many diseases is pleiotropic but unlike cancer and Alzheimer's disease for example, is still largely stigmatized and falls into the dark shadows of human illness. The failure of depression to be in the spotlight for successful treatment options is inherent in the complexity of the disease(s), flawed clinical diagnosis, overgeneralization of the illness, inadequate and biased clinical trial design, restrictive and biased inclusion/exclusion criteria, lack of approved/robust biomarkers, expensive imaging technology along with few advances in neurobiological hypotheses in decades. Clinical trial studies summitted to the regulatory agencies (FDA/EMA) for approval, have continually failed to show significant differences between active and placebo. For decades, we have acknowledged this failure, despite vigorous debated by all stakeholders to provide adequate answers to this escalating problem, with only a few new antidepressants approved in the last 20 years with equivocal efficacy, little improvement in side effects or onset of efficacy. It is also clear that funding and initiatives for mental illness lags far behind other life-treating diseases. Thus, it is no surprise we have not achieved much success in the last 50 years in treating depression, but we are accountable for the many failures and suboptimal treatment. This review will therefore critically address where we have failed and how future advances in medical science offers a glimmer of light for the patient and aid our future understanding of the neurobiology and pathophysiology of the disease, enabling transformative therapies for the treatment of depressive disorders.
Collapse
|
22
|
Osborne BF, Turano A, Caulfield JI, Schwarz JM. Sex- and region-specific differences in microglia phenotype and characterization of the peripheral immune response following early-life infection in neonatal male and female rats. Neurosci Lett 2018; 692:1-9. [PMID: 30367955 DOI: 10.1016/j.neulet.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023]
Abstract
Early-life infection has been shown to have profound effects on the brain and behavior across the lifespan, a phenomenon termed "early-life programming". Indeed, many neuropsychiatric disorders begin or have their origins early in life and have been linked to early-life immune activation (e.g. autism, ADHD, and schizophrenia). Furthermore, many of these disorders show a robust sex bias, with males having a higher risk of developing early-onset neurodevelopmental disorders. The concept of early-life programming is now well established, however, it is still unclear how such effects are initiated and then maintained across time to produce such a phenomenon. To begin to address this question, we examined changes in microglia, the immune cells of the brain, and peripheral immune cells in the hours immediately following early-life infection in male and female rats. We found that males showed a significant decrease in BDNF expression and females showed a significant increase in IL-6 expression in the cerebellum following E.coli infection on postnatal day 4; however, for most cytokines examined in the brain and in the periphery we were unable to identify any sex differences in the immune response, at least at the time points examined. Instead, neonatal infection with E.coli increased the expression of a number of cytokines in the brain of both males and females similarly including TNF-α, IL-1β, and CD11b (a marker of microglia activation) in the hippocampus and, in the spleen, TNF-α and IL-1β. We also found that protein levels of GRO-KC, MIP-1a, MCP1, IP-10, TNF-α, and IL-10 were elevated 8-hours postinfection, but this response was resolved by 24-hours. Lastly, we found that males have more thin microglia than females on P5, however, neonatal infection had no effect on any of the microglia morphologies we examined. These data show that sex differences in the acute immune response to neonatal infection are likely gene, region, and even time dependent. Future research should consider these factors in order to develop a comprehensive understanding of the immune response in males and females as these changes are likely the initiating agents that lead to the long-term, and often sex-specific, effects of early-life infection.
Collapse
Affiliation(s)
- Brittany F Osborne
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Alexandra Turano
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jasmine I Caulfield
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| | - Jaclyn M Schwarz
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
23
|
Bigler ED. Structural neuroimaging in sport-related concussion. Int J Psychophysiol 2018; 132:105-123. [DOI: 10.1016/j.ijpsycho.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
24
|
Amin ND, Paşca SP. Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron 2018; 100:389-405. [DOI: 10.1016/j.neuron.2018.10.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
|
25
|
Perez DL, Keshavan MS, Scharf JM, Boes AD, Price BH. Bridging the Great Divide: What Can Neurology Learn From Psychiatry? J Neuropsychiatry Clin Neurosci 2018; 30:271-278. [PMID: 29939105 PMCID: PMC6309772 DOI: 10.1176/appi.neuropsych.17100200] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurology and psychiatry share common historical origins and rely on similar tools to study brain disorders. Yet the practical integration of medical and scientific approaches across these clinical neurosciences remains elusive. Although much has been written about the need to incorporate emerging systems-level, cellular-molecular, and genetic-epigenetic advances into a science of mind for psychiatric disorders, less attention has been given to applying clinical neuroscience principles to conceptualize neurologic conditions with an integrated neurobio-psycho-social approach. In this perspective article, the authors briefly outline the historically interwoven and complicated relationship between neurology and psychiatry. Through a series of vignettes, the authors then illustrate how some traditional psychiatric conditions are being reconceptualized in part as disorders of neurodevelopment and awareness. They emphasize the intersection of neurology and psychiatry by highlighting conditions that cut across traditional diagnostic boundaries. The authors argue that the divide between neurology and psychiatry can be narrowed by moving from lesion-based toward circuit-based understandings of neuropsychiatric disorders, from unidirectional toward bidirectional models of brain-behavior relationships, from exclusive reliance on categorical diagnoses toward transdiagnostic dimensional perspectives, and from silo-based research and treatments toward interdisciplinary approaches. The time is ripe for neurologists and psychiatrists to implement an integrated clinical neuroscience approach to the assessment and management of brain disorders. The subspecialty of behavioral neurology & neuropsychiatry is poised to lead the next generation of clinicians to merge brain science with psychological and social-cultural factors. These efforts will catalyze translational research, revitalize training programs, and advance the development of impactful patient-centered treatments.
