1
|
Van Zandt M, Pittenger C. Sex Differences in Histamine Regulation of Striatal Dopamine. J Neurosci 2025; 45:e2182242025. [PMID: 40355265 PMCID: PMC12160404 DOI: 10.1523/jneurosci.2182-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/05/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Dopamine modulation of the basal ganglia differs in males and females and is implicated in numerous neuropsychiatric conditions, including some, like Tourette syndrome (TS) and attention deficit hyperactivity disorder (ADHD), that have marked sex differences in prevalence. Genetic studies in TS and subsequent work in animals suggest that a loss of histamine may contribute to dysregulation of dopamine. Motivated by this, we characterized the modulation of striatal dopamine by histamine, using microdialysis, targeted pharmacology, and shRNA knockdown of histamine receptors. Intracerebroventricular (ICV) histamine reduced striatal dopamine in male mice, replicating previous work. In contrast, and unexpectedly, ICV histamine increased striatal dopamine in females. ICV or targeted infusion of agonists revealed that the effect in males depends on H2R receptors in the substantia nigra pars compacta (SNc). Knockdown of H2R in SNc GABAergic neurons abrogated the effect, identifying these cells as a key locus of histamine's regulation of dopamine in males. In females, however, H2R had no discernible role; instead, H3R agonists in the striatum increased striatal dopamine. Strikingly, the effect of histamine on dopamine in females was modulated by the estrous cycle, appearing only in proestrus, when estrogen levels are high, and estrus. These findings confirm the regulation of striatal dopamine by histamine but identify marked sex differences in and estrous modulation of this effect. These findings may shed light on the mechanistic underpinnings of sex differences in the striatal circuitry and in several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06519
- Department of Psychology, Yale School of Arts and Sciences, New Haven, Connecticut 06519
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, Connecticut 06519
- Wu-Tsai Institute, Yale University, New Haven, Connecticut 06519
| |
Collapse
|
2
|
Lv J, Liang S, Qin P, Liu X, Ge X, Guo Y, Xia S, Jing W, Lu Y, Zhang T, Li H. WWC1 mutation drives dopamine dysregulation and synaptic imbalance in Tourette's syndrome. SCIENCE ADVANCES 2025; 11:eadr4588. [PMID: 40153501 PMCID: PMC11952098 DOI: 10.1126/sciadv.adr4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Tourette's syndrome (TS) is a major neurodevelopmental disorder characterized by childhood-onset motor and vocal tics. A W88C mutation in WWC1 gene is a notable risk factor for TS, but the underlying molecular mechanisms remain unclear due to the lack of suitable animal models. Here, we generate a mutant mouse line with human W88C mutation (W88CMut mice), which exhibits behavioral deficits similar to those observed in patients with TS, including repetitive motor behaviors and sensorimotor gating abnormalities. The W88C mutation leads to the degradation of kidney and brain (KIBRA) protein via a proteasomal pathway, evokes dopamine release in the dorsal striatum, and disrupts synaptic function through the dysregulation of Hippo pathway. Neuron-specific overexpression of wild-type WWC1 rescues synaptic and behavioral phenotypes in W88CMut mice. Together, this study not only provides a valuable mouse model for studying TS but also offers fresh insights into the molecular and synaptic mechanisms underlying neurodevelopmental abnormalities in TS.
Collapse
Affiliation(s)
- Junkai Lv
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiqi Liang
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengwei Qin
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinlu Liu
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Ge
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqing Guo
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shili Xia
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China
| | - Tongmei Zhang
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Histology and embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Liu H, Wang C, Zhang H, Rezaei MJ. Exploring acupuncture as a therapeutic approach for tic disorders: a review of current understanding and potential benefits. Front Neurol 2025; 16:1447818. [PMID: 40162008 PMCID: PMC11949814 DOI: 10.3389/fneur.2025.1447818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025] Open
Abstract
Tic disorders (TD) refer to a condition where individuals experience recurring motor movements (e.g., eye blinking) and/or vocalizations (e.g., throat clearing). These disorders vary in terms of duration, cause, and manifestation of symptoms. Tourette's syndrome (TS) involves the presence of ongoing motor and vocal tics for a minimum of 1 year, with fluctuating intensity. Persistent chronic motor or vocal tic disorder is characterized by either motor or vocal tics (not both) present for at least 1 year. Provisional TD presents with either motor or vocal tics (not both) that have been present for less than 12 months. Though medications like Aripiprazole and dopamine receptor blockers are frequently prescribed, their potential unwanted consequences increase, may result in low adherence. In an effort to improve and broaden the care available for children diagnosed with TD, alternative methods such as acupuncture are being investigated and considered. Acupuncture is a method of traditional Chinese medicine that includes the placement of thin needles into particular areas of the body in order to correct any disruptions or irregularities. Research has demonstrated that acupuncture can help regulate abnormal brain function and relieve tic symptoms in individuals with TD. Additional studies are required to fully evaluate the usefulness of complementary treatments in addressing TD in young individuals, despite its common usage. Herein, we summarized the therapeutic effects of acupuncture in the treatment of TD.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | - Chunping Wang
- Shouguang Hospital of T.C.M. Emergency Department, Shouguang, Shandong, China
| | - Hongbin Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, China
| | | |
Collapse
|
4
|
Lee YF, Wu MC, Huang YC, Huang JY, Wei JCC. Maternal autoimmune diseases and the risk of tics and Tourette's disorder in offspring: insights from Taiwan's real-world data. Front Pediatr 2025; 13:1440366. [PMID: 40103604 PMCID: PMC11913676 DOI: 10.3389/fped.2025.1440366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Background Currently, tics and Tourette's disorder are burdensome neurological disorders that manifest in vocal and motor tics with onset during childhood. Previous studies have demonstrated that maternal autoimmune diseases may cause several neurodevelopmental disorders in offspring via maternal immune activation. However, the association between them has never been thoroughly researched. Thus, in this study, we aimed to explore whether maternal autoimmune diseases are associated with the risk of tics and Tourette's disorder in offspring in a real-world nationwide population-based cohort study. Methods We analyzed offspring with or without autoimmune disease exposure between 2009 and 2016 from national population databases in Taiwan. Multivariate analysis, multiple Cox regression analyses, and stratified analyses were conducted in the study. Results In total, 76,411 offspring with autoimmune disease exposure and 1,211,936 offspring without maternal autoimmune disease exposure were selected and analyzed in this study. The incidence of childhood tics and Tourette's disorder was 2.35 [95% confidence interval (CI) 2.23-4.86] and 1.89 (95% CI 1.86-1.92) per 10,000 person-months in children exposed to maternal autoimmune disease and non-exposed children, respectively. The children whose mothers had an autoimmune disease had a 1.26-fold risk of tics and Tourette's disorder compared to children whose mothers did not have an autoimmune disease [crude hazard ratio: 1.26; 95% CI, 1.20-1.34, adjusted hazard ratio (aHR): 1.22; 95% CI, 1.15-1.29]. Offspring of mothers with rheumatoid arthritis (aHR: 1.46, 95% CI, 1.07-1.97), system lupus erythematosus (aHR: 1.57, 95% CI, 1.18-2.09), Sjogren's syndrome (aHR: 1.28, 95% CI, 1.09-1.50), ankylosing spondylitis (aHR: 1.49, 95% CI, 1.07-2.09), Graves' disease (aHR: 1.26, 95% CI, 1.15-1.37), Hashimoto's thyroiditis (aHR: 1.59, 95% CI, 1.29-1.98), and type I diabetes (aHR: 1.68, 95% CI, 1.13-2.50) had a significantly higher risk of developing tics and Tourette's disorder. Aside from maternal autoimmune diseases, mothers with urinary tract infections, diabetes mellitus, hyperlipidemia, anemia, a sleep disorder, endometriosis, and depression were also associated with childhood tics and Tourette's disorder. Conclusion Maternal autoimmune diseases appeared to be associated with tics and Tourette's disorder in offspring, especially in mothers with the abovementioned diseases. Further research is warranted to investigate the possible pathogenetic mechanisms of these associations.
Collapse
Affiliation(s)
- Yi-Feng Lee
- Division of Neonatology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meng-Che Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Pediatric Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Chu Huang
- Division of Pediatric Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jing-Yang Huang
- Center for Health Data Science, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Van Zandt M, Pittenger C. Sexual dimorphism in histamine regulation of striatal dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.595049. [PMID: 38826392 PMCID: PMC11142073 DOI: 10.1101/2024.05.20.595049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dopamine modulation of the basal ganglia differs in males and females and is implicated in numerous neuropsychiatric conditions, including some, like Tourette Syndrome (TS) and attention deficit hyperactivity disorder (ADHD), that have marked sex differences in prevalence. Genetic studies in TS and subsequent work in animals suggest that a loss of histamine may contribute to dysregulation of dopamine. Motivated by this, we characterized the modulation of striatal dopamine by histamine, using microdialysis, targeted pharmacology, and shRNA knockdown of histamine receptors. Intracerebroventricular (ICV) histamine reduced striatal dopamine in male mice, replicating previous work. In contrast, and unexpectedly, ICV histamine increased striatal dopamine in females. ICV or targeted infusion of agonists revealed that the effect in males depends on H2R receptors in the substantia nigra pars compacta (SNc). Knockdown of H2R in SNc GABAergic neurons abrogated the effect, identifying these cells as a key locus of histamine's regulation of dopamine in males. In females, however, H2R had no discernible role; instead, H3R agonists in the striatum increased striatal dopamine. Strikingly, the effect of histamine on dopamine in females was modulated by the estrous cycle, appearing only in estrus/proestrus, when estrogen levels are high. These findings confirm the regulation of striatal dopamine by histamine but identify marked sexual dimorphism in and estrous modulation of this effect. These findings may shed light on the mechanistic underpinnings of sex differences in the striatal circuitry, and in several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA, 06519
- Department of Psychology, Yale School of Arts and Sciences, New Haven, USA, 06519
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, USA, 06519
- Wu-Tsai Institute, Yale University, New Haven, CT, USA, 06519
| |
Collapse
|
6
|
Kowalski TF, Wang R, Tischfield MA. Genetic advances and translational phenotypes in rodent models for Tourette disorder. Curr Opin Neurobiol 2025; 90:102967. [PMID: 39793296 DOI: 10.1016/j.conb.2024.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Tourette disorder (TD) is a neurodevelopmental condition affecting approximately 0.3%-1% of children and adolescents. It is defined by motor and vocal tics but encompasses wide ranging phenotypes due to its complex genetic origins, involving hundreds of risk genes across various signaling pathways. Traditional animal models of TD have focused on circuit manipulation or neuron ablation strategies to investigate its underlying causes and associated brain changes. However, the recent identification of high-confidence risk genes has opened new possibilities for creating models that express the exact genetic variants associated with TD. This review discusses early attempts to model TD in rodents and highlights advancements in next-generation models with true construct validity through the expression of orthologous human mutations in high-confidence risk genes. Additionally, we examine the translational potential of integrating cognitive and sensorimotor approaches to evaluate TD-related phenotypes in rodents, including changes to reinforcement learning, habitual behavior, and incentive motivation.
