1
|
Lopes-Dos-Santos V, Brizee D, Dupret D. Spatio-temporal organization of network activity patterns in the hippocampus. Cell Rep 2025; 44:115808. [PMID: 40478735 PMCID: PMC7617751 DOI: 10.1016/j.celrep.2025.115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/04/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
Understanding how coordinated neural networks support brain functions remains a central goal in neuroscience. The hippocampus, with its layered architecture and structured inputs to diverse cell populations, is a tractable model for dissecting operating microcircuits through the analysis of electrophysiological signatures. We investigated hippocampal network patterns in behaving mice by developing a low-dimensional embedding of local field potentials recorded along the CA1-to-dentate gyrus axis. This embedding revealed layer-specific gamma profiles reflecting spatially organized rhythms and their associated principal cell-interneuron firing motifs. Moreover, firing behaviors along the CA1 radial axis distinguished between deep and superficial principal cells, as well as between interneurons from the pyramidal, radiatum, and lacunosum-moleculare layers. These findings provide a comprehensive map of spatiotemporal activity patterns underlying hippocampal network functions.
Collapse
Affiliation(s)
- Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
2
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Angotzi GN, Vöröslakos M, Perentos N, Ribeiro JF, Vincenzi M, Boi F, Lecomte A, Orban G, Genewsky A, Schwesig G, Aykan D, Buzsáki G, Sirota A, Berdondini L. Multi-Shank 1024 Channels Active SiNAPS Probe for Large Multi-Regional Topographical Electrophysiological Mapping of Neural Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416239. [PMID: 40013985 PMCID: PMC12021112 DOI: 10.1002/advs.202416239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, a CMOS neural probe advancing lateral sampling for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm2 is demonstrated. By taking advantage of SiNAPS technology modularity, an 8-shank probe with 1024 recording channels arranged in regular arrays of 128 electrodes/shank with an electrode pitch <30 µm is realized. Continuous low-noise recordings (spikes with 6.67 ± 1.02 µVRMS) from all 1024 electrodes at 20 kHz/channel demonstrate the monitoring at high spatial and temporal resolution of a field of view spanning the 2D lattice of the entire mice hippocampal circuit, together with cortical and thalamic regions. This arrangement allows combining large population unit monitoring across distributed networks with precise intra- and interlaminar/nuclear mapping of the oscillatory dynamics.
Collapse
Affiliation(s)
- Gian Nicola Angotzi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
- Corticale Srlvia Pietro Chiesa 9Genova16149Italy
| | - Mihály Vöröslakos
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
| | - Nikolas Perentos
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
- University of Nicosia School of Veterinary Medicine21 Ilia Papakyriakou2414NicosiaCyprus
| | - Joao Filipe Ribeiro
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Matteo Vincenzi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Fabio Boi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
- Corticale Srlvia Pietro Chiesa 9Genova16149Italy
| | - Aziliz Lecomte
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Gabor Orban
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Andreas Genewsky
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Gerrit Schwesig
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Deren Aykan
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
| | - György Buzsáki
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
- Department of NeurologyGrossman School of MedicineNew York University435 East 30th StreetNew YorkNY10016USA
| | - Anton Sirota
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Luca Berdondini
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| |
Collapse
|
4
|
Yue L, Bao C, Zhang L, Zhang F, Zhou W, Iannetti GD, Hu L. Neuronal mechanisms of nociceptive-evoked gamma-band oscillations in rodents. Neuron 2025; 113:769-784.e6. [PMID: 39809278 DOI: 10.1016/j.neuron.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/02/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Gamma-band oscillations (GBOs) in the primary somatosensory cortex (S1) play key roles in nociceptive processing. Yet, one crucial question remains unaddressed: what neuronal mechanisms underlie nociceptive-evoked GBOs? Here, we addressed this question using a range of somatosensory stimuli (nociceptive and non-nociceptive), neural recording techniques (electroencephalography in humans and silicon probes and calcium imaging in rodents), and optogenetics (alone or simultaneously with electrophysiology in mice). We found that (1) GBOs encoded pain intensity independent of stimulus intensity in humans, (2) GBOs in S1 encoded pain intensity and were triggered by spiking of S1 interneurons, (3) parvalbumin (PV)-positive interneurons preferentially tracked pain intensity, and critically, (4) PV S1 interneurons causally modulated GBOs and pain-related behaviors for both thermal and mechanical pain. These findings provide causal evidence that nociceptive-evoked GBOs preferentially encoding pain intensity are generated by PV interneurons in S1, thereby laying a solid foundation for developing GBO-based targeted pain therapies.
Collapse
Affiliation(s)
- Lupeng Yue
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chongyu Bao
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Libo Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fengrui Zhang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Zhou
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy; Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Li Hu
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang C, Liu J, Su L, Wang X, Bian Y, Wang Z, Ye L, Lu X, Zhou L, Chen W, Yang W, Liu J, Wang L, Shen Y. GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411972. [PMID: 39823534 PMCID: PMC11904963 DOI: 10.1002/advs.202411972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons. MGE cell transplantation restores Ras-PKB signaling in pyramidal neurons, enhances AMPA receptor trafficking, rescues synaptic plasticity, and corrects abnormal hippocampal neural oscillations. These findings highlight the potential of GABAergic precursor cell transplantation as a promising therapeutic strategy for FXS.