Collapse
Affiliation(s)
- David L. Perez
- Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Neuropsychiatry Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jeremiah M. Scharf
- Movement Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA
| | - Aaron D. Boes
- Departments of Pediatrics, Neurology and Psychiatry, University of Iowa Health Care, Carver College of Medicine, Iowa City, IA
| | - Bruce H. Price
- Behavioral Neurology Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Neurology, McLean Hospital, Harvard Medical School, Belmont, MA
| |
Collapse
|
26
|
Data-Driven Clustering Reveals a Link Between Symptoms and Functional Brain Connectivity in Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:16-26. [PMID: 29980494 DOI: 10.1016/j.bpsc.2018.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Depression is a complex disorder with large interindividual variability in symptom profiles that often occur alongside symptoms of other psychiatric domains, such as anxiety. A dimensional and symptom-based approach may help refine the characterization of depressive and anxiety disorders and thus aid in establishing robust biomarkers. We use resting-state functional magnetic resonance imaging to assess the brain functional connectivity correlates of a symptom-based clustering of individuals. METHODS We assessed symptoms using the Beck Depression and Beck Anxiety Inventories in individuals with or without a history of depression (N = 1084) and high-dimensional data clustering to form subgroups based on symptom profiles. We compared dynamic and static functional connectivity between subgroups in a subset of the total sample (n = 252). RESULTS We identified five subgroups with distinct symptom profiles, which cut across diagnostic boundaries with different total severity, symptom patterns, and centrality. For instance, inability to relax, fear of the worst, and feelings of guilt were among the most severe symptoms in subgroups 1, 2, and 3, respectively. The distribution of individuals was 32%, 25%, 22%, 10%, and 11% in subgroups 1 to 5, respectively. These subgroups showed evidence of differential static brain-connectivity patterns, in particular comprising a frontotemporal network. In contrast, we found no significant associations with clinical sum scores, dynamic functional connectivity, or global connectivity. CONCLUSIONS Adding to the pursuit of individual-based treatment, subtyping based on a dimensional conceptualization and unique constellations of anxiety and depression symptoms is supported by distinct patterns of static functional connectivity in the brain.
Collapse
|
27
|
Wojtalik JA, Eack SM, Smith MJ, Keshavan MS. Using Cognitive Neuroscience to Improve Mental Health Treatment: A Comprehensive Review. JOURNAL OF THE SOCIETY FOR SOCIAL WORK AND RESEARCH 2018; 9:223-260. [PMID: 30505392 PMCID: PMC6258037 DOI: 10.1086/697566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mental health interventions do not yet offer complete, client-defined functional recovery, and novel directions in treatment research are needed to improve the efficacy of available interventions. One promising direction is the integration of social work and cognitive neuroscience methods, which provides new opportunities for clinical intervention research that will guide development of more effective mental health treatments that holistically attend to the biological, social, and environmental contributors to disability and recovery. This article reviews emerging trends in cognitive neuroscience and provides examples of how these advances can be used by social workers and allied professions to improve mental health treatment. We discuss neuroplasticity, which is the dynamic and malleable nature of the brain. We also review the use of risk and resiliency biomarkers and novel treatment targets based on neuroimaging findings to prevent disability, personalize treatment, and make interventions more targeted and effective. The potential of treatment research to contribute to neuroscience discoveries regarding brain change is considered from the experimental-medicine approach adopted by the National Institute of Mental Health. Finally, we provide resources and recommendations to facilitate the integration of cognitive neuroscience into mental health research in social work.
Collapse
Affiliation(s)
- Jessica A Wojtalik
- Doctoral candidate at the University of Pittsburgh School of Social Work
| | - Shaun M Eack
- Professor at the University of Pittsburgh School of Social Work and Department of Psychiatry
| | - Matthew J Smith
- Associate professor at the University of Michigan School of Social Work
| | | |
Collapse
|
28
|
Abstract
The last decade has witnessed an increase in the number of moderate to large-scale nonpharmacologic stroke recovery trials. While a majority, having tested the superiority of a particular evidence-based intervention, returned negative findings, the rehabilitation research community has gained an important perspective for future efforts. We offer our interpretation first, on why most of the past decade’s trials failed in the sense of not supporting the primary superiority hypothesis, and, second, we provide our perspective on how to solve this problem and thereby inform the next generation of neurorehabilitation clinical trials. The first large-scale randomized controlled trial (RCT) ever conducted in neurorehabilitation was the Extremity Constraint Induced Movement Therapy Evaluation (EXCITE) trial. The majority of stroke recovery trials that followed were based on a prevailing, but as yet immature science of brain-behavior mechanisms for recovery and limited practical know-how about how to select the most meaningful outcomes. The research community had been seduced by a set of preclinical studies, ignited by the 1990’s revolution in neuroscience and an oversimplified premise that high doses of task-oriented training was the most important ingredient to foster recovery. Here, we highlight recent qualitative and quantitative evidence, both mechanistic and theory-driven, that integrates crucial social and personal factors to inform a more mature science better suited for the next generation of recovery-supportive rehabilitation clinical trials.