Collapse
Affiliation(s)
- Tess F Kowalski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Riley Wang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Max A Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
7
|
Borczyk M, Fichna JP, Piechota M, Gołda S, Zięba M, Hoinkis D, Cięszczyk P, Korostynski M, Janik P, Żekanowski C. Oligogenic risk score for Gilles de la Tourette syndrome reveals a genetic continuum of tic disorders. J Appl Genet 2025:10.1007/s13353-024-00930-8. [PMID: 39792217 DOI: 10.1007/s13353-024-00930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 01/12/2025]
Abstract
Gilles de la Tourette syndrome (GTS) and other tic disorders (TDs) have a substantial genetic component with their heritability estimated at between 60 and 80%. Here we propose an oligogenic risk score of TDs using whole-genome sequencing (WGS) data from a group of Polish GTS patients, their families, and control samples (n = 278). In this study, we first reviewed the literature to obtain a preliminary list of 84 GTS/TD candidate genes. From this list, 10 final risk score genes were selected based on single-gene burden tests (SKAT p < 0.05) between unrelated GTS cases (n = 37) and synthetic control samples based on a database of local allele frequencies. These 10 genes were CHADL, DRD2, MAOA, PCDH10, HTR2A, SLITRK5, SORCS3, KCNQ5, CDH9, and CHD8. Variants in and in the vicinity (± 20 kbp) of the ten risk genes (n = 7654) with a median minor allele frequency in the non-Finnish European population of 0.02 were integrated into an additive classifier. This risk score was then applied to healthy and GTS-affected individuals from 23 families and 100 unrelated healthy samples from the Polish population (AUC-ROC = 0.62, p = 0.02). Application of the algorithm to a group of patients with other tic disorders revealed a continuous increase of the oligogenic score with healthy individuals with the lowest mean, then patients with other tic disorders, then GTS patients, and finally with severe GTS cases with the highest oligogenic score. We have further compared our WGS results with the summary statistics of the Psychiatric Genomics Consortium genome-wide association study (PGC GWAS) of TDs and found no signal overlap except for the CHADL gene locus. Polygenic risk scores from common variants of GTS GWAS show no difference between patient and control groups, except for the comparison between patients with non-GTS TDs and patients with severe GTS. Overall, we leveraged WGS data to construct a GTS/TD risk score based on variants that may cooperatively contribute to the aetiology of these disorders. This study provides evidence that typical and severe adult GTS as well as other tic disorders may exist on a single spectrum in terms of their genetic background.
Collapse
Affiliation(s)
- Malgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Krakow, Poland.
| | - Jakub P Fichna
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Marcin Piechota
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Krakow, Poland
| | - Sławomir Gołda
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Krakow, Poland
| | - Mateusz Zięba
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Krakow, Poland
| | | | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336, Gdansk, Poland
| | - Michal Korostynski
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Krakow, Poland
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Żwirki i Wigury 61, 02-091, Warsaw, Poland
| | - Cezary Żekanowski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336, Gdansk, Poland.
| |
Collapse
|
8
|
Huang X, Xiao L, Wang M, Wu Y, Deng H, Wang W. Advancing Obsessive-Compulsive Disorder Research: Insights from Transgenic Animal Models and Innovative Therapies. Brain Sci 2025; 15:43. [PMID: 39851412 PMCID: PMC11764274 DOI: 10.3390/brainsci15010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent, chronic, and severe neuropsychiatric disorder that leads to illness-related disability. Despite the availability of several treatments, many OCD patients respond inadequately, because the underlying neural mechanisms remain unclear, necessitating the establishment of many animal models, particularly mouse models, to elucidate disease mechanisms and therapeutic strategies better. Although the development of animal models is ongoing, there remain many comprehensive summaries and updates in recent research, hampering efforts to develop novel treatments and enhance existing interventions. This review summarizes the phenotypes of several commonly used models and mechanistic insights from transgenic models of OCD, such as knockout mouse models. In addition, we present the advantages and limitations of these models and discuss their future in helping further understand the pathophysiology and advanced treatment. Here, we highlight current frontline treatment approaches for OCD, including neuromodulation and surgical interventions, and propose potential future directions. By studying gene mutations and observing phenotypes from available OCD animal models, researchers have classified the molecular signatures of each model reminiscent of changes in brain areas and neural pathways, with the hope of guiding the future selection of the most appropriate models for specific research in the OCD field.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China; (X.H.); (L.X.); (M.W.); (Y.W.); (H.D.)
| |
Collapse
|
9
|
Frick LR. Neuroglia in Tourette syndrome and obsessive-compulsive disorder. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:325-334. [PMID: 40148053 DOI: 10.1016/b978-0-443-19102-2.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
In recent years, neuroglia have drawn the attention of researchers in the fields of neurology and psychiatry. Besides their well-known functions providing support to neurons, myelinating axons, and clearing up debris, a constantly growing of evidence indicates that glial cells are key contributors to the pathophysiology of neuropsychiatric disorders. Alterations in microglia, astrocytes, and oligodendrocytes have been described in Tourette syndrome (TS) and obsessive-compulsive disorder (OCD). The sudden onset of tics and OCD-like symptoms after infection in children (Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infections) suggests a connection with the immune system; in fact, neuroinflammation has been reported. Many imaging studies revealed abnormal myelination in the brain of TS and OCD patients, highlighting the implication of oligodendroglia in the connectivity alterations. Moreover, animal models have unveiled a cell-autonomous role of microglia and astrocytes in the etiology of pathologic grooming, which links these glial cells to the related disorder trichotillomania. This chapter reviews the state of the art and current gaps in the literature, proposing possible pathomechanisms and future research directions.
Collapse
Affiliation(s)
- Luciana R Frick
- Departments of Neurology and Medicine, Neuroscience Graduate Program, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, Buffalo, NY, United States.
| |
Collapse
|
10
|
Peng L, Wang T. Histamine synthesis and transport are coupled in axon terminals via a dual quality control system. EMBO J 2024; 43:4472-4491. [PMID: 39242788 PMCID: PMC11480334 DOI: 10.1038/s44318-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
Monoamine neurotransmitters generated by de novo synthesis are rapidly transported and stored into synaptic vesicles at axon terminals. This transport is essential both for sustaining synaptic transmission and for limiting the toxic effects of monoamines. Here, synthesis of the monoamine histamine by histidine decarboxylase (HDC) and subsequent loading of histamine into synaptic vesicles are shown to be physically and functionally coupled within Drosophila photoreceptor terminals. This process requires HDC anchoring to synaptic vesicles via interactions with N-ethylmaleimide-sensitive fusion protein 1 (NSF1). Disassociating HDC from synaptic vesicles disrupts visual synaptic transmission and causes somatic accumulation of histamine, which leads to retinal degeneration. We further identified a proteasome degradation system mediated by the E3 ubiquitin ligase, purity of essence (POE), which clears mislocalized HDC from the soma, thus eliminating the cytotoxic effects of histamine. Taken together, our results reveal a dual mechanism for translocation and degradation of HDC that ensures restriction of histamine synthesis to axonal terminals and at the same time rapid loading into synaptic vesicles. This is crucial for sustaining neurotransmission and protecting against cytotoxic monoamines.
Collapse
Affiliation(s)
- Lei Peng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
11
|
Tang S, Cui L, Pan J, Xu NL. Dynamic ensemble balance in direct- and indirect-pathway striatal projection neurons underlying decision-related action selection. Cell Rep 2024; 43:114726. [PMID: 39276352 DOI: 10.1016/j.celrep.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
The posterior dorsal striatum (pDS) plays an essential role in sensory-guided decision-making. However, it remains unclear how the antagonizing direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) work in concert to support action selection. Here, we employed deep-brain two-photon imaging to investigate pathway-specific single-neuron and population representations during an auditory-guided decision-making task. We found that the majority of pDS projection neurons predominantly encode choice information. Both dSPNs and iSPNs comprise divergent subpopulations of comparable sizes representing competing choices, rendering a multi-ensemble balance between the two pathways. Intriguingly, such ensemble balance displays a dynamic shift during the decision period: dSPNs show a significantly stronger preference for the contraversive choice than iSPNs. This dynamic shift is further manifested in the inter-neuronal coactivity and population trajectory divergence. Our results support a balance-shift model as a neuronal population mechanism coordinating the direct and indirect striatal pathways for eliciting selected actions during decision-making.
Collapse
Affiliation(s)
- Shunhang Tang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Cui
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Pan
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ning-Long Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
12
|
Ma S, Ma Q, Hu S, Mo X, Zhu C, Zhang X, Jia Z, Tang L, Jiang L, Cui Y, Chen Z, Hu W, Zhang X. Deletion of histamine H2 receptor in VTA dopaminergic neurons of mice induces behavior reminiscent of mania. Cell Rep 2024; 43:114717. [PMID: 39264811 DOI: 10.1016/j.celrep.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Hyperfunction of the dopamine system has been implicated in manic episodes in bipolar disorders. How dopaminergic neuronal function is regulated in the pathogenesis of mania remains unclear. Histaminergic neurons project dense efferents into the midbrain dopaminergic nuclei. Here, we present mice lacking dopaminergic histamine H2 receptor (H2R) in the ventral tegmental area (VTA) that exhibit a behavioral phenotype mirroring some of the symptoms of mania, including increased locomotor activity and reduced anxiety- and depression-like behavior. These behavioral deficits can be reversed by the mood stabilizers lithium and valproate. H2R deletion in dopaminergic neurons significantly enhances neuronal activity, concurrent with a decrease in the γ-aminobutyric acid (GABA) type A receptor (GABAAR) membrane presence and inhibitory transmission. Conversely, either overexpression of H2R in VTA dopaminergic neurons or treatment of H2R agonist amthamine within the VTA counteracts amphetamine-induced hyperactivity. Together, our results demonstrate the engagement of H2R in reducing VTA dopaminergic activity, shedding light on the role of H2R as a potential target for mania therapy.