Collapse
Affiliation(s)
- Chen Wang
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Jia‐Yu Liu
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Zhejiang Development & Planning InstituteHangzhou310030China
| | - Li‐Da Su
- Neuroscience Care UnitKey Laboratory of Multiple Organ Failure of Ministry of Educationthe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou310009China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang ProvinceHangzhou310009China
| | - Xin‐Tai Wang
- Institute of Life SciencesCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Yu‐Peng Bian
- Center for Brain Healththe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | | | - Lu‐Yu Ye
- Department of BiophysicsZhejiang University School of MedicineHangzhou310058China
| | - Xin‐Jiang Lu
- Department of PhysiologyZhejiang University School of MedicineHangzhou310058China
| | - Lin Zhou
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Wei Chen
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Wei Yang
- Department of BiophysicsZhejiang University School of MedicineHangzhou310058China
| | - Jun Liu
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Luxi Wang
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Center for Brain Healththe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Ying Shen
- Department of NeurologyInstitute of NeuroscienceKey Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Center for Brain Healththe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Key Laboratory for Precision DiagnosisTreatmentand Clinical Translation of Rare Diseases of Zhejiang ProvinceZhejiang University School of MedicineHangzhou310058China
| |
Collapse
|
6
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Curto Y, Carceller H, Klimczak P, Perez-Rando M, Wang Q, Grewe K, Kawaguchi R, Rizzoli S, Geschwind D, Nave KA, Teruel-Marti V, Singh M, Ehrenreich H, Nácher J. Erythropoietin restrains the inhibitory potential of interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2979-2996. [PMID: 38622200 PMCID: PMC11449791 DOI: 10.1038/s41380-024-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Severe psychiatric illnesses, for instance schizophrenia, and affective diseases or autism spectrum disorders, have been associated with cognitive impairment and perturbed excitatory-inhibitory balance in the brain. Effects in juvenile mice can elucidate how erythropoietin (EPO) might aid in rectifying hippocampal transcriptional networks and synaptic structures of pyramidal lineages, conceivably explaining mitigation of neuropsychiatric diseases. An imminent conundrum is how EPO restores synapses by involving interneurons. By analyzing ~12,000 single-nuclei transcriptomic data, we generated a comprehensive molecular atlas of hippocampal interneurons, resolved into 15 interneuron subtypes. Next, we studied molecular alterations upon recombinant human (rh)EPO and saw that gene expression changes relate to synaptic structure, trans-synaptic signaling and intracellular catabolic pathways. Putative ligand-receptor interactions between pyramidal and inhibitory neurons, regulating synaptogenesis, are altered upon rhEPO. An array of in/ex vivo experiments confirms that specific interneuronal populations exhibit reduced dendritic complexity, synaptic connectivity, and changes in plasticity-related molecules. Metabolism and inhibitory potential of interneuron subgroups are compromised, leading to greater excitability of pyramidal neurons. To conclude, improvement by rhEPO of neuropsychiatric phenotypes may partly owe to restrictive control over interneurons, facilitating re-connectivity and synapse development.
Collapse
Affiliation(s)
- Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Héctor Carceller
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Patrycja Klimczak
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Qing Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Katharina Grewe
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Geschwind
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vicent Teruel-Marti
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
- Georg-August-University, Göttingen, Germany.
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany.
| | - Juan Nácher
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
8
|
Adam CD, Mirzakhalili E, Gagnon KG, Cottone C, Arena JD, Ulyanova AV, Johnson VE, Wolf JA. Disrupted Hippocampal Theta-Gamma Coupling and Spike-Field Coherence Following Experimental Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596704. [PMID: 39314320 PMCID: PMC11418945 DOI: 10.1101/2024.05.30.596704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traumatic brain injury (TBI) often results in persistent learning and memory deficits, likely due to disrupted hippocampal circuitry underlying these processes. Precise temporal control of hippocampal neuronal activity is important for memory encoding and retrieval and is supported by oscillations that dynamically organize single unit firing. Using high-density laminar electrophysiology, we discovered a loss of oscillatory power across CA1 lamina, with a profound, layer-specific reduction in theta-gamma phase amplitude coupling in injured rats. Interneurons from injured animals were less strongly entrained to theta and gamma oscillations, suggesting a mechanism for the loss of coupling, while pyramidal cells were entrained to a later phase of theta. During quiet immobility, we report decreased ripple amplitudes from injured animals during sharp-wave ripple events. These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies.