Collapse
|
29
|
Gal G, Munitz H, Levav I. Double disparities in the health care for people with schizophrenia of an ethnic-national minority. Isr J Health Policy Res 2017; 6:47. [PMID: 29031281 PMCID: PMC5641401 DOI: 10.1186/s13584-017-0166-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/07/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Studies have shown health care disparities among persons of minority status, including in countries with universal health care. Yet, a dearth of studies have addressed disparities resulting from the combined effect of two minority status groups: severe mental illness and ethnic-national sector filiation. This study aimed to compare the differential health care of Jewish- and Arab-Israelis with schizophrenia in a country with a universal health insurance. METHOD This study builds on a large case-control epidemiological sample (N = 50,499) of Jewish- (92.9%) and Arab-Israelis (7.1%) service users with (n = 16,833) and without schizophrenia (n = 33,666). Health services records were collected in the years 2000-2009. Diabetes and cardiovascular disease (CVD) served as sentinel diseases. We compared annual number of LDL tests and visits to specialists in the entire sample, Hemoglobin-A1C test among people diagnosed with diabetes, and cardiac surgical interventions for those diagnosed with CVD. RESULTS Service users with schizophrenia were less likely to meet identical indexes of care as their study counterparts: 95% of cholesterol tests (p < .001), and 92% visits to specialists (p < .001). These differences were greater among Arab- compared to Jewish-Israelis. Annual frequency of Hemoglobin-A1C test among people diagnosed with diabetes was lower (94%) in people with schizophrenia (p < 0.01), but no ethnic-national differences were identified. Among service users with CVD less surgical interventions were done in people with schizophrenia (70%) compared to their counterparts, with no ethnic-national disparities. CONCLUSIONS In Israel, service users with schizophrenia fail to receive equitable levels of medical and cardiac surgical care for CVD and regular laboratory tests for diabetes. Although disparities in some health indicators were enhanced among Arab-Israelis, schizophrenia was a greater source of disparities than ethnic-national filiation.
Collapse
Affiliation(s)
- Gilad Gal
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Rabenu Yeruham St, Tel Aviv, Israel.
| | | | - Itzhak Levav
- Department of Community Mental Health, Faculty of Social Welfare and Health Sciences, Haifa University, Haifa, Israel
| |
Collapse
|
30
|
Abstract
Abstract:Diagnostic classification systems in psychiatry have continued to rely on clinical phenomenology, despite limitations inherent in that approach. In view of these limitations and recent progress in neuroscience, the National Institute of Mental Health (NIMH) has initiated the Research Domain Criteria (RDoC) project to develop a more neuroscientifically based system of characterizing and classifying psychiatric disorders. The RDoC initiative aims to transform psychiatry into an integrative science of psychopathology in which mental illnesses will be defined as involving putative dysfunctions in neural nodes and networks. However, conceptual, methodological, neuroethical, and social issues inherent in and/or derived from the use of RDoC need to be addressed before any attempt is made to implement their use in clinical psychiatry. This article describes current progress in RDoC; defines key technical, neuroethical, and social issues generated by RDoC adoption and use; and posits key questions that must be addressed and resolved if RDoC are to be employed for psychiatric diagnoses and therapeutics. Specifically, we posit that objectivization of complex mental phenomena may raise ethical questions about autonomy, the value of subjective experience, what constitutes normality, what constitutes a disorder, and what represents a treatment, enablement, and/or enhancement. Ethical issues may also arise from the (mis)use of biomarkers and phenotypes in predicting and treating mental disorders, and what such definitions, predictions, and interventions portend for concepts and views of sickness, criminality, professional competency, and social functioning. Given these issues, we offer that a preparatory neuroethical framework is required to define and guide the ways in which RDoC-oriented research can—and arguably should—be utilized in clinical psychiatry, and perhaps more broadly, in the social sphere.