Collapse
Affiliation(s)
- Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Songhui Hu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
| | - Xinlei Mo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chenze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xingxian Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zetao Jia
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingjie Tang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yihui Cui
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, Zhejiang 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China.
| |
Collapse
|
13
|
Szukiewicz D. Histaminergic System Activity in the Central Nervous System: The Role in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:9859. [PMID: 39337347 PMCID: PMC11432521 DOI: 10.3390/ijms25189859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Histamine (HA), a biogenic monoamine, exerts its pleiotropic effects through four H1R-H4R histamine receptors, which are also expressed in brain tissue. Together with the projections of HA-producing neurons located within the tuberomammillary nucleus (TMN), which innervate most areas of the brain, they constitute the histaminergic system. Thus, while remaining a mediator of the inflammatory reaction and immune system function, HA also acts as a neurotransmitter and a modulator of other neurotransmitter systems in the central nervous system (CNS). Although the detailed causes are still not fully understood, neuroinflammation seems to play a crucial role in the etiopathogenesis of both neurodevelopmental and neurodegenerative (neuropsychiatric) diseases, such as autism spectrum disorders (ASDs), attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD) and Parkinson's disease (PD). Given the increasing prevalence/diagnosis of these disorders and their socioeconomic impact, the need to develop effective forms of therapy has focused researchers' attention on the brain's histaminergic activity and other related signaling pathways. This review presents the current state of knowledge concerning the involvement of HA and the histaminergic system within the CNS in the development of neurodevelopmental and neurodegenerative disorders. To this end, the roles of HA in neurotransmission, neuroinflammation, and neurodevelopment are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
14
|
Tan CY, Chiu NC, Zeng YH, Huang JY, Tzang RF, Chen HJ, Lin YJ, Sun FJ, Ho CS. Psychosocial stress in children with Tourette syndrome and chronic tic disorder. Pediatr Neonatol 2024; 65:336-340. [PMID: 38000929 DOI: 10.1016/j.pedneo.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/21/2023] [Accepted: 06/16/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND This study aimed to understand the longitudinal relationship between psychosocial stress with tic exacerbation in children with Tourette syndrome (TS) and chronic tic disorder. METHODS Consecutive ratings of tic severity as well as child and parental reports of psychosocial stress were obtained for 373 children (296 males, 77 females; mean age 9y 5mo; SD 3y 3mo) with TS and chronic tic disorder between January 2018 and December 2020. The Yale Global Tic Severity Scale (YGTSS) global severity score, total tic score, and impairment rating were calculated. The stressful events and YGTSS measurements were used and treated as time-varying variables in the analyses. Models that controlled for non-independence among the repeated observations using a random intercept and random slope model were employed. Each participant was treated as a random factor in the modelling. RESULTS Family-related stress, personal relationship stress and school-related stress were independently associated with increasing YGTSS global severity, total tic score, and impairment rating over time. An increased number of stressful events were associated with increased severity of tics. CONCLUSION Family, personal relationships, and school-related stress were consistently associated with the exacerbation of tics. Managing these stressful events is important in the treatment of TS and chronic tic disorder.
Collapse
Affiliation(s)
- Chiew Yin Tan
- Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; Department of Pediatrics, Taitung Hospital, Ministry of Health and Welfare, Taiwan
| | - Nan-Chang Chiu
- Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; The Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Hong Zeng
- The Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jia-Yun Huang
- Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Ruu-Fen Tzang
- The Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Hui-Ju Chen
- Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; The Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Jie Lin
- Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; The Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Fang-Ju Sun
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Che-Sheng Ho
- Division of Pediatric Neurology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan; The Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
15
|
Belskaya A, Kurzina N, Savchenko A, Sukhanov I, Gromova A, Gainetdinov RR, Volnova A. Rats Lacking the Dopamine Transporter Display Inflexibility in Innate and Learned Behavior. Biomedicines 2024; 12:1270. [PMID: 38927477 PMCID: PMC11200708 DOI: 10.3390/biomedicines12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Playing a key role in the organization of striatal motor output, the dopamine (DA)-ergic system regulates both innate and complex learned behaviors. Growing evidence clearly indicates the involvement of the DA-ergic system in different forms of repetitive (perseverative) behavior. Some of these behaviors accompany such disorders as obsessive-compulsive disorder (OCD), Tourette's syndrome, schizophrenia, and addiction. In this study, we have traced how the inflexibility of repetitive reactions in the recently developed animal model of hyper-DA-ergia, dopamine transporter knockout rats (DAT-KO rats), affects the realization of innate behavior (grooming) and the learning of spatial (learning and reversal learning in T-maze) and non-spatial (extinction of operant reaction) tasks. We found that the microstructure of grooming in DAT-KO rats significantly differed in comparison to control rats. DAT-KO rats more often demonstrated a fixed syntactic chain, making fewer errors and very rarely missing the chain steps in comparison to control rats. DAT-KO rats' behavior during inter-grooming intervals was completely different to the control animals. During learning and reversal learning in the T-maze, DAT-KO rats displayed pronounced patterns of hyperactivity and perseverative (stereotypical) activity, which led to worse learning and a worse performance of the task. Most of the DAT-KO rats could not properly learn the behavioral task in question. During re-learning, DAT-KO rats demonstrated rigid perseverative activity even in the absence of any reinforcement. In operant tasks, the mutant rats demonstrated poor extinction of operant lever pressing: they continued to perform lever presses despite no there being reinforcement. Our results suggest that abnormally elevated DA levels may be responsible for behavioral rigidity. It is conceivable that this phenomenon in DAT-KO rats reflects some of the behavioral traits observed in clinical conditions associated with endogenous or exogenous hyper-DA-ergia, such as schizophrenia, substance abuse, OCD, patients with Parkinson disease treated with DA mimetics, etc. Thus, DAT-KO rats may be a valuable behavioral model in the search for new pharmacological approaches to treat such illnesses.
Collapse
Affiliation(s)
- Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
| | - Artem Savchenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Ilya Sukhanov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Arina Gromova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Saint Petersburg University Hospital, Saint Petersburg 190121, Russia
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia; (A.B.)
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
16
|
Ko YK, Chi S, Nam GH, Baek KW, Ahn K, Ahn Y, Kang J, Lee MS, Gim JA. Epigenome-wide Association Study for Tic Disorders in Children: A Preliminary Study in Korean Population. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:295-305. [PMID: 38627076 PMCID: PMC11024688 DOI: 10.9758/cpn.23.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/24/2023] [Accepted: 11/24/2023] [Indexed: 04/20/2024]
Abstract
Objective : Tic disorders can affect the quality of life in both childhood and adolescence. Many factors are involved in the etiology of tic disorders, and the genetic and epigenetic factors of tic disorders are considered complex and heterogeneous. Methods : In this study, the differentially methylated regions (DMRs) between normal controls (n = 24; aged 6-15; 7 females) and patients with tic disorders (n = 16; aged 6-15; 5 females) were analyzed. We performed an epigenome-wide association study of tic disorders in Korean children. The tics were assessed using Yale Global Tic Severity Scale. The DNA methylation data consisted of 726,945 cytosine phosphate guanine (CpG) sites, assessed using the Illumina Infinium MethylationEPIC (850k) BeadChip. The DNA methylation data of the 40 participants were retrieved, and DMRs between the four groups based on sex and tic disorder were identified. From 28 male and 16 female samples, 37 and 38 DMRs were identified, respectively. We analyzed the enriched terms and visualized the network, heatmap, and upset plot. Results : In male, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed hypomethylated patterns in the ligand, receptor, and second signal transductors of the PI3K-Akt and MAPK signaling pathway (most cells were indicated as green color), and in female, the opposite patterns were revealed (most cells were indicated as red color). Five mental disorder-related enriched terms were identified in the network analysis. Conclusion : Here, we provide insights into the epigenetic mechanisms of tic disorders. Abnormal DNA methylation patterns are associated with mental disorder-related symptoms.
Collapse
Affiliation(s)
- Young Kyung Ko
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Suhyuk Chi
- Department of Psychiatry, Korea University Guro Hospital, Seoul, Korea
| | - Gyu-Hwi Nam
- PhileKorea Technology Co. Ltd., Daejeon, Korea
| | - Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
| | | | | | - June Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Seoul, Korea
| | - Jeong-An Gim
- Department of Medical Science, Soonchunhyang University, Asan, Korea
| |
Collapse
|
17
|
Rivero-Salgado GM, Zamudio SR, Fregoso-Aguilar TA, Quevedo-Corona L. Effects of a Functional Food Made with Salvia hispanica L. (Chia Seed), Amaranthus hypochondriacus L. (Amaranth), and an Ethanolic Extract of Curcuma longa L. (Curcumin) in a Rat Model of Childhood Obesity. Foods 2024; 13:1720. [PMID: 38890948 PMCID: PMC11171659 DOI: 10.3390/foods13111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Obesity is a global health problem and is increasing in prevalence in most countries. Although obesity affects all age groups, children are the most vulnerable sector. Functional foods are novel formulated foods containing substances (i.e., nutrients, phytochemicals, probiotics, etc.) that have potential health-enhancing or disease-preventing value. The research objective was to study the possible beneficial effects of providing a functional food made with amaranth flour, chia seed, and curcumin extract on the metabolism and behavior of a rat model of childhood obesity. Male Wistar rat pups from two litters of different sizes, a normal litter (NL) (10 pups) and a small litter (SL) (4 pups), were used. After weaning, the rats were fed a hypercaloric diet (HD) or an HD supplemented with the functional food mixture. Body weight and energy intake were measured for seven weeks, and locomotor activity, learning, and memory tests were also performed. At the end of the experiment, glucose and lipid metabolism parameters were determined. The results showed that in this model of obesity produced by early overfeeding and the consumption of a hypercaloric diet, anxiety-like behaviors and metabolic alterations occurred in the rat offspring; however, the provision of the functional food failed to reduce or prevent these alterations, and an exacerbation was even observed in some metabolic indicators. Interestingly, in the NL rats, the provision of the functional food produced some of the expected improvements in health, such as significant decreases in body weight gain and liver cholesterol and non-significant decreases in adipose tissue and leptin and insulin serum levels.