Collapse
Affiliation(s)
- Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ehsan Mirzakhalili
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Kimberly G Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John D Arena
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| |
Collapse
|
9
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques. Cell Rep 2024; 43:114519. [PMID: 39018243 PMCID: PMC11445748 DOI: 10.1016/j.celrep.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
Collapse
Affiliation(s)
- Saman Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Ku SP, Atucha E, Alavi N, Mulla-Osman H, Kayumova R, Yoshida M, Csicsvari J, Sauvage MM. Phase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance. Cell Rep 2024; 43:114276. [PMID: 38814781 DOI: 10.1016/j.celrep.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
How the coordination of neuronal spiking and brain rhythms between hippocampal subregions supports memory function remains elusive. We studied the interregional coordination of CA3 neuronal spiking with CA1 theta oscillations by recording electrophysiological signals along the proximodistal axis of the hippocampus in rats that were performing a high-memory-demand recognition memory task adapted from humans. We found that CA3 population spiking occurs preferentially at the peak of distal CA1 theta oscillations when memory was tested but only when previously encountered stimuli were presented. In addition, decoding analyses revealed that only population cell firing of proximal CA3 together with that of distal CA1 can predict performance at test in the present non-spatial task. Overall, our work demonstrates an important role for the synchronization of CA3 neuronal activity with CA1 theta oscillations during memory testing.
Collapse
Affiliation(s)
- Shih-Pi Ku
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany.
| | - Erika Atucha
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Nico Alavi
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Halla Mulla-Osman
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Rukhshona Kayumova
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jozsef Csicsvari
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Magdalena M Sauvage
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
11
|
Rangel Guerrero DK, Balueva K, Barayeu U, Baracskay P, Gridchyn I, Nardin M, Roth CN, Wulff P, Csicsvari J. Hippocampal cholecystokinin-expressing interneurons regulate temporal coding and contextual learning. Neuron 2024; 112:2045-2061.e10. [PMID: 38636524 DOI: 10.1016/j.neuron.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/03/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Cholecystokinin-expressing interneurons (CCKIs) are hypothesized to shape pyramidal cell-firing patterns and regulate network oscillations and related network state transitions. To directly probe their role in the CA1 region, we silenced their activity using optogenetic and chemogenetic tools in mice. Opto-tagged CCKIs revealed a heterogeneous population, and their optogenetic silencing triggered wide disinhibitory network changes affecting both pyramidal cells and other interneurons. CCKI silencing enhanced pyramidal cell burst firing and altered the temporal coding of place cells: theta phase precession was disrupted, whereas sequence reactivation was enhanced. Chemogenetic CCKI silencing did not alter the acquisition of spatial reference memories on the Morris water maze but enhanced the recall of contextual fear memories and enabled selective recall when similar environments were tested. This work suggests the key involvement of CCKIs in the control of place-cell temporal coding and the formation of contextual memories.
Collapse
Affiliation(s)
- Dámaris K Rangel Guerrero
- Information and Systems Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | - Kira Balueva
- Institute of Physiology, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Uladzislau Barayeu
- Information and Systems Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Peter Baracskay
- Information and Systems Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Igor Gridchyn
- Information and Systems Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michele Nardin
- Information and Systems Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Chiara Nina Roth
- Information and Systems Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University Kiel, 24118 Kiel, Germany.
| | - Jozsef Csicsvari
- Information and Systems Sciences, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
12
|
Zhang Y, Karadas M, Liu J, Gu X, Vöröslakos M, Li Y, Tsien RW, Buzsáki G. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 2024; 112:1862-1875.e5. [PMID: 38537642 PMCID: PMC11156550 DOI: 10.1016/j.neuron.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 06/09/2024]
Abstract
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
Collapse
Affiliation(s)
| | | | | | - Xinyi Gu
- Neuroscience Institute, New York, NY, USA
| | | | - Yulong Li
- School of Life Science, Peking University, Beijing, China
| | - Richard W Tsien
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
13
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely-moving macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570369. [PMID: 38106053 PMCID: PMC10723348 DOI: 10.1101/2023.12.06.570369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here we report inhibitory functional cell groups in CA1 of freely-moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were segregated into superficial and deep layers differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest sublayer-specific circuit organization in hippocampal CA1 of the freely-moving macaques that may underlie its role in cognition.
Collapse
Affiliation(s)
- S Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - K L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
14
|
Souza AC, Souza BC, França A, Moradi M, Souza NC, Leão KE, Tort ABL, Leão RN, Lopes-Dos-Santos V, Ribeiro S. 5-MeO-DMT induces sleep-like LFP spectral signatures in the hippocampus and prefrontal cortex of awake rats. Sci Rep 2024; 14:11281. [PMID: 38760450 PMCID: PMC11101617 DOI: 10.1038/s41598-024-61474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.
Collapse
Affiliation(s)
- Annie C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Psychology, Florida State University, Tallahassee, USA
| | - Bryan C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Arthur França
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Marzieh Moradi
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Neuroscience and Behavioural Sciences, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicholy C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katarina E Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Richardson N Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vítor Lopes-Dos-Santos
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Center for Strategic Studies, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Adaikkan C, Joseph J, Foustoukos G, Wang J, Polygalov D, Boehringer R, Middleton SJ, Huang AJY, Tsai LH, McHugh TJ. Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations. Nat Commun 2024; 15:2190. [PMID: 38467602 PMCID: PMC10928166 DOI: 10.1038/s41467-024-46478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.