Collapse
|
31
|
Besterman AD, Williams JK, Reus VI, Pato MT, Voglmaier SM, Mathews CA. The Role of Regional Conferences in Research Resident Career Development: The California Psychiatry Research Resident Retreat. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2017; 41:272-277. [PMID: 27178277 PMCID: PMC5107358 DOI: 10.1007/s40596-016-0562-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE For psychiatry research resident career development, there is a recognized need for improved cross-institutional mentoring and networking opportunities. One method to address this need is via regional conferences, open to current and recently graduated research residents and their mentors. With this in mind, we developed the biennial California Psychiatry Research Resident Retreat (CPRRR) and collected feedback from participants to 1) Assess resident satisfaction, 2) Determine the utility of the retreat as a networking and mentorship tool, and 3) Identify areas for improvement. METHODS We gathered survey data from resident attendees at the two first CPRRRs. We analyzed the data to look for trends in satisfaction as well as areas that need improvement. RESULTS Thirty-two residents from five California training programs attended the CPRRR in 2013 while 33 attended from six programs in 2015. The residents were from all years of training, but concentrated in their second and third years. Approximately 41% and 49% of the attendees were female and 53% and 39% had an MD/PhD in 2013 and 2015, respectively. Twenty-four and 32 residents provided anonymous feedback in 2013 and 2015, respectively. Mean feedback scores were very high (> 4/5) for overall satisfaction, peer- and faculty-networking, the keynote speaker and the flash talks for both years. Mean feedback scores for the ethics debates and mentoring sessions were somewhat lower (≤ 4/5), however, both showed significant improvement from 2013 to 2015. CONCLUSION The CPRRRs appear to be an effective mechanism for providing psychiatry research residents with a meaningful cross-institutional opportunity for networking and mentorship. Feedback-driven changes to the CPRRRs improved participant satisfaction for several components of the conference. Future efforts will be aimed at broadening mentorship and networking opportunities, optimizing teaching approaches for research ethics, and considering different feedback-gathering approaches to allow for improved longitudinal follow-up and subgroup analysis.
Collapse
|
32
|
Health care disparities among persons with comorbid schizophrenia and cardiovascular disease: a case-control epidemiological study. Epidemiol Psychiatr Sci 2016; 25:541-547. [PMID: 26423605 PMCID: PMC7137664 DOI: 10.1017/s2045796015000852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AIMS Studies showed health care disparities among persons with comorbid schizophrenia and cardiovascular disease (CVD), including in countries with universal health care. However, the potential positive effect of specific mental health legislation has not been reported. This study aimed to investigate the health care of persons with comorbid schizophrenia and CVD in a country with both a national health insurance and a comprehensive rehabilitation law for persons with mental disabilities. METHOD This study builds on a large case-control epidemiological sample (N = 52 189) of service users. Within the sample we identified a sub-group of persons with CVD diagnoses (n = 8208) and compared service users with and without schizophrenia on drug utilisation, laboratory tests, visits to specialists and surgical interventions. RESULTS Service users with schizophrenia were less likely to meet similar indexes of care as their counterparts: 91% cholesterol tests (p < 0.001), 60% stress tests (p < 0.001), 93% visits to specialists (p = 0.001), 93% drug utilisation (p < 0.001) and 55% CVD surgical interventions (odds ratio 0.55, 95% confidence intervals 0.49-0.61). CONCLUSIONS In Israel, a country with a national health insurance and a rehabilitation law specific for persons with mental disabilities, service users with schizophrenia still fail to receive equitable levels of health care for CVD. However, the disparities appear to be smaller than in other countries with universal health insurance.
Collapse
|
33
|
Carvalho AF, Köhler CA, Brunoni AR, Miskowiak KW, Herrmann N, Lanctôt KL, Hyphantis TN, Quevedo J, Fernandes BS, Berk M. Bias in Peripheral Depression Biomarkers. PSYCHOTHERAPY AND PSYCHOSOMATICS 2016; 85:81-90. [PMID: 26808272 DOI: 10.1159/000441457] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND To aid in the differentiation of individuals with major depressive disorder (MDD) from healthy controls, numerous peripheral biomarkers have been proposed. To date, no comprehensive evaluation of the existence of bias favoring the publication of significant results or inflating effect sizes has been conducted. METHODS Here, we performed a comprehensive review of meta-analyses of peripheral nongenetic biomarkers that could discriminate individuals with MDD from nondepressed controls. PubMed/MEDLINE, EMBASE, and PsycINFO databases were searched through April 10, 2015. RESULTS From 15 references, we obtained 31 eligible meta-analyses evaluating biomarkers in MDD (21,201 cases and 78,363 controls). Twenty meta-analyses reported statistically significant effect size estimates. Heterogeneity was high (I2 ≥ 50%) in 29 meta-analyses. We plausibly assumed that the true effect size for a meta-analysis would equal the one of its largest study. A significant summary effect size estimate was observed for 20 biomarkers. We observed an excess of statistically significant studies in 21 meta-analyses. The summary effect size of the meta-analysis was higher than the effect of its largest study in 25 meta-analyses, while 11 meta-analyses had evidence of small-study effects. CONCLUSIONS Our findings suggest that there is an excess of studies with statistically significant results in the literature of peripheral biomarkers for MDD. The selective publication of 'positive studies' and the selective reporting of outcomes are possible mechanisms. Effect size estimates of meta-analyses may be inflated in this literature.