Collapse
Affiliation(s)
| | | | | | - Lucía Quevedo-Corona
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City 07738, Mexico; (G.M.R.-S.); (S.R.Z.); (T.A.F.-A.)
| |
Collapse
|
18
|
Nasello C, Poppi LA, Wu J, Kowalski TF, Thackray JK, Wang R, Persaud A, Mahboob M, Lin S, Spaseska R, Johnson CK, Gordon D, Tissir F, Heiman GA, Tischfield JA, Bocarsly M, Tischfield MA. Human mutations in high-confidence Tourette disorder genes affect sensorimotor behavior, reward learning, and striatal dopamine in mice. Proc Natl Acad Sci U S A 2024; 121:e2307156121. [PMID: 38683996 PMCID: PMC11087812 DOI: 10.1073/pnas.2307156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1. Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows that Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occur alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD.
Collapse
Affiliation(s)
- Cara Nasello
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Lauren A. Poppi
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Junbing Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Tess F. Kowalski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Joshua K. Thackray
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Riley Wang
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
| | - Angelina Persaud
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| | - Mariam Mahboob
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Rodna Spaseska
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - C. K. Johnson
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Derek Gordon
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
- Laboratory of Developmental Neurobiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels1200, Belgium
| | - Gary A. Heiman
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Jay A. Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ08854
| | - Miriam Bocarsly
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School and Rutgers Biomedical and Health Sciences, Newark, NJ07103
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ08854
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ08901
| |
Collapse
|
19
|
Branca C, Bortolato M. The role of neuroactive steroids in tic disorders. Neurosci Biobehav Rev 2024; 160:105637. [PMID: 38519023 PMCID: PMC11121756 DOI: 10.1016/j.neubiorev.2024.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Tics are sudden, repetitive movements or vocalizations. Tic disorders, such as Tourette syndrome (TS), are contributed by the interplay of genetic risk factors and environmental variables, leading to abnormalities in the functioning of the cortico-striatal-thalamo-cortical (CSTC) circuitry. Various neurotransmitter systems, such as gamma-aminobutyric acid (GABA) and dopamine, are implicated in the pathophysiology of these disorders. Building on the evidence that tic disorders are predominant in males and exacerbated by stress, emerging research is focusing on the involvement of neuroactive steroids, including dehydroepiandrosterone sulfate (DHEAS) and allopregnanolone, in the ontogeny of tics and other phenotypes associated with TS. Emerging evidence indicates that DHEAS levels are significantly elevated in the plasma of TS-affected boys, and the clinical onset of this disorder coincides with the period of adrenarche, the developmental stage characterized by a surge in DHEAS synthesis. On the other hand, allopregnanolone has garnered particular attention for its potential to mediate the adverse effects of acute stress on the exacerbation of tic severity and frequency. Notably, both neurosteroids act as key modulators of GABA-A receptors, suggesting a pivotal role of these targets in the pathophysiology of various clinical manifestations of tic disorders. This review explores the potential mechanisms by which these and other neuroactive steroids may influence tic disorders and discusses the emerging therapeutic strategies that target neuroactive steroids for the management of tic disorders.
Collapse
Affiliation(s)
- Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Kopelman JM, Chohan MO, Hsu AI, Yttri EA, Veenstra-VanderWeele J, Ahmari SE. Forebrain EAAT3 Overexpression Increases Susceptibility to Amphetamine-Induced Repetitive Behaviors. eNeuro 2024; 11:ENEURO.0090-24.2024. [PMID: 38514191 PMCID: PMC11012153 DOI: 10.1523/eneuro.0090-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder characterized by intrusive obsessive thoughts and compulsive behaviors. Multiple studies have shown the association of polymorphisms in the SLC1A1 gene with OCD. The most common of these OCD-associated polymorphisms increases the expression of the encoded protein, excitatory amino acid transporter 3 (EAAT3), a neuronal glutamate transporter. Previous work has shown that increased EAAT3 expression results in OCD-relevant behavioral phenotypes in rodent models. In this study, we created a novel mouse model with targeted, reversible overexpression of Slc1a1 in forebrain neurons. The mice do not have a baseline difference in repetitive behavior but show increased hyperlocomotion following a low dose of amphetamine (3 mg/kg) and increased stereotypy following a high dose of amphetamine (8 mg/kg). We next characterized the effect of amphetamine on striatal cFos response and found that amphetamine increased cFos throughout the striatum in both control and Slc1a1-overexpressing (OE) mice, but Slc1a1-OE mice had increased cFos expression in the ventral striatum relative to controls. We used an unbiased machine classifier to robustly characterize the behavioral response to different doses of amphetamine and found a unique response to amphetamine in Slc1a1-OE mice, relative to controls. Lastly, we found that the differences in striatal cFos expression in Slc1a1-OE mice were driven by cFos expression specifically in D1 neurons, as Slc1a1-OE mice had increased cFos in D1 ventral medial striatal neurons, implicating this region in the exaggerated behavioral response to amphetamine in Slc1a1-OE mice.
Collapse
Affiliation(s)
- Jared M Kopelman
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| | - Muhammad O Chohan
- Department of Psychiatry, Columbia University, New York, New York 10032
- New York State Psychiatric Institute, New York, New York 10032
| | - Alex I Hsu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, New York 10032
- New York State Psychiatric Institute, New York, New York 10032
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
21
|
Chohan MO, Fein H, Mirro S, O'Reilly KC, Veenstra-VanderWeele J. Repeated chemogenetic activation of dopaminergic neurons induces reversible changes in baseline and amphetamine-induced behaviors. Psychopharmacology (Berl) 2023; 240:2545-2560. [PMID: 37594501 PMCID: PMC10872888 DOI: 10.1007/s00213-023-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
RATIONALE Repeated chemogenetic stimulation is often employed to study circuit function and behavior. Chronic or repeated agonist administration can result in homeostatic changes, but this has not been extensively studied with designer receptors exclusively activated by designer drugs (DREADDs). OBJECTIVES We sought to evaluate the impact of repeated DREADD activation of dopaminergic (DA) neurons on basal behavior, amphetamine response, and spike firing. We hypothesized that repeated DREADD activation would mimic compensatory effects that we observed with genetic manipulations of DA neurons. METHODS Excitatory hM3D(Gq) DREADDs were virally expressed in adult TH-Cre and WT mice. In a longitudinal design, clozapine N-oxide (CNO, 1.0 mg/kg) was administered repeatedly. We evaluated basal and CNO- or amphetamine (AMPH)-induced locomotion and stereotypy. DA neuronal activity was assessed using in vivo single-unit recordings. RESULTS Acute CNO administration increased locomotion, but basal locomotion decreased after repeated CNO exposure in TH-CrehM3Dq mice relative to littermate controls. Further, after repeated CNO administration, AMPH-induced hyperlocomotion and stereotypy were diminished in TH-CrehM3Dq mice relative to controls. Repeated CNO administration reduced DA neuronal firing in TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the decreases in basal locomotion and AMPH response. CONCLUSIONS We found that repeated DREADD activation of DA neurons evokes homeostatic changes that should be factored into the interpretation of chronic DREADD applications and their impact on circuit function and behavior. These effects are likely to also be seen in other neuronal systems and underscore the importance of studying neuroadaptive changes with chronic or repeated DREADD activation.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
- New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Halli Fein
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Sarah Mirro
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, USA
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| |
Collapse
|
22
|
Nasello C, Poppi LA, Wu J, Kowalski TF, Thackray JK, Wang R, Persaud A, Mahboob M, Lin S, Spaseska R, Johnson CK, Gordon D, Tissir F, Heiman GA, Tischfield JA, Bocarsly M, Tischfield MA. Human mutations in high-confidence Tourette disorder genes affect sensorimotor behavior, reward learning, and striatal dopamine in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569034. [PMID: 38077033 PMCID: PMC10705456 DOI: 10.1101/2023.11.28.569034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Tourette disorder (TD) is poorly understood, despite affecting 1/160 children. A lack of animal models possessing construct, face, and predictive validity hinders progress in the field. We used CRISPR/Cas9 genome editing to generate mice with mutations orthologous to human de novo variants in two high-confidence Tourette genes, CELSR3 and WWC1 . Mice with human mutations in Celsr3 and Wwc1 exhibit cognitive and/or sensorimotor behavioral phenotypes consistent with TD. Sensorimotor gating deficits, as measured by acoustic prepulse inhibition, occur in both male and female Celsr3 TD models. Wwc1 mice show reduced prepulse inhibition only in females. Repetitive motor behaviors, common to Celsr3 mice and more pronounced in females, include vertical rearing and grooming. Sensorimotor gating deficits and rearing are attenuated by aripiprazole, a partial agonist at dopamine type II receptors. Unsupervised machine learning reveals numerous changes to spontaneous motor behavior and less predictable patterns of movement. Continuous fixed-ratio reinforcement shows Celsr3 TD mice have enhanced motor responding and reward learning. Electrically evoked striatal dopamine release, tested in one model, is greater. Brain development is otherwise grossly normal without signs of striatal interneuron loss. Altogether, mice expressing human mutations in high-confidence TD genes exhibit face and predictive validity. Reduced prepulse inhibition and repetitive motor behaviors are core behavioral phenotypes and are responsive to aripiprazole. Enhanced reward learning and motor responding occurs alongside greater evoked dopamine release. Phenotypes can also vary by sex and show stronger affection in females, an unexpected finding considering males are more frequently affected in TD. Significance Statement We generated mouse models that express mutations in high-confidence genes linked to Tourette disorder (TD). These models show sensorimotor and cognitive behavioral phenotypes resembling TD-like behaviors. Sensorimotor gating deficits and repetitive motor behaviors are attenuated by drugs that act on dopamine. Reward learning and striatal dopamine is enhanced. Brain development is grossly normal, including cortical layering and patterning of major axon tracts. Further, no signs of striatal interneuron loss are detected. Interestingly, behavioral phenotypes in affected females can be more pronounced than in males, despite male sex bias in the diagnosis of TD. These novel mouse models with construct, face, and predictive validity provide a new resource to study neural substrates that cause tics and related behavioral phenotypes in TD.