Collapse
Affiliation(s)
| | - Justin Joseph
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Georgios Foustoukos
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jun Wang
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Roman Boehringer
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Steven J Middleton
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Arthur J Y Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Fan Z, Gong X, Xu H, Qu Y, Li B, Li L, Yan Y, Wu L, Yan C. Hippocampal parvalbumin and perineuronal nets: Possible involvement in anxiety-like behavior in rats. Hippocampus 2024; 34:156-165. [PMID: 38100162 DOI: 10.1002/hipo.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 02/20/2024]
Abstract
The excitatory-inhibitory imbalance has been considered an important mechanism underlying stress-related psychiatric disorders. In the present study, rats were exposed to 6 days of inescapable foot shock (IFS) to induce stress. The open field test and elevated plus maze test showed that IFS-exposed rats exhibited increased anxiety-like behavior. Immunofluorescence showed that IFS rats had a decreased density of GAD67-immunoreactive interneurons in the dorsal hippocampal CA1 region, while no significant change in the density of CaMKIIα-immunoreactive glutamatergic neurons was seen. We investigated the expression of different interneuron subtype markers, including parvalbumin (PV), somatostatin (SST), and calretinin (CR), and noted a marked decline in the density of PV-immunoreactive interneurons in the dorsal CA1 region of IFS rats. The perineuronal net (PNN) is a specialized extracellular matrix structure primarily around PV interneurons. We used Wisteria floribunda agglutinin lectin to label the PNNs and observed that IFS rats had an increased proportion of PNN-coated PV-positive interneurons in CA1. The number of PSD95-positive excitatory synaptic puncta on the soma of PNN-free PV-positive interneurons was significantly higher than that of PNN-coated PV-positive interneurons. Our findings suggest that the effect of IFS on the hippocampal GABAergic interneurons could be cell-type-specific. Loss of PV phenotype in the dorsal hippocampal CA1 region may contribute to anxiety in rats. The dysregulated PV-PNN relationship in CA1 after traumatic stress exposure might represent one of the neurobiological correlates of the observed anxiety-like behavior.
Collapse
Affiliation(s)
- Zhixin Fan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiayu Gong
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanfang Xu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Qu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bozhi Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanxin Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Douchamps V, di Volo M, Torcini A, Battaglia D, Goutagny R. Gamma oscillatory complexity conveys behavioral information in hippocampal networks. Nat Commun 2024; 15:1849. [PMID: 38418832 PMCID: PMC10902292 DOI: 10.1038/s41467-024-46012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The hippocampus and entorhinal cortex exhibit rich oscillatory patterns critical for cognitive functions. In the hippocampal region CA1, specific gamma-frequency oscillations, timed at different phases of the ongoing theta rhythm, are hypothesized to facilitate the integration of information from varied sources and contribute to distinct cognitive processes. Here, we show that gamma elements -a multidimensional characterization of transient gamma oscillatory episodes- occur at any frequency or phase relative to the ongoing theta rhythm across all CA1 layers in male mice. Despite their low power and stochastic-like nature, individual gamma elements still carry behavior-related information and computational modeling suggests that they reflect neuronal firing. Our findings challenge the idea of rigid gamma sub-bands, showing that behavior shapes ensembles of irregular gamma elements that evolve with learning and depend on hippocampal layers. Widespread gamma diversity, beyond randomness, may thus reflect complexity, likely functional but invisible to classic average-based analyses.
Collapse
Affiliation(s)
- Vincent Douchamps
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS, UMR 7364, Strasbourg, France
| | - Matteo di Volo
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale, Stem Cell and Brain Research Institute, U1208, Bron, France
- CY Cergy Paris Université, Laboratoire de Physique Théorique et Modélisation (LPTM), CNRS, UMR 8089, 95302, Cergy-Pontoise, France
| | - Alessandro Torcini
- CY Cergy Paris Université, Laboratoire de Physique Théorique et Modélisation (LPTM), CNRS, UMR 8089, 95302, Cergy-Pontoise, France
- CNR - Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Demian Battaglia
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS, UMR 7364, Strasbourg, France.
- Aix-Marseille Université, Institut de Neurosciences des Systèmes (INS), INSERM, UMR 1106, Marseille, France.