Collapse
Affiliation(s)
- André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Cearx00E1;, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kang H, Han KA, Won SY, Kim HM, Lee YH, Ko J, Um JW. Slitrk Missense Mutations Associated with Neuropsychiatric Disorders Distinctively Impair Slitrk Trafficking and Synapse Formation. Front Mol Neurosci 2016; 9:104. [PMID: 27812321 PMCID: PMC5071332 DOI: 10.3389/fnmol.2016.00104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022] Open
Abstract
Slit- and Trk-like (Slitrks) are a six-member family of synapse organizers that control excitatory and inhibitory synapse formation by forming trans-synaptic adhesions with LAR receptor protein tyrosine phosphatases (PTPs). Intriguingly, genetic mutations of Slitrks have been associated with a multitude of neuropsychiatric disorders. However, nothing is known about the neuronal and synaptic consequences of these mutations. Here, we report the structural and functional effects on synapses of various rare de novo mutations identified in patients with schizophrenia or Tourette syndrome. A number of single amino acid substitutions in Slitrk1 (N400I or T418S) or Slitrk4 (V206I or I578V) reduced their surface expression levels. These substitutions impaired glycosylation of Slitrks expressed in HEK293T cells, caused retention of Slitrks in the endoplasmic reticulum and cis-Golgi compartment in COS-7 cells and neurons, and abolished Slitrk binding to PTPδ. Furthermore, these substitutions eliminated the synapse-inducing activity of Slitrks, abolishing their functional effects on synapse density in cultured neurons. Strikingly, a valine-to-methionine mutation in Slitrk2 (V89M) compromised synapse formation activity in cultured neuron, without affecting surface transport, expression, or synapse-inducing activity in coculture assays. Similar deleterious effects were observed upon introduction of the corresponding valine-to-methionine mutation into Slitrk1 (V85M), suggesting that this conserved valine residue plays a key role in maintaining the synaptic functions of Slitrks. Collectively, these data indicate that inactivation of distinct cellular mechanisms caused by specific Slitrk dysfunctions may underlie Slitrk-associated neuropsychiatric disorders in humans, and provide a robust cellular readout for the development of knowledge-based therapies.
Collapse
Affiliation(s)
- Hyeyeon Kang
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| | - Kyung Ah Han
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| | - Seoung Youn Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon, Korea
| | - Young-Ho Lee
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University Seoul, Korea
| | - Ji Won Um
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine Seoul, Korea
| |
Collapse
|
35
|
Bigler ED. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury. Front Syst Neurosci 2016; 10:55. [PMID: 27555810 PMCID: PMC4977319 DOI: 10.3389/fnsys.2016.00055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/08/2016] [Indexed: 01/03/2023] Open
Abstract
The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology perspective could represent a significant advancement for the field.
Collapse
Affiliation(s)
- Erin D. Bigler
- Department of Psychology, Neuroscience Center, Brigham Young UniversityProvo, UT, USA
| |
Collapse
|
36
|
Carvalho AF, Köhler CA, Fernandes BS, Quevedo J, Miskowiak KW, Brunoni AR, Machado-Vieira R, Maes M, Vieta E, Berk M. Bias in emerging biomarkers for bipolar disorder. Psychol Med 2016; 46:2287-2297. [PMID: 27193198 DOI: 10.1017/s0033291716000957] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND To date no comprehensive evaluation has appraised the likelihood of bias or the strength of the evidence of peripheral biomarkers for bipolar disorder (BD). Here we performed an umbrella review of meta-analyses of peripheral non-genetic biomarkers for BD. METHOD The Pubmed/Medline, EMBASE and PsycInfo electronic databases were searched up to May 2015. Two independent authors conducted searches, examined references for eligibility, and extracted data. Meta-analyses in any language examining peripheral non-genetic biomarkers in participants with BD (across different mood states) compared to unaffected controls were included. RESULTS Six references, which examined 13 biomarkers across 20 meta-analyses (5474 BD cases and 4823 healthy controls) met inclusion criteria. Evidence for excess of significance bias (i.e. bias favoring publication of 'positive' nominally significant results) was observed in 11 meta-analyses. Heterogeneity was high for (I 2 ⩾ 50%) 16 meta-analyses. Only two biomarkers met criteria for suggestive evidence namely the soluble IL-2 receptor and morning cortisol. The median power of included studies, using the effect size of the largest dataset as the plausible true effect size of each meta-analysis, was 15.3%. CONCLUSIONS Our findings suggest that there is an excess of statistically significant results in the literature of peripheral biomarkers for BD. Selective publication of 'positive' results and selective reporting of outcomes are possible mechanisms.