Collapse
|
23
|
Yao Y, Baronio D, Chen YC, Jin C, Panula P. The Roles of Histamine Receptor 1 (hrh1) in Neurotransmitter System Regulation, Behavior, and Neurogenesis in Zebrafish. Mol Neurobiol 2023; 60:6660-6675. [PMID: 37474883 PMCID: PMC10533647 DOI: 10.1007/s12035-023-03447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Histamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism. Our goal was to assess the role of hrh1 in zebrafish development and neurotransmitter system regulation through the characterization of hrh1-/- fish generated by the CRISPR/Cas9 system. Quantitative PCR, in situ hybridization, and immunocytochemistry were used to study neurotransmitter systems and genes essential for brain development. Additionally, we wanted to reveal the role of this histamine receptor in larval and adult fish behavior using several quantitative behavioral methods including locomotion, thigmotaxis, dark flash and startle response, novel tank diving, and shoaling behavior. Hrh1-/- larvae displayed normal behavior in comparison with hrh1+/+ siblings. Interestingly, a transient abnormal expression of important neurodevelopmental markers was evident in these larvae, as well as a reduction in the number of tyrosine hydroxylase 1 (Th1)-positive cells, th1 mRNA, and hypocretin (hcrt)-positive cells. These abnormalities were not detected in adulthood. In summary, we verified that zebrafish lacking hrh1 present deficits in the dopaminergic and hypocretin systems during early development, but those are compensated by the time fish reach adulthood. However, impaired sociability and anxious-like behavior, along with downregulation of choline O-acetyltransferase a and LIM homeodomain transcription factor Islet1, were displayed by adult fish.
Collapse
Affiliation(s)
- Yuxiao Yao
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Diego Baronio
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Yu-Chia Chen
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Congyu Jin
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| |
Collapse
|
24
|
Du JC, Chang MH, Yeh CJ, Lee MT, Lee HJ, Chuang SH, Chiou LC. Pivotal Role of Slitrk1 in Adult Striatal Cholinergic Neurons in Mice: Implication in Tourette Syndrome. Ann Neurol 2023. [PMID: 37776102 DOI: 10.1002/ana.26805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVE The SLIT and NTRK-like 1 (SLITRK1) gene mutation and striatal cholinergic interneurons (ChIs) loss are associated with Tourette syndrome (TS). ChIs comprise only 1 to 2% of striatal neurons but project widely throughout the stratum to impact various striatal neurotransmission, including TS-related dopaminergic transmission. Here, we link striatal Slitrk1, ChI function, and dopaminergic transmission and their associations with TS-like tic behaviors. METHODS Slitrk1-KD mice were induced by bilaterally injecting Slitrk1 siRNA into their dorsal striatum. Control mice received scrambled siRNA injection. Their TS-like tic behaviors, prepulse inhibition, sensory-motor function and dopamine-related behaviors were compared. We also compared dopamine and ACh levels in microdialysates, Slitrk protein and dopamine transporter levels, and numbers of Slitrk-positive ChIs and activated ChIs in the striatum between two mouse groups, and electrophysiological properties between Slitrk-positive and Slitrk-negative striatal ChIs. RESULTS Slitrk1-KD mice exhibit TS-like haloperidol-sensitive stereotypic tic behaviors, impaired prepulse inhibition, and delayed sensorimotor response compared with the control group. These TS-like characteristics correlate with lower striatal Slitrk1 protein levels, fewer Slitrk1-containing ChIs, and fewer activated ChIs in Slitrk1-KD mice. Based on their electrophysiological properties, Slitrk1-negative ChIs are less excitable than Slitrk1-positive ChIs. Slitrk1-KD mice have lower evoked acetylcholine and dopamine levels, higher tonic dopamine levels, and downregulated dopamine transporters in the striatum, increased apomorphine-induced climbing behaviors, and impaired methamphetamine-induced hyperlocomotion compared with controls. INTERPRETATION Slitrk1 is pivotal in maintaining striatal ChIs activity and subsequent dopaminergic transmission for normal motor functioning. Furthermore, conditional striatal Slitrk1-KD mice may serve as a translational modality with aspects of TS phenomenology. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Jung-Chieh Du
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Man-Hsin Chang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Jiun Yeh
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming Tatt Lee
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Center of Research for Mental Health and Wellbeing, UCSI University, Kuala Lumpur, Malaysia
| | - Hsin-Jung Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Hui Chuang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
26
|
Ricketts EJ, Swisher V, Greene DJ, Silverman D, Nofzinger EA, Colwell CS. Sleep Disturbance in Tourette's Disorder: Potential Underlying Mechanisms. CURRENT SLEEP MEDICINE REPORTS 2023; 9:10-22. [PMID: 37636897 PMCID: PMC10457082 DOI: 10.1007/s40675-022-00242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/24/2023]
Abstract
Purpose of review Sleep disturbance is common in TD. However, our understanding of the pathophysiological mechanisms involved is preliminary. This review summarizes findings from neuroimaging, genetic, and animal studies to elucidate potential underlying mechanisms of sleep disruption in TD. Recent findings Preliminary neuroimaging research indicates increased activity in the premotor cortex, and decreased activity in the prefrontal cortex is associated with NREM sleep in TD. Striatal dopamine exhibits a circadian rhythm; and is influenced by the suprachiasmatic nucleus via multiple molecular mechanisms. Conversely, dopamine receptors regulate circadian function and striatal expression of circadian genes. The association of TD with restless legs syndrome and periodic limb movements indicates shared pathophysiology, including iron deficiency, and variants in the BTDB9 gene. A mutations in the L-Histidine Decarboxylase gene in TD, suggests the involvement of the histaminergic system, implicated in arousal, in TD. Summary These biological markers have implications for application of novel, targeted interventions, including noninvasive neuromodulation, iron supplementation, histamine receptor antagonists, and circadian-based therapies for tic symptoms and/or sleep and circadian rhythms in TD.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Valerie Swisher
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego
| | - Daniel Silverman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles
| | - Eric A Nofzinger
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
27
|
The Sapap3 -/- mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl Psychiatry 2023; 13:26. [PMID: 36717540 PMCID: PMC9886949 DOI: 10.1038/s41398-023-02323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/30/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Symptom comorbidity is present amongst neuropsychiatric disorders with repetitive behaviours, complicating clinical diagnosis and impeding appropriate treatments. This is of particular importance for obsessive-compulsive disorder (OCD) and Tourette syndrome. Here, we meticulously analysed the behaviour of Sapap3 knockout mice, the recent rodent model predominantly used to study compulsive-like behaviours, and found that its behaviour is more complex than originally and persistently described. Indeed, we detected previously unreported elements of distinct pathologically repetitive behaviours, which do not form part of rodent syntactic cephalo-caudal self-grooming. These repetitive behaviours include sudden, rapid body and head/body twitches, resembling tic-like movements. We also observed that another type of repetitive behaviour, aberrant hindpaw scratching, might be responsible for the flagship-like skin lesions of this mouse model. In order to characterise the symptomatological nature of observed repetitive behaviours, we pharmacologically challenged these phenotypes by systemic aripiprazole administration, a first-line treatment for tic-like symptoms in Tourette syndrome and trichotillomania. A single treatment of aripiprazole significantly reduced the number of head/body twitches, scratching, and single-phase grooming, but not syntactic grooming events. These observations are in line with the high comorbidity of tic- and compulsive-like symptoms in Tourette, OCD and trichotillomania patients.
Collapse
|
28
|
Molecular Landscape of Tourette's Disorder. Int J Mol Sci 2023; 24:ijms24021428. [PMID: 36674940 PMCID: PMC9865021 DOI: 10.3390/ijms24021428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable childhood-onset neurodevelopmental disorder and is caused by a complex interplay of multiple genetic and environmental factors. Yet, the molecular mechanisms underlying the disorder remain largely elusive. In this study, we used the available omics data to compile a list of TD candidate genes, and we subsequently conducted tissue/cell type specificity and functional enrichment analyses of this list. Using genomic data, we also investigated genetic sharing between TD and blood and cerebrospinal fluid (CSF) metabolite levels. Lastly, we built a molecular landscape of TD through integrating the results from these analyses with an extensive literature search to identify the interactions between the TD candidate genes/proteins and metabolites. We found evidence for an enriched expression of the TD candidate genes in four brain regions and the pituitary. The functional enrichment analyses implicated two pathways ('cAMP-mediated signaling' and 'Endocannabinoid Neuronal Synapse Pathway') and multiple biological functions related to brain development and synaptic transmission in TD etiology. Furthermore, we found genetic sharing between TD and the blood and CSF levels of 39 metabolites. The landscape of TD not only provides insights into the (altered) molecular processes that underlie the disease but, through the identification of potential drug targets (such as FLT3, NAALAD2, CX3CL1-CX3CR1, OPRM1, and HRH2), it also yields clues for developing novel TD treatments.
Collapse
|
29
|
Chou CY, Agin-Liebes J, Kuo SH. Emerging therapies and recent advances for Tourette syndrome. Heliyon 2023; 9:e12874. [PMID: 36691528 PMCID: PMC9860289 DOI: 10.1016/j.heliyon.2023.e12874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tourette syndrome is the most prevalent hyperkinetic movement disorder in children and can be highly disabling. While the pathomechanism of Tourette syndrome remains largely obscure, recent studies have greatly improved our knowledge about this disease, providing a new perspective in our understanding of this condition. Advances in electrophysiology and neuroimaging have elucidated that there is a reduction in frontal cortical volume and reduction of long rage connectivity to the frontal lobe from other parts of the brain. Several genes have also been identified to be associated with Tourette syndrome. Treatment of Tourette syndrome requires a multidisciplinary approach which includes behavioral and pharmacological therapy. In severe cases surgical therapy with deep brain stimulation may be warranted, though the optimal location for stimulation is still being investigated. Studies on alternative therapies including traditional Chinese medicine and neuromodulation, such as transcranial magnetic stimulation have shown promising results, but still are being used in an experimental basis. Several new therapies have also recently been tested in clinical trials. This review provides an overview of the latest findings with regards to genetics and neuroimaging for Tourette syndrome as well as an update on advanced therapeutics.