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg, France.
| | - Romain Goutagny
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS, UMR 7364, Strasbourg, France.
| |
Collapse
|
18
|
Király B, Domonkos A, Jelitai M, Lopes-Dos-Santos V, Martínez-Bellver S, Kocsis B, Schlingloff D, Joshi A, Salib M, Fiáth R, Barthó P, Ulbert I, Freund TF, Viney TJ, Dupret D, Varga V, Hangya B. The medial septum controls hippocampal supra-theta oscillations. Nat Commun 2023; 14:6159. [PMID: 37816713 PMCID: PMC10564782 DOI: 10.1038/s41467-023-41746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Biological Physics, Institute of Physics, Eötvös Loránd University, Budapest, Hungary
| | - Andor Domonkos
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Márta Jelitai
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Barnabás Kocsis
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Schlingloff
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Abhilasha Joshi
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Minas Salib
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Richárd Fiáth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Viktor Varga
- Subcortical Modulation Research Group, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
19
|
Xiao X, Wang X, Zhu K, Li L, He Y, Zhang J, Li L, Hu H, Cui Y, Zhang J, Zheng Y. BACE1 in PV interneuron tunes hippocampal CA1 local circuits and resets priming of fear memory extinction. Mol Psychiatry 2023; 28:4151-4162. [PMID: 37452089 DOI: 10.1038/s41380-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
BACE1 is the rate-limiting enzyme for β-amyloid (Aβ) production and therefore is considered a prime drug target for treating Alzheimer's disease (AD). Nevertheless, the BACE1 inhibitors failed in clinical trials, even exhibiting cognitive worsening, implying that BACE1 may function in regulating cognition-relevant neural circuits. Here, we found that parvalbumin-positive inhibitory interneurons (PV INs) in hippocampal CA1 express BACE1 at a high level. We designed and developed a mouse strain with conditional knockout of BACE1 in PV neurons. The CA1 fast-spiking PV INs with BACE1 deletion exhibited an enhanced response of postsynaptic N-methyl-D-aspartate (NMDA) receptors to local stimulation on CA1 oriens, with average intrinsic electrical properties and fidelity in synaptic integration. Intriguingly, the BACE1 deletion reorganized the CA1 recurrent inhibitory motif assembled by the heterogeneous pyramidal neurons (PNs) and the adjacent fast-spiking PV INs from the superficial to the deep layer. Moreover, the conditional BACE1 deletion impaired the AMPARs-mediated excitatory transmission of deep CA1 PNs. Further rescue experiments confirmed that these phenotypes require the enzymatic activity of BACE1. Above all, the BACE1 deletion resets the priming of the fear memory extinction. Our findings suggest a neuron-specific working model of BACE1 in regulating learning and memory circuits. The study may provide a potential path of targeting BACE1 and NMDAR together to circumvent cognitive worsening due to a single application of BACE1 inhibitor in AD patients.
Collapse
Affiliation(s)
- Xuansheng Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Xiaotong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Lijuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ying He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Jinglan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Linying Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hanning Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Yanqiu Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jianliang Zhang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
20
|
MUW researcher of the month. Wien Klin Wochenschr 2023; 135:499-500. [PMID: 37698640 DOI: 10.1007/s00508-023-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
|
21
|
Li Y, Zhi W, Qi B, Wang L, Hu X. Update on neurobiological mechanisms of fear: illuminating the direction of mechanism exploration and treatment development of trauma and fear-related disorders. Front Behav Neurosci 2023; 17:1216524. [PMID: 37600761 PMCID: PMC10433239 DOI: 10.3389/fnbeh.2023.1216524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Fear refers to an adaptive response in the face of danger, and the formed fear memory acts as a warning when the individual faces a dangerous situation again, which is of great significance to the survival of humans and animals. Excessive fear response caused by abnormal fear memory can lead to neuropsychiatric disorders. Fear memory has been studied for a long time, which is of a certain guiding effect on the treatment of fear-related disorders. With continuous technological innovations, the study of fear has gradually shifted from the level of brain regions to deeper neural (micro) circuits between brain regions and even within single brain regions, as well as molecular mechanisms. This article briefly outlines the basic knowledge of fear memory and reviews the neurobiological mechanisms of fear extinction and relapse, which aims to provide new insights for future basic research on fear emotions and new ideas for treating trauma and fear-related disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bing Qi
- College of Education, Hebei University, Baoding, China
| | - Lifeng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- College of Education, Hebei University, Baoding, China
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
22
|
Modi B, Guardamagna M, Stella F, Griguoli M, Cherubini E, Battaglia FP. State-dependent coupling of hippocampal oscillations. eLife 2023; 12:e80263. [PMID: 37462671 PMCID: PMC10411970 DOI: 10.7554/elife.80263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Oscillations occurring simultaneously in a given area represent a physiological unit of brain states. They allow for temporal segmentation of spikes and support distinct behaviors. To establish how multiple oscillatory components co-vary simultaneously and influence neuronal firing during sleep and wakefulness in mice, we describe a multivariate analytical framework for constructing the state space of hippocampal oscillations. Examining the co-occurrence patterns of oscillations on the state space, across species, uncovered the presence of network constraints and distinct set of cross-frequency interactions during wakefulness compared to sleep. We demonstrated how the state space can be used as a canvas to map the neural firing and found that distinct neurons during navigation were tuned to different sets of simultaneously occurring oscillations during sleep. This multivariate analytical framework provides a window to move beyond classical bivariate pipelines for investigating oscillations and neuronal firing, thereby allowing to factor-in the complexity of oscillation-population interactions.