Collapse
Affiliation(s)
- A F Carvalho
- Department of Psychiatry and Translational Psychiatry Research Group,Faculty of Medicine,Federal University of Ceará,Fortaleza, CE,Brazil
| | - C A Köhler
- Department of Psychiatry and Translational Psychiatry Research Group,Faculty of Medicine,Federal University of Ceará,Fortaleza, CE,Brazil
| | - B S Fernandes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health,Geelong - VIC,Australia
| | - J Quevedo
- Department of Psychiatry and Behavioral Sciences,Center for Experimental Models in Psychiatry, The University of Texas Medical School at Houston,Houston, TX,USA
| | - K W Miskowiak
- Psychiatric Centre Copenhagen, Copenhagen University Hospital,Rigshospitalet,Copenhagen,Denmark
| | - A R Brunoni
- Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo,São Paulo,Brazil
| | - R Machado-Vieira
- Laboratory of Neuroscience, LIM- 27,Institute and Department of Psychiatry, University of Sao Paulo,Sao Paulo,Brazil
| | - M Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health,Geelong - VIC,Australia
| | - E Vieta
- Bipolar Disorders Unit,Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM,Barcelona,Catalonia,Spain
| | - M Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine and Barwon Health,Geelong - VIC,Australia
| |
Collapse
|
37
|
Corvol JC, Goni S, Bordet R. Translational research on cognitive and behavioural disorders in neurological and psychiatric diseases. Therapie 2016; 71:1-13, 15-26. [PMID: 27080626 DOI: 10.1016/j.therap.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The important medical and social burden of nervous system diseases contrasts with the currently limited therapeutic armamentarium and with the difficulty encountered in developing new therapeutic options. These failures can be explained by the conjunction of various phenomena related to the limitations of animal models, the narrow focus of research on precise pathophysiological mechanisms, and methodological issues in clinical trials. It is perhaps the paradigm itself of the way research is conducted that may be the real reason for our incapacity to find effective strategies. The purpose of this workshop was to define overall lines of research that could lead to the development of effective novel therapeutic solutions. Research has long focused on diseases per se rather than on cognitive and behavioural dimensions common to several diseases. Their expression is often partial and variable, but can today be well-characterised using neurophysiological or imaging methods. This dimensional or syndromic vision should enable a new insight to the question, taking a transnosographic approach to re-position research and to propose: translational models exploring the same functions in animal models and in humans; identification of homogeneous groups of patients defined according to the clinical, anatomico-functional and molecular characteristics; and preclinical and clinical developments enriched by the use of cognitive-behavioural, biological neurological, and imaging biomarkers. For this mutation to be successful, it must be accompanied by synchronised action from the public authorities and by ad hoc measures from the regulatory agencies.
Collapse
Affiliation(s)
- Jean-Christophe Corvol
- Inserm UMRS 1127, CIC 1422, CNRS UMR 7225, département des maladies du système nerveux, hôpital Pitié-Salpêtrière, AP-HP, UPMC - université Paris 06, Sorbonne universités, bâtiment ICM, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| | - Sylvia Goni
- Lundbeck SAS, 92445 Issy-les-Moulineaux, France
| | - Régis Bordet
- Inserm U1171, Degenerative and Vascular Cognitive Disorders, CHU, université de Lille, 59000 Lille, France
| | | |
Collapse
|
38
|
Abstract
Psychiatry is having a great time. Over the last few years, we have seen an exceptional explosion in neuroscience knowledge, and especially in our understanding of the molecular mechanisms through which environmental and genetic factors affect the brain and regulate behaviour, while at the same interacting with peripheral ('body') functions. While this explosion, and its translational implications, can be seen across a variety of fields, this editorial will focus on one particular area where these developments have been more noticeable: the interaction between neuroscience, mental health and the immune system. This editorial will focus on the broader impact of this discipline as an example of successful translational neuroscience overcoming the brain-mind-body trichotomy.
Collapse
|
39
|
Saland SK, Schoepfer KJ, Kabbaj M. Hedonic sensitivity to low-dose ketamine is modulated by gonadal hormones in a sex-dependent manner. Sci Rep 2016; 6:21322. [PMID: 26888470 PMCID: PMC4766854 DOI: 10.1038/srep21322] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/21/2016] [Indexed: 11/22/2022] Open
Abstract
We recently reported a greater sensitivity of female rats to rapid antidepressant-like effects of ketamine compared to male rats, and that ovarian-derived estradiol (E2) and progesterone (P4) are essential for this response. However, to what extent testosterone may also contribute, and whether duration of response to ketamine is modulated in a sex- and hormone-dependent manner remains unclear. To explore this, we systematically investigated the influence of testosterone, estradiol and progesterone on initiation and maintenance of hedonic response to low-dose ketamine (2.5 mg/kg) in intact and gonadectomized male and female rats. Ketamine induced a sustained increase in sucrose preference of female, but not male, rats in an E2P4-dependent manner. Whereas testosterone failed to alter male treatment response, concurrent administration of P4 alone in intact males enhanced hedonic response low-dose ketamine. Treatment responsiveness in female rats only was associated with greater hippocampal BDNF levels, but not activation of key downstream signaling effectors. We provide novel evidence supporting activational roles for ovarian-, but not testicular-, derived hormones in mediating hedonic sensitivity to low-dose ketamine in female and male rats, respectively. Organizational differences may, in part, account for the persistence of sex differences following gonadectomy and selective involvement of BDNF in treatment response.