Collapse
Affiliation(s)
- Chih-Yi Chou
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Julian Agin-Liebes
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Corresponding author. 650 West 168th Street, Room 305, New York, NY, 10032, USA. Fax: +(212) 305 1304.
| |
Collapse
|
30
|
Jindachomthong K, Yang C, Huang Y, Coman D, Rapanelli M, Hyder F, Dougherty J, Frick L, Pittenger C. White matter abnormalities in the Hdc knockout mouse, a model of tic and OCD pathophysiology. Front Mol Neurosci 2022; 15:1037481. [PMID: 36504678 PMCID: PMC9731796 DOI: 10.3389/fnmol.2022.1037481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction An inactivating mutation in the histidine decarboxylase gene (Hdc) has been identified as a rare but high-penetrance genetic cause of Tourette syndrome (TS). TS is a neurodevelopmental syndrome characterized by recurrent motor and vocal tics; it is accompanied by structural and functional abnormalities in the cortico-basal ganglia circuitry. Hdc, which is expressed both in the posterior hypothalamus and peripherally, encodes an enzyme required for the biosynthesis of histamine. Hdc knockout mice (Hdc-KO) functionally recapitulate this mutation and exhibit behavioral and neurochemical abnormalities that parallel those seen in patients with TS. Materials and methods We performed exploratory RNA-seq to identify pathological alterations in several brain regions in Hdc-KO mice. Findings were corroborated with RNA and protein quantification, immunohistochemistry, and ex vivo brain imaging using MRI. Results Exploratory RNA-Seq analysis revealed, unexpectedly, that genes associated with oligodendrocytes and with myelin production are upregulated in the dorsal striatum of these mice. This was confirmed by qPCR, immunostaining, and immunoblotting. These results suggest an abnormality in myelination in the striatum. To test this in an intact mouse brain, we performed whole-brain ex vivo diffusion tensor imaging (DTI), which revealed reduced fractional anisotropy (FA) in the dorsal striatum. Discussion While the DTI literature in individuals with TS is sparse, these results are consistent with findings of disrupted descending cortical projections in patients with tics. The Hdc-KO model may represent a powerful system in which to examine the developmental mechanisms underlying this abnormality.
Collapse
Affiliation(s)
- Kantiya Jindachomthong
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chengran Yang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Maximiliano Rapanelli
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, United States
| | - Joseph Dougherty
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Luciana Frick
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States,*Correspondence: Luciana Frick,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States,Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States,Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States,Christopher Pittenger,
| |
Collapse
|
31
|
Combination of common mtDNA variants results in mitochondrial dysfunction and a connective tissue dysregulation. Proc Natl Acad Sci U S A 2022; 119:e2212417119. [PMID: 36322731 PMCID: PMC9659340 DOI: 10.1073/pnas.2212417119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction can be associated with a range of clinical manifestations. Here, we report a family with a complex phenotype including combinations of connective tissue, neurological, and metabolic symptoms that were passed on to all surviving children. Analysis of the maternally inherited mtDNA revealed a novel genotype encompassing the haplogroup J - defining mitochondrial DNA (mtDNA) ND5 m.13708G>A (A458T) variant arising on the mtDNA haplogroup H7A background, an extremely rare combination. Analysis of transmitochondrial cybrids with the 13708A-H7 mtDNA revealed a lower mitochondrial respiration, increased reactive oxygen species production (mROS), and dysregulation of connective tissue gene expression. The mitochondrial dysfunction was exacerbated by histamine, explaining why all eight surviving children inherited the dysfunctional histidine decarboxylase allele (W327X) from the father. Thus, certain combinations of common mtDNA variants can cause mitochondrial dysfunction, mitochondrial dysfunction can affect extracellular matrix gene expression, and histamine-activated mROS production can augment the severity of mitochondrial dysfunction. Most important, we have identified a previously unreported genetic cause of mitochondrial disorder arising from the incompatibility of common, nonpathogenic mtDNA variants.
Collapse
|
32
|
van der Veen S, Caviness JN, Dreissen YE, Ganos C, Ibrahim A, Koelman JH, Stefani A, Tijssen MA. Myoclonus and other jerky movement disorders. Clin Neurophysiol Pract 2022; 7:285-316. [PMID: 36324989 PMCID: PMC9619152 DOI: 10.1016/j.cnp.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Myoclonus and other jerky movements form a large heterogeneous group of disorders. Clinical neurophysiology studies can have an important contribution to support diagnosis but also to gain insight in the pathophysiology of different kind of jerks. This review focuses on myoclonus, tics, startle disorders, restless legs syndrome, and periodic leg movements during sleep. Myoclonus is defined as brief, shock-like movements, and subtypes can be classified based the anatomical origin. Both the clinical phenotype and the neurophysiological tests support this classification: cortical, cortical-subcortical, subcortical/non-segmental, segmental, peripheral, and functional jerks. The most important techniques used are polymyography and the combination of electromyography-electroencephalography focused on jerk-locked back-averaging, cortico-muscular coherence, and the Bereitschaftspotential. Clinically, the differential diagnosis of myoclonus includes tics, and this diagnosis is mainly based on the history with premonitory urges and the ability to suppress the tic. Electrophysiological tests are mainly applied in a research setting and include the Bereitschaftspotential, local field potentials, transcranial magnetic stimulation, and pre-pulse inhibition. Jerks due to a startling stimulus form the group of startle syndromes. This group includes disorders with an exaggerated startle reflex, such as hyperekplexia and stiff person syndrome, but also neuropsychiatric and stimulus-induced disorders. For these disorders polymyography combined with a startling stimulus can be useful to determine the pattern of muscle activation and thus the diagnosis. Assessment of symptoms in restless legs syndrome and periodic leg movements during sleep can be performed with different validated scoring criteria with the help of electromyography.
Collapse
Affiliation(s)
- Sterre van der Veen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - John N. Caviness
- Department of Neurology, Mayo Clinic Arizona, Movement Neurophysiology Laboratory, Scottsdale, AZ, USA
| | - Yasmine E.M. Dreissen
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christos Ganos
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes H.T.M. Koelman
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A.J. Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Corresponding author at: Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
33
|
Lintas C, Sacco R, Azzarà A, Cassano I, Laino L, Grammatico P, Gurrieri F. Genetic Dysruption of the Histaminergic Pathways: A Novel Deletion at the 15q21.2 locus Associated with Variable Expressivity of Neuropsychiatric Disorders. Genes (Basel) 2022; 13:genes13101685. [PMID: 36292569 PMCID: PMC9602325 DOI: 10.3390/genes13101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The involvement of the Histaminergic System (HS) in neuropsychiatric disease is not well-documented, and few studies have described patients affected by different neuropsychiatric conditions harbouring disruptions in genes involved in the HS. In humans, histamine is synthetised from histidine by the histidine decarboxylase enzyme encoded by the HDC gene (OMIM*142704). This is the sole enzyme in our organism able to synthetise histamine from histidine. Histamine is also contained in many different food types. We hereby describe a twenty-one-year-old female diagnosed with a borderline intellectual disability with autistic traits and other peculiar neuropsychological features carrying a 175-Kb interstitial deletion on chromosome 15q21.2. The deletion was inherited from the mother, who was affected by a severe anxiety disorder. The deleted region contains entirely the HDC and the SLC27A2 genes and partially the ATP8B4 gene. The HDC gene has been previously associated with Tourette Syndrome (TS). Based on the functional role of the HDC, we propose this gene as the best candidate to explain many traits associated with the clinical phenotype of our patient and of her mother.
Collapse
Affiliation(s)
- Carla Lintas
- Laboratory of Medical Genetics, Medical Genetics Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: ; Tel.: +39-06-22541917
| | - Roberto Sacco
- Laboratory of Medical Genetics, Medical Genetics Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Alessia Azzarà
- Laboratory of Medical Genetics, Medical Genetics Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Ilaria Cassano
- Laboratory of Medical Genetics, Medical Genetics Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Luigi Laino
- UOC Genetica Medica, Azienda Ospedaliera S. Camillo-Forlanini, 00152 Rome, Italy
| | - Paola Grammatico
- UOC Genetica Medica, Azienda Ospedaliera S. Camillo-Forlanini, 00152 Rome, Italy
| | - Fiorella Gurrieri
- Laboratory of Medical Genetics, Medical Genetics Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
34
|
Ramteke A, Lamture Y. Tics and Tourette Syndrome: A Literature Review of Etiological, Clinical, and Pathophysiological Aspects. Cureus 2022; 14:e28575. [PMID: 36185878 PMCID: PMC9520955 DOI: 10.7759/cureus.28575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
Tourette syndrome (TS) is a condition characterized by tics produced because of neuropsychiatric malfunctioning occurring in childhood, which becomes less severe in adulthood, followed by a difference in the severity of tics between two persons. TS is a diverse variable in which symptoms vary in different patients. It is associated with comorbidities like obsessive-compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), and depression, and hampers the quality of life. Comorbid disorders must be investigated and treated as part of the clinical approach for all TS patients. Clinicians should be aware of the infrequent but serious neurological problems that can occur in these patients and recommend aggressively treating tics. Currently, there is more emphasis on symptom-based treatments by medicines, but as etiological knowledge improves, we will divert to disease-modifying medications in the future. Behavioral, pharmacological, and surgical methods can treat TS. Neuroleptics, other drugs, and behavioral therapies are the first-line options. Deep brain stimulation is evolving but has its pros and cons. The main focus of this review is on tics characteristics, how to manage and assess them, and limitations in the clinical spectrum.