Collapse
Affiliation(s)
| | - Matteo Guardamagna
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| | - Marilena Griguoli
- European Brain Research InstituteRomeItaly
- CNR, Institute of Molecular Biology and PathologyRomeItaly
| | | | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behavior, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
23
|
Forro T, Klausberger T. Differential behavior-related activity of distinct hippocampal interneuron types during odor-associated spatial navigation. Neuron 2023:S0896-6273(23)00380-X. [PMID: 37279749 DOI: 10.1016/j.neuron.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Hippocampal pyramidal cells represent an animal's position in space together with specific contexts and events. However, it is largely unknown how distinct types of GABAergic interneurons contribute to such computations. We recorded from the intermediate CA1 hippocampus of head-fixed mice exhibiting odor-to-place memory associations during navigation in a virtual reality (VR). The presence of an odor cue and its prediction of a different reward location induced a remapping of place cell activity in the virtual maze. Based on this, we performed extracellular recording and juxtacellular labeling of identified interneurons during task performance. The activity of parvalbumin (PV)-expressing basket, but not of PV-expressing bistratified cells, reflected the expected contextual change in the working-memory-related sections of the maze. Some interneurons, including identified cholecystokinin-expressing cells, decreased activity during visuospatial navigation and increased activity during reward. Our findings suggest that distinct types of GABAergic interneuron are differentially involved in cognitive processes of the hippocampus.
Collapse
Affiliation(s)
- Thomas Forro
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Klausberger
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
24
|
Wei Y, Nandi A, Jia X, Siegle JH, Denman D, Lee SY, Buchin A, Van Geit W, Mosher CP, Olsen S, Anastassiou CA. Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex. Nat Commun 2023; 14:2344. [PMID: 37095130 PMCID: PMC10126114 DOI: 10.1038/s41467-023-37844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.
Collapse
Affiliation(s)
- Yina Wei
- Zhejiang Lab, Hangzhou, 311100, China.
- Allen Institute for Brain Science, Seattle, WA, 98109, USA.
| | - Anirban Nandi
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Xiaoxuan Jia
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- School of Life Sciences/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | | | | | - Soo Yeun Lee
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Anatoly Buchin
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Cajal Neuroscience Inc, Seattle, WA, 98102, USA
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech, Geneva, 1202, Switzerland
| | - Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Shawn Olsen
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
| | - Costas A Anastassiou
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
25
|
Wei Y, Nandi A, Jia X, Siegle JH, Denman D, Lee SY, Buchin A, Geit WV, Mosher CP, Olsen S, Anastassiou CA. Associations between in vitro , in vivo and in silico cell classes in mouse primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.532851. [PMID: 37131710 PMCID: PMC10153154 DOI: 10.1101/2023.04.17.532851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.
Collapse
Affiliation(s)
- Yina Wei
- Zhejiang Lab, Hangzhou 311100, China
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anirban Nandi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xiaoxuan Jia
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- School of Life Sciences, Tsinghua University, Beijing, 100084, China, IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, 100084, China
| | | | | | - Soo Yeun Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anatoly Buchin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Cajal Neuroscience Inc, Seattle, WA 98102, USA
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Campus Biotech, Geneva 1202, Switzerland
| | - Clayton P. Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shawn Olsen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Costas A. Anastassiou
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Lead contact
| |
Collapse
|
26
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit. PLoS Comput Biol 2023; 19:e1010942. [PMID: 36952558 PMCID: PMC10072417 DOI: 10.1371/journal.pcbi.1010942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2023] [Accepted: 02/13/2023] [Indexed: 03/25/2023] Open
Abstract
Phase amplitude coupling (PAC) between slow and fast oscillations is found throughout the brain and plays important functional roles. Its neural origin remains unclear. Experimental findings are often puzzling and sometimes contradictory. Most computational models rely on pairs of pacemaker neurons or neural populations tuned at different frequencies to produce PAC. Here, using a data-driven model of a hippocampal microcircuit, we demonstrate that PAC can naturally emerge from a single feedback mechanism involving an inhibitory and excitatory neuron population, which interplay to generate theta frequency periodic bursts of higher frequency gamma. The model suggests the conditions under which a CA1 microcircuit can operate to elicit theta-gamma PAC, and highlights the modulatory role of OLM and PVBC cells, recurrent connectivity, and short term synaptic plasticity. Surprisingly, the results suggest the experimentally testable prediction that the generation of the slow population oscillation requires the fast one and cannot occur without it.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
28
|
Riva M, Moriceau S, Morabito A, Dossi E, Sanchez-Bellot C, Azzam P, Navas-Olive A, Gal B, Dori F, Cid E, Ledonne F, David S, Trovero F, Bartolomucci M, Coppola E, Rebola N, Depaulis A, Rouach N, de la Prida LM, Oury F, Pierani A. Aberrant survival of hippocampal Cajal-Retzius cells leads to memory deficits, gamma rhythmopathies and susceptibility to seizures in adult mice. Nat Commun 2023; 14:1531. [PMID: 36934089 PMCID: PMC10024761 DOI: 10.1038/s41467-023-37249-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR's role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY+ cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.