Collapse
Affiliation(s)
- Samantha K. Saland
- Department of Biomedical Sciences, Program in Neurosciences, College
of Medicine, Florida State University, USA
| | - Kristofer J. Schoepfer
- Department of Biomedical Sciences, Program in Neurosciences, College
of Medicine, Florida State University, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Program in Neurosciences, College
of Medicine, Florida State University, USA
| |
Collapse
|
40
|
Corvol JC, Goni S, Bordet R, Azuar C, Blin O, Checler F, David DJ, Durif F, Fernagut PO, Dupouey J, Otten L, Gaillard R, Kemel ML, Micallef J, Perault-Pochat MC, Pitel AL, Truffinet P. Recherche translationnelle sur les troubles cognitifs et comportementaux dans les maladies neurologiques et psychiatriques. Therapie 2016. [DOI: 10.1016/j.therap.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Stress effects on the neural substrates of motivated behavior. Nat Neurosci 2015; 18:1405-12. [PMID: 26404715 DOI: 10.1038/nn.4114] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
Exposure to stress has profound, but complex, actions on motivated behavior and decision-making. These effects are central to core symptoms of a number of psychiatric disorders that are precipitated or augmented by stress, such as depressive disorders and substance use disorders. Studying the neural substrates of stress's effects on motivation has revealed that stress affects multiple targets on circuits throughout the brain using diverse molecular signaling processes. Moreover, stress does not have unitary effects on motivated behavior, but differences in the intensity, duration, intermittency, controllability and nature of the stressor produce qualitatively and quantitatively different behavioral endpoints. Unsurprisingly, the results of neuroscientific investigations into stress and motivation often open more questions than they resolve. Here we discuss contemporary results pertaining to the neural mechanisms by which stress alters motivation, identify points of contention and highlight integrative areas for continuing research into these multifaceted complexities.
Collapse
|
42
|
Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB, Ribeiro S, Javitt DC, Copelli M, Corcoran CM. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ SCHIZOPHRENIA 2015; 1:15030. [PMID: 27336038 PMCID: PMC4849456 DOI: 10.1038/npjschz.2015.30] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Psychiatry lacks the objective clinical tests routinely used in other specializations. Novel computerized methods to characterize complex behaviors such as speech could be used to identify and predict psychiatric illness in individuals. AIMS In this proof-of-principle study, our aim was to test automated speech analyses combined with Machine Learning to predict later psychosis onset in youths at clinical high-risk (CHR) for psychosis. METHODS Thirty-four CHR youths (11 females) had baseline interviews and were assessed quarterly for up to 2.5 years; five transitioned to psychosis. Using automated analysis, transcripts of interviews were evaluated for semantic and syntactic features predicting later psychosis onset. Speech features were fed into a convex hull classification algorithm with leave-one-subject-out cross-validation to assess their predictive value for psychosis outcome. The canonical correlation between the speech features and prodromal symptom ratings was computed. RESULTS Derived speech features included a Latent Semantic Analysis measure of semantic coherence and two syntactic markers of speech complexity: maximum phrase length and use of determiners (e.g., which). These speech features predicted later psychosis development with 100% accuracy, outperforming classification from clinical interviews. Speech features were significantly correlated with prodromal symptoms. CONCLUSIONS Findings support the utility of automated speech analysis to measure subtle, clinically relevant mental state changes in emergent psychosis. Recent developments in computer science, including natural language processing, could provide the foundation for future development of objective clinical tests for psychiatry.
Collapse
Affiliation(s)
- Gillinder Bedi
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Division on Substance Abuse, New York State Psychiatric Institute, New York, NY, USA
| | - Facundo Carrillo
- Department of computer Science, School of Sciences, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Guillermo A Cecchi
- Computational Biology Center-Neuroscience, IBM T.J. Watson Research Center , Yorktown Heights, NY, USA
| | - Diego Fernández Slezak
- Department of computer Science, School of Sciences, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Mariano Sigman
- Department of Physics, School of Sciences, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Natália B Mota
- Brain Institute, Federal University of Rio Grande do Norte , Natal, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte , Natal, Brazil
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Mauro Copelli
- Department of Physics, Federal University of Pernambuco , Recife, Brazil
| | - Cheryl M Corcoran
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA; Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
43
|
Global mental health and neuroscience: potential synergies. Lancet Psychiatry 2015; 2:178-85. [PMID: 26359754 DOI: 10.1016/s2215-0366(15)00014-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/07/2014] [Indexed: 02/05/2023]
Abstract
Global mental health has emerged as an important specialty. It has drawn attention to the burden of mental illness and to the relative gap in mental health research and services around the world. Global mental health has raised the question of whether this gap is a developmental issue, a health issue, a human rights issue, or a combination of these issues-and it has raised awareness of the need to develop new approaches for building capacity, mobilising resources, and closing the research and treatment gap. Translational neuroscience has also advanced. It comprises an important conceptual approach to understanding the neurocircuitry and molecular basis of mental disorders, to rethinking how best to undertake research on the aetiology, assessment, and treatment of these disorders, with the ultimate aim to develop entirely new approaches to prevention and intervention. Some apparent contrasts exist between these fields; global mental health emphasises knowledge translation, moving away from the bedside to a focus on health systems, whereas translational neuroscience emphasises molecular neuroscience, focusing on transitions between the bench and bedside. Meanwhile, important opportunities exist for synergy between the two paradigms, to ensure that present opportunities in mental health research and services are maximised. Here, we review the approaches of global mental health and clinical neuroscience to diagnosis, pathogenesis, and intervention, and make recommendations for facilitating an integration of these two perspectives.