Collapse
|
35
|
Parker CC, Philip VM, Gatti DM, Kasparek S, Kreuzman AM, Kuffler L, Mansky B, Masneuf S, Sharif K, Sluys E, Taterra D, Taylor WM, Thomas M, Polesskaya O, Palmer AA, Holmes A, Chesler EJ. Genome-wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population. Alcohol Clin Exp Res 2022; 46:941-960. [PMID: 35383961 DOI: 10.1111/acer.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Vivek M Philip
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Daniel M Gatti
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Steven Kasparek
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Andrew M Kreuzman
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lauren Kuffler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Benjamin Mansky
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Sophie Masneuf
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Kayvon Sharif
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Erica Sluys
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Dominik Taterra
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Walter M Taylor
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Mary Thomas
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Elissa J Chesler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
36
|
Planar cell polarity and the pathogenesis of Tourette Disorder: New hypotheses and perspectives. Dev Biol 2022; 489:14-20. [DOI: 10.1016/j.ydbio.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
|
37
|
Chohan MO, Kopelman JM, Yueh H, Fazlali Z, Greene N, Harris AZ, Balsam PD, Leonardo ED, Kramer ER, Veenstra-VanderWeele J, Ahmari SE. Developmental impact of glutamate transporter overexpression on dopaminergic neuron activity and stereotypic behavior. Mol Psychiatry 2022; 27:1515-1526. [PMID: 35058566 PMCID: PMC9106836 DOI: 10.1038/s41380-021-01424-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling condition that often begins in childhood. Genetic studies in OCD have pointed to SLC1A1, which encodes the neuronal glutamate transporter EAAT3, with evidence suggesting that increased expression contributes to risk. In mice, midbrain Slc1a1 expression supports repetitive behavior in response to dopaminergic agonists, aligning with neuroimaging and pharmacologic challenge studies that have implicated the dopaminergic system in OCD. These findings suggest that Slc1a1 may contribute to compulsive behavior through altered dopaminergic transmission; however, this theory has not been mechanistically tested. To examine the developmental impact of Slc1a1 overexpression on compulsive-like behaviors, we, therefore, generated a novel mouse model to perform targeted, reversible overexpression of Slc1a1 in dopaminergic neurons. Mice with life-long overexpression of Slc1a1 showed a significant increase in amphetamine (AMPH)-induced stereotypy and hyperlocomotion. Single-unit recordings demonstrated that Slc1a1 overexpression was associated with increased firing of dopaminergic neurons. Furthermore, dLight1.1 fiber photometry showed that these behavioral abnormalities were associated with increased dorsal striatum dopamine release. In contrast, no impact of overexpression was observed on anxiety-like behaviors or SKF-38393-induced grooming. Importantly, overexpression solely in adulthood failed to recapitulate these behavioral phenotypes, suggesting that overexpression during development is necessary to generate AMPH-induced phenotypes. However, doxycycline-induced reversal of Slc1a1/EAAT3 overexpression in adulthood normalized both the increased dopaminergic firing and AMPH-induced responses. These data indicate that the pathologic effects of Slc1a1/EAAT3 overexpression on dopaminergic neurotransmission and AMPH-induced stereotyped behavior are developmentally mediated, and support normalization of EAAT3 activity as a potential treatment target for basal ganglia-mediated repetitive behaviors.
Collapse
Affiliation(s)
- Muhammad O Chohan
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jared M Kopelman
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hannah Yueh
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Zeinab Fazlali
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Natasha Greene
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychology, Barnard College of Columbia University, New York, NY, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychology, Barnard College of Columbia University, New York, NY, USA
| | - E David Leonardo
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Edgar R Kramer
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, Devon, UK
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Han Y, Peng L, Wang T. Tadr Is an axonal histidine transporter required for visual neurotransmission in Drosophila. eLife 2022; 11:75821. [PMID: 35229720 PMCID: PMC8916773 DOI: 10.7554/elife.75821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitters are generated by de novo synthesis and are essential for sustained, high-frequency synaptic transmission. Histamine, a monoamine neurotransmitter, is synthesized through decarboxylation of histidine by Histidine decarboxylase (Hdc). However, little is known about how histidine is presented to Hdc as a precursor. Here, we identified a specific histidine transporter, TADR (Torn And Diminished Rhabdomeres), which is required for visual transmission in Drosophila. Both TADR and Hdc localized to neuronal terminals, and mutations in tadr reduced levels of histamine, thus disrupting visual synaptic transmission and phototaxis behavior. These results demonstrate that a specific amino acid transporter provides precursors for monoamine neurotransmitters, providing the first genetic evidence that a histidine amino acid transporter plays a critical role in synaptic transmission. These results suggest that TADR-dependent local de novo synthesis of histamine is required for synaptic transmission.
Collapse
Affiliation(s)
- Yongchao Han
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Lei Peng
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, Beijing, China
| |
Collapse
|
39
|
Xu L, Zhang C, Zhong M, Che F, Guan C, Zheng X, Liu S. Role of histidine decarboxylase gene in the pathogenesis of Tourette syndrome. Brain Behav 2022; 12:e2511. [PMID: 35114079 PMCID: PMC8933785 DOI: 10.1002/brb3.2511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Tourette syndrome (TS) is caused by complex genetic and environmental factors and is characterized by tics. Histidine decarboxylase (HDC) mutation is a rare genetic cause with high penetrance in patients with TS. HDC-knockout (KO) mice have similar behavioral and neurochemical abnormalities as patients with TS. Therefore, HDC-KO mice are considered a valuable TS pathophysiological model as it reveals the underlying pathological mechanisms that cannot be obtained from patients with TS, thus advancing the development of treatment strategies for TS and other tic disorders. This review summarizes some of the recent research hotspots and progress in HDC-KO mice, aiming to deepen our understanding of brain mechanisms relevant to TS. Furthermore, we encapsulate the possible brain nerve cell changes in HDC-KO mice and their potential roles in TS to provide multiple directions for the future research on tics.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Meixiang Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, Shandong, China
| | - Chengcheng Guan
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shiguo Liu
- Department of Medical Cenetics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
40
|
Kuo HY, Liu FC. Pathophysiological Studies of Monoaminergic Neurotransmission Systems in Valproic Acid-Induced Model of Autism Spectrum Disorder. Biomedicines 2022; 10:560. [PMID: 35327362 PMCID: PMC8945169 DOI: 10.3390/biomedicines10030560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology. The core syndromes of ASD are deficits in social communication and self-restricted interests and repetitive behaviors. Social communication relies on the proper integration of sensory and motor functions, which is tightly interwoven with the limbic function of reward, motivation, and emotion in the brain. Monoamine neurotransmitters, including serotonin, dopamine, and norepinephrine, are key players in the modulation of neuronal activity. Owing to their broad distribution, the monoamine neurotransmitter systems are well suited to modulate social communication by coordinating sensory, motor, and limbic systems in different brain regions. The complex and diverse functions of monoamine neurotransmission thus render themselves as primary targets of pathophysiological investigation of the etiology of ASD. Clinical studies have reported that children with maternal exposure to valproic acid (VPA) have an increased risk of developing ASD. Extensive animal studies have confirmed that maternal treatments of VPA include ASD-like phenotypes, including impaired social communication and repetitive behavior. Here, given that ASD is a neurodevelopmental disorder, we begin with an overview of the neural development of monoaminergic systems with their neurochemical properties in the brain. We then review and discuss the evidence of human clinical and animal model studies of ASD with a focus on the VPA-induced pathophysiology of monoamine neurotransmitter systems. We also review the potential interactions of microbiota and monoamine neurotransmitter systems in ASD pathophysiology. Widespread and complex changes in monoamine neurotransmitters are detected in the brains of human patients with ASD and validated in animal models. ASD animal models are not only essential to the characterization of pathogenic mechanisms, but also provide a preclinical platform for developing therapeutic approaches to ASD.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
41
|
Abstract
To date, much of the focus of gut-brain axis research has been on gut microbiota regulation of anxiety and stress-related behaviors. Much less attention has been directed to potential connections between gut microbiota and compulsive behavior. Here, we discuss a potential link between gut barrier dysfunction and compulsive behavior that is mediated through "type 2" rather than "type 1" inflammation. We examine connections between compulsive behavior and type 2 inflammation in Tourette syndrome, obsessive-compulsive disorder, autism, addiction, and post-traumatic stress disorder. Next, we discuss potential connections between gut barrier dysfunction, type 2 inflammation, and compulsive behavior. We posit a potential mechanism whereby gut barrier dysfunction-associated type 2 inflammation may drive compulsive behavior through histamine regulation of dopamine neurotransmission. Finally, we discuss the possibility of exploiting the greater accessibility of the gut relative to the brain in identifying targets to treat compulsive behavior disorders.
Collapse
|
42
|
Chazot P. The H 4 histamine receptor, a new rational neuroinflammatory target for Parkinson's disease: A commentary. Brain Behav Immun 2022; 100:231-232. [PMID: 34920089 DOI: 10.1016/j.bbi.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022] Open
Affiliation(s)
- Paul Chazot
- Department of Biosciences, Durham University, South Road, Durham DH13LE, UK
| |
Collapse
|
43
|
Paschou P, Jin Y, Müller-Vahl K, Möller HE, Rizzo R, Hoekstra PJ, Roessner V, Mol Debes N, Worbe Y, Hartmann A, Mir P, Cath D, Neuner I, Eichele H, Zhang C, Lewandowska K, Munchau A, Verrel J, Musil R, Silk TJ, Hanlon CA, Bihun ED, Brandt V, Dietrich A, Forde N, Ganos C, Greene DJ, Chu C, Grothe MJ, Hershey T, Janik P, Koller JM, Martin-Rodriguez JF, Müller K, Palmucci S, Prato A, Ramkiran S, Saia F, Szejko N, Torrecuso R, Tumer Z, Uhlmann A, Veselinovic T, Wolańczyk T, Zouki JJ, Jain P, Topaloudi A, Kaka M, Yang Z, Drineas P, Thomopoulos SI, White T, Veltman DJ, Schmaal L, Stein DJ, Buitelaar J, Franke B, van den Heuvel O, Jahanshad N, Thompson PM, Black KJ. Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration. Front Psychiatry 2022; 13:958688. [PMID: 36072455 PMCID: PMC9443935 DOI: 10.3389/fpsyt.2022.958688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yin Jin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Hannover University Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renata Rizzo
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Nanette Mol Debes
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Yulia Worbe
- Department of Neurophysiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Danielle Cath
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Chencheng Zhang
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | | | - Alexander Munchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Tim J Silk
- Deakin University, Geelong, VIC, Australia
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily D Bihun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Andrea Dietrich
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Natalie Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christos Ganos
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chunguang Chu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Juan Francisco Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Adriana Prato
- Child and Adolescent Neurology and Psychiatric Section, Department of Clinical and Experimental Medicine, Catania University, Catania, Italy
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Federica Saia
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zeynep Tumer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Tanja Veselinovic
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Pritesh Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mary Kaka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sophia I Thomopoulos
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dan J Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jan Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Barbara Franke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Odile van den Heuvel
- Department Psychiatry, Department Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
44
|
Kitanaka N, Hall FS, Tanaka KI, Tomita K, Igarashi K, Nishiyama N, Sato T, Uhl GR, Kitanaka J. Are Histamine H 3 Antagonists the Definitive Treatment for Acute Methamphetamine Intoxication? Curr Drug Res Rev 2022; 14:162-170. [PMID: 35431009 DOI: 10.2174/2589977514666220414122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Methamphetamine (METH) is classified as a Schedule II stimulant drug under the United Nations Convention on Psychotropic Substances of 1971. METH and other amphetamine analogues (AMPHs) are powerful addictive drugs. Treatments are needed to treat the symptoms of METH addiction, chronic METH use, and acute METH overdose. No effective treatment for METH abuse has been established because alterations of brain functions under the excessive intake of abused drug intake are largely irreversible due in part to brain damage that occurs in the course of chronic METH use. OBJECTIVE Modulation of brain histamine neurotransmission is involved in several neuropsychiatric disorders, including substance use disorders. This review discusses the possible mechanisms underlying the therapeutic effects of histamine H3 receptor antagonists on symptoms of methamphetamine abuse. CONCLUSION Treatment of mice with centrally acting histamine H3 receptor antagonists increases hypothalamic histamine contents and reduces high-dose METH effects while potentiating lowdose effects via histamine H3 receptors that bind released histamine. On the basis of experimental evidence, it is hypothesized that histamine H3 receptors may be an effective target for the treatment METH use disorder or other adverse effects of chronic METH use.