Collapse
Affiliation(s)
- Martina Riva
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, Paris, France
| | - Annunziato Morabito
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Patrick Azzam
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad Camilo José Cela, Madrid, Spain
| | - Francesco Dori
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Fanny Ledonne
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Sabrina David
- Key-Obs SAS, 13 avenue Buffon, 45100, Orléans, France
| | | | - Magali Bartolomucci
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Eva Coppola
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Nelson Rebola
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Antoine Depaulis
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015, Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
29
|
Reduced inhibitory and excitatory input onto parvalbumin interneurons mediated by perineuronal net might contribute to cognitive impairments in a mouse model of sepsis-associated encephalopathy. Neuropharmacology 2023; 225:109382. [PMID: 36543316 DOI: 10.1016/j.neuropharm.2022.109382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is commonly defined as diffuse brain dysfunction and can manifest as delirium to coma. Accumulating evidence has suggested that perineuronal net (PNN) plays an important role in the modulation of the synaptic plasticity of central nervous system. We here investigated the role of PNN in SAE induced by lipopolysaccharide (LPS) injection. Behavioral tests were performed by open field, Y-maze, and fear conditioning tests at the indicated time points. The densities of vesicular γ-aminobutyric acid transporter, vesicular glutamate transporter 1, PNN, and parvalbumin (PV) in the hippocampus were evaluated by immunofluorescence. Matrix metalloproteinases-9 (MMP-9) expression and its activity were detected by Western blot and gel zymography, respectively. Local field potential was recorded by in vivo electrophysiology. LPS-treated mice displayed significant cognitive impairments, coincided with activated MMP-9, decreased PNN and PV densities, reduced inhibitory and excitatory input onto PV interneurons enwrapped by PNN, and decreased gamma oscillations in hippocampal CA1. Notably, MMP-9 inhibitor SB-3CT treatment rescued most of these abnormalities. Taken together, our study demonstrates that active MMP-9 mediated PNN remodeling, leading to reduced inhibitory and excitatory input onto PV interneurons and abnormal gamma oscillations in hippocampal CA1, which consequently contributed to cognitive impairments after LPS injection.
Collapse
|
30
|
Guardamagna M, Stella F, Battaglia FP. Heterogeneity of network and coding states in mouse CA1 place cells. Cell Rep 2023; 42:112022. [PMID: 36709427 DOI: 10.1016/j.celrep.2023.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/29/2023] Open
Abstract
Theta sequences and phase precession shape hippocampal activity and are considered key underpinnings of memory formation. Theta sequences are sweeps of spikes from multiple cells, tracing trajectories from past to future. Phase precession is the correlation between theta firing phase and animal position. Here, we reconsider these temporal processes in CA1 and the computational principles that they are thought to obey. We find stronger heterogeneity than previously described: we identify cells that do not phase precess but reliably express theta sequences. Other cells phase precess only when medium gamma (linked to entorhinal inputs) is strongest. The same cells express more sequences, but not precession, when slow gamma (linked to CA3 inputs) dominates. Moreover, sequences occur independently in distinct cell groups. Our results challenge the view that phase precession is the mechanism underlying the emergence of theta sequences, suggesting a role for CA1 cells in multiplexing diverse computational processes.
Collapse
Affiliation(s)
- Matteo Guardamagna
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
31
|
Johnson TD, Keefe KR, Rangel LM. Stimulation-induced entrainment of hippocampal network activity: Identifying optimal input frequencies. Hippocampus 2023; 33:85-95. [PMID: 36624658 PMCID: PMC10068596 DOI: 10.1002/hipo.23490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 01/11/2023]
Abstract
The hippocampus contains rich oscillatory activity, with continuous ebbs and flows of rhythmic currents that constrain its ability to integrate inputs. During associative learning, the hippocampus must integrate inputs from a range of sources carrying information about events and the contexts in which they occur. Under these circumstances, temporal coordination of activity between sender and receiver is likely essential for successful communication. Previously, it has been shown that the coordination of rhythmic activity between the lateral entorhinal cortex (LEC) and the CA1 region of the hippocampus is tightly correlated with the onset of learning in an associative learning task. We aimed to examine whether rhythmic inputs from the LEC in specific frequency ranges were sufficient to enhance the temporal coordination of activity in downstream CA1. In urethane-anesthetized rats, we applied extracellular low-intensity alternating current stimulation across the length of the LEC. Using this method, we aimed to phase-bias ongoing neuronal activity in LEC at a range of different frequencies (from 1.25 to 55 Hz). Rhythmic stimulation of LEC at both 35 and 50 Hz increased the proportion of CA1 neurons significantly entrained to the phase of the applied stimulation current. A subset of stimulation frequencies modified CA1 spiking relationships to the phase of local ongoing CA1 oscillations, with each stimulation frequency exerting a unique influence upon downstream CA1, often in frequency ranges outside the target stimulation frequency. These results suggest there are optimal frequencies for LEC-CA1 communication, and that different profiles of LEC rhythms likely have distinct outcomes upon CA1 processing.
Collapse
Affiliation(s)
- Teryn D Johnson
- Department of Cognitive Science, University of California, San Diego, California, USA
| | | | - Lara M Rangel
- Department of Cognitive Science, University of California, San Diego, California, USA
| |
Collapse
|
32
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
33
|
Ursino M, Cesaretti N, Pirazzini G. A model of working memory for encoding multiple items and ordered sequences exploiting the theta-gamma code. Cogn Neurodyn 2022; 17:489-521. [PMID: 37007198 PMCID: PMC10050512 DOI: 10.1007/s11571-022-09836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractRecent experimental evidence suggests that oscillatory activity plays a pivotal role in the maintenance of information in working memory, both in rodents and humans. In particular, cross-frequency coupling between theta and gamma oscillations has been suggested as a core mechanism for multi-item memory. The aim of this work is to present an original neural network model, based on oscillating neural masses, to investigate mechanisms at the basis of working memory in different conditions. We show that this model, with different synapse values, can be used to address different problems, such as the reconstruction of an item from partial information, the maintenance of multiple items simultaneously in memory, without any sequential order, and the reconstruction of an ordered sequence starting from an initial cue. The model consists of four interconnected layers; synapses are trained using Hebbian and anti-Hebbian mechanisms, in order to synchronize features in the same items, and desynchronize features in different items. Simulations show that the trained network is able to desynchronize up to nine items without a fixed order using the gamma rhythm. Moreover, the network can replicate a sequence of items using a gamma rhythm nested inside a theta rhythm. The reduction in some parameters, mainly concerning the strength of GABAergic synapses, induce memory alterations which mimic neurological deficits. Finally, the network, isolated from the external environment (“imagination phase”) and stimulated with high uniform noise, can randomly recover sequences previously learned, and link them together by exploiting the similarity among items.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Nicole Cesaretti
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Gabriele Pirazzini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| |
Collapse
|
34
|
Sakalar E, Klausberger T, Lasztóczi B. Neurogliaform cells dynamically decouple neuronal synchrony between brain areas. Science 2022; 377:324-328. [DOI: 10.1126/science.abo3355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Effective communication across brain areas requires distributed neuronal networks to dynamically synchronize or decouple their ongoing activity. GABA
ergic
interneurons lock ensembles to network oscillations, but there remain questions regarding how synchrony is actively disengaged to allow for new communication partners. We recorded the activity of identified interneurons in the CA1 hippocampus of awake mice. Neurogliaform cells (NGFCs)—which provide GABA
ergic
inhibition to distal dendrites of pyramidal cells—strongly coupled their firing to those gamma oscillations synchronizing local networks with cortical inputs. Rather than strengthening such synchrony, action potentials of NGFCs decoupled pyramidal cell activity from cortical gamma oscillations but did not reduce their firing nor affect local oscillations. Thus, NGFCs regulate information transfer by temporarily disengaging the synchrony without decreasing the activity of communicating networks.
Collapse
Affiliation(s)
- Ece Sakalar
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Klausberger
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bálint Lasztóczi
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Hernández-Vivanco A, Cano-Adamuz N, Sánchez-Aguilera A, González-Alonso A, Rodríguez-Fernández A, Azcoitia Í, de la Prida LM, Méndez P. Sex-specific regulation of inhibition and network activity by local aromatase in the mouse hippocampus. Nat Commun 2022; 13:3913. [PMID: 35798748 PMCID: PMC9262915 DOI: 10.1038/s41467-022-31635-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Cognitive function relies on a balanced interplay between excitatory and inhibitory neurons (INs), but the impact of estradiol on IN function is not fully understood. Here, we characterize the regulation of hippocampal INs by aromatase, the enzyme responsible for estradiol synthesis, using a combination of molecular, genetic, functional and behavioral tools. The results show that CA1 parvalbumin-expressing INs (PV-INs) contribute to brain estradiol synthesis. Brain aromatase regulates synaptic inhibition through a mechanism that involves modification of perineuronal nets enwrapping PV-INs. In the female brain, aromatase modulates PV-INs activity, the dynamics of network oscillations and hippocampal-dependent memory. Aromatase regulation of PV-INs and inhibitory synapses is determined by the gonads and independent of sex chromosomes. These results suggest PV-INs are mediators of estrogenic regulation of behaviorally-relevant activity. Using a combination of molecular, genetic, functional and behavioural tools, this study describes the impact of brain synthesized estrogen in inhibitory neuronal function, network oscillations and hippocampal dependent memory.
Collapse
Affiliation(s)
| | | | - Alberto Sánchez-Aguilera
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.,Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid IdISSC, Avda Complutense s/n, 28040, Madrid, Spain
| | | | | | - Íñigo Azcoitia
- Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Pablo Méndez
- Instituto Cajal (CSIC