Collapse
|
44
|
Abstract
Several large pharmaceutical companies have selectively downsized their neuroscience research divisions, reflecting a growing view that developing drugs to treat brain diseases is more difficult and often more time-consuming and expensive than developing drugs for other therapeutic areas, and thus represents a weak area for investment. These withdrawals reduce global neuroscience translational capabilities and pose a serious challenge to society's interests in ameliorating the impact of nervous system diseases. While the path forward ultimately lies in improving understandings of disease mechanisms, many promising therapeutic approaches have already been identified, and rebalancing the underlying risk/reward calculus could help keep companies engaged in making CNS drugs. One way to do this that would not require upfront funding is to change the policies that regulate market returns for the most-needed breakthrough drugs. The broader neuroscience community including clinicians and patients should convene to develop and advocate for such policy changes.
Collapse
|
45
|
Hsu WCJ, Nilsson CL, Laezza F. Role of the axonal initial segment in psychiatric disorders: function, dysfunction, and intervention. Front Psychiatry 2014; 5:109. [PMID: 25191280 PMCID: PMC4139700 DOI: 10.3389/fpsyt.2014.00109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
The progress of developing effective interventions against psychiatric disorders has been limited due to a lack of understanding of the underlying cellular and functional mechanisms. Recent research findings focused on exploring novel causes of psychiatric disorders have highlighted the importance of the axonal initial segment (AIS), a highly specialized neuronal structure critical for spike initiation of the action potential. In particular, the role of voltage-gated sodium channels, and their interactions with other protein partners in a tightly regulated macromolecular complex has been emphasized as a key component in the regulation of neuronal excitability. Deficits and excesses of excitability have been linked to the pathogenesis of brain disorders. Identification of the factors and regulatory pathways involved in proper AIS function, or its disruption, can lead to the development of novel interventions that target these mechanistic interactions, increasing treatment efficacy while reducing deleterious off-target effects for psychiatric disorders.
Collapse
Affiliation(s)
- Wei-Chun Jim Hsu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Graduate Program in Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- M.D.–Ph.D. Combined Degree Program, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Carol Lynn Nilsson
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Addiction Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Center for Biomedical Engineering, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
46
|
Kirmayer LJ, Crafa D. What kind of science for psychiatry? Front Hum Neurosci 2014; 8:435. [PMID: 25071499 PMCID: PMC4092362 DOI: 10.3389/fnhum.2014.00435] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/29/2014] [Indexed: 12/20/2022] Open
Abstract
Psychiatry has invested its hopes in neuroscience as a path to understanding mental disorders and developing more effective treatments and ultimately cures. Recently, the U.S. NIMH has elaborated this vision through a new framework for mental health research, the Research Domain Criteria (RDoC). This framework aims to orient mental health research toward the discovery of underlying neurobiological and biobehavioral mechanisms of mental disorders that will eventually lead to definitive treatments. In this article we consider the rationale of the RDoC and what it reveals about implicit models of mental disorders. As an overall framework for understanding mental disorders, RDoC is impoverished and conceptually flawed. These limitations are not accidental but stem from disciplinary commitments and interests that are at odds with the larger concerns of psychiatry. A multilevel, ecosocial approach to biobehavioral systems is needed both to guide relevant neuroscience research and insure the inclusion of social processes that may be fundamental contributors to psychopathology and recovery.
Collapse
Affiliation(s)
- Laurence J. Kirmayer
- Division of Social and Transcultural Psychiatry, McGill University & Institute of Community and Family Psychiatry, Jewish General HospitalMontreal, QC, Canada
| | | |
Collapse
|
47
|
One gene, many neuropsychiatric disorders: lessons from Mendelian diseases. Nat Neurosci 2014; 17:773-81. [PMID: 24866043 DOI: 10.1038/nn.3713] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022]
Abstract
Recent human genetic studies have consistently shown that mutations in the same gene or same genomic region can increase the risk of a broad range of complex neuropsychiatric disorders. Despite the steadily increasing number of examples of such nonspecific effects on risk, the underlying biological causes remain mysterious. Here we investigate the phenomenon of such nonspecific risk by identifying Mendelian disease genes that are associated with multiple diseases and explore what is known about the underlying mechanisms in these more 'simple' examples. Our analyses make clear that there are a variety of mechanisms at work, emphasizing how challenging it will be to elucidate the causes of nonspecific risk in complex disease. Ultimately, we conclude that functional approaches will be critical for explaining the causes of nonspecific risk factors discovered by human genetic studies of neuropsychiatric disorders.
Collapse
|
48
|
Akil M, Etkin A. Transforming neuroscience education in psychiatry. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2014; 38:116-120. [PMID: 24567033 DOI: 10.1007/s40596-014-0065-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
|