Collapse
Affiliation(s)
- Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, Ohio 43614, USA
| | - Koh-Ichi Tanaka
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo 650-8530, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kento Igarashi
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, USA
| | - Nobuyoshi Nishiyama
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo 650-8530, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - George R Uhl
- Neurology and Research Services, New Mexico VA Healthcare System, Albuquerque, New Mexico 87108, USA
- Departments of Neurology, Neuroscience, Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| |
Collapse
|
45
|
Xie Z, Li D, Cheng X, Pei Q, Gu H, Tao T, Huang M, Shang C, Geng D, Zhao M, Liu A, Zhang C, Zhang F, Ma Y, Cao P. A brain-to-spinal sensorimotor loop for repetitive self-grooming. Neuron 2021; 110:874-890.e7. [PMID: 34932943 DOI: 10.1016/j.neuron.2021.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
Self-grooming is a complex behavior with important biological functions and pathological relevance. How the brain coordinates with the spinal cord to generate the repetitive movements of self-grooming remains largely unknown. Here, we report that in the caudal part of the spinal trigeminal nucleus (Sp5C), neurons that express Cerebellin-2 (Cbln2+) form a neural circuit to the cervical spinal cord to maintain repetitive orofacial self-grooming. Inactivation of Cbln2+ Sp5C neurons blocked both sensory-evoked and stress-induced repetitive orofacial self-grooming. Activation of these neurons triggered short-latency repetitive forelimb movements that resembled orofacial self-grooming. The Cbln2+ Sp5C neurons were monosynaptically innervated by both somatosensory neurons in the trigeminal ganglion and paraventricular hypothalamic neurons. Among the divergent projections of Cbln2+ Sp5C neurons, a descending pathway that innervated motor neurons and interneurons in the cervical spinal cord was necessary and sufficient for repetitive orofacial self-grooming. These data reveal a brain-to-spinal sensorimotor loop for repetitive self-grooming in mice.
Collapse
Affiliation(s)
- Zhiyong Xie
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dapeng Li
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinyu Cheng
- National Institute of Biological Sciences, Beijing 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Pei
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ting Tao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meizhu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Congping Shang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dandan Geng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education and Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Miao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Aixue Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education and Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
46
|
Halvorsen M, Szatkiewicz J, Mudgal P, Yu D, Nordsletten AE, Mataix-Cols D, Mathews CA, Scharf JM, Mattheisen M, Robertson MM, McQuillin A, Crowley JJ. Elevated common variant genetic risk for tourette syndrome in a densely-affected pedigree. Mol Psychiatry 2021; 26:7522-7529. [PMID: 34526668 PMCID: PMC8881309 DOI: 10.1038/s41380-021-01277-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder with complex patterns of genetic inheritance. Recent genetic findings in TS have highlighted both numerous common variants with small effects and a few rare variants with moderate or large effects. Here we searched for genetic causes of TS in a large, densely-affected British pedigree using a systematic genomic approach. This pedigree spans six generations and includes 122 members, 85 of whom were individually interviewed, and 53 of whom were diagnosed as "cases" (consisting of 28 with definite or probable TS, 20 with chronic multiple tics [CMT], and five with obsessive-compulsive behaviors [OCB]). A total of 66 DNA samples were available (25 TS, 15 CMT, 4 OCB cases, and 22 unaffecteds) and all were genotyped using a dense single nucleotide polymorphism (SNP) array to identify shared segments, copy number variants (CNVs), and to calculate genetic risk scores. Eight cases were also whole genome sequenced to test whether any rare variants were shared identical by descent. While we did not identify any notable CNVs, single nucleotide variants, indels or repeat expansions of near-Mendelian effect, the most distinctive feature of this family proved to be an unusually high load of common risk alleles for TS. We found that cases within this family carried a higher load of TS common variant risk similar to that previously found in unrelated TS cases. Thus far, the strongest evidence from genetic data for contribution to TS risk in this family comes from multiple common risk variants rather than one or a few variants of strong effect.
Collapse
Affiliation(s)
- Matthew Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Poorva Mudgal
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley E Nordsletten
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carol A Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Manuel Mattheisen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Psychiatry Research, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Chu Q, Song A, Zhao R, Liu J, Shi H, Liu P, Dong C, Yan Z. Establishment and evaluation of a compound fear behavior model of Tourette's syndrome in rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1469. [PMID: 34734021 PMCID: PMC8506738 DOI: 10.21037/atm-21-4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Background Tourette syndrome (TS) is a common childhood disorder characterized by unwanted movements or vocal sounds called tics. It is often accompanied by other psychobehavioral disorders, including fearful behavior. The establishment and evaluation of rat models of TS and comorbid fear can provide an experimental basis for the treatment of TS and its comorbid fear disorder. Methods Sixteen rats were randomly divided into a model group (n=8) and control group (n=8). In the model group, rats were injected intraperitoneally with iminodipropionitrile (IDPN) for 1 week to establish the TS model, which was followed by acoustic and electrical stimulation for 3 weeks to establish the rat models of TS and comorbid fear. The control group received intraperitoneal injection of saline for 1 week, and no further intervention was given in the last 3 weeks. The behavioral changes of the rats were observed and analyzed by the open field test (OFT). Protein kinase A (PKA), cyclic adenosine monophosphate (cAMP), and dopamine (DA) were measured by enzyme-linked immunosorbent assay (ELISA), and tyrosine hydroxylase (TH) and microRNA-134 (miRNA-134) in the brain tissue were detected by using polymerase chain reaction (PCR). Results One rat in the model group died on the 24th day. Compared with the control group, the model group had significantly higher scores of locomotor activity, stereotyped behavior, and motor behavior, along with prolonged freezing time and significantly lower expression of miRNA-134. The differences in the expressions of PKA, cAMP, DA, and TH in brain tissue were not statistically significant. Conclusions The rat models of TS and comorbid fear have similar changes in behaviors and miRNA-134 level to those in clinical settings and therefore can be used as a reliable animal model to study the mechanism of action of TS and comorbid fear.
Collapse
Affiliation(s)
- Qian Chu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Anran Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Run Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianmin Liu
- Department of Psychosomatic Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huishan Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pulin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengda Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Department of Psychosomatic Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
48
|
The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021; 11:biom11091345. [PMID: 34572558 PMCID: PMC8467868 DOI: 10.3390/biom11091345] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Histamine does not only modulate the immune response and inflammation, but also acts as a neurotransmitter in the mammalian brain. The histaminergic system plays a significant role in the maintenance of wakefulness, appetite regulation, cognition and arousal, which are severely affected in neuropsychiatric disorders. In this review, we first briefly describe the distribution of histaminergic neurons, histamine receptors and their intracellular pathways. Next, we comprehensively summarize recent experimental and clinical findings on the precise role of histaminergic system in neuropsychiatric disorders, including cell-type role and its circuit bases in narcolepsy, schizophrenia, Alzheimer's disease, Tourette's syndrome and Parkinson's disease. Finally, we provide some perspectives on future research to illustrate the curative role of the histaminergic system in neuropsychiatric disorders.
Collapse
|
49
|
Levy AM, Paschou P, Tümer Z. Candidate Genes and Pathways Associated with Gilles de la Tourette Syndrome-Where Are We? Genes (Basel) 2021; 12:1321. [PMID: 34573303 PMCID: PMC8468358 DOI: 10.3390/genes12091321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a childhood-onset neurodevelopmental and -psychiatric tic-disorder of complex etiology which is often comorbid with obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD). Twin and family studies of GTS individuals have shown a high level of heritability suggesting, that genetic risk factors play an important role in disease etiology. However, the identification of major GTS susceptibility genes has been challenging, presumably due to the complex interplay between several genetic factors and environmental influences, low penetrance of each individual factor, genetic diversity in populations, and the presence of comorbid disorders. To understand the genetic components of GTS etiopathology, we conducted an extensive review of the literature, compiling the candidate susceptibility genes identified through various genetic approaches. Even though several strong candidate genes have hitherto been identified, none of these have turned out to be major susceptibility genes yet.
Collapse
Affiliation(s)
- Amanda M. Levy
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
50
|
A Duet Between Histamine and Oleoylethanolamide in the Control of Homeostatic and Cognitive Processes. Curr Top Behav Neurosci 2021; 59:389-410. [PMID: 34410679 DOI: 10.1007/7854_2021_236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In ballet, a pas de deux (in French it means "step of two") is a duet in which the two dancers perform ballet steps together. The suite of dances shares a common theme of partnership. How could we better describe the fine interplay between oleoylethanolamide (OEA) and histamine, two phylogenetically ancient molecules controlling metabolic, homeostatic and cognitive processes? Contrary to the pas de deux though, the two dancers presumably never embrace each other as a dancing pair but execute their "virtuoso solo" constantly exchanging interoceptive messages presumably via vagal afferents, the blood stream, the neuroenteric system. With one exception, which is in the control of liver ketogenesis, as in hepatocytes, OEA biosynthesis strictly depends on the activation of histaminergic H1 receptors. In this review, we recapitulate our main findings that evidence the interplay of histamine and OEA in the control of food consumption and eating behaviour, in the consolidation of emotional memory and mood, and finally, in the synthesis of ketone bodies. We will also summarise some of the putative underlying mechanisms for each scenario.
Collapse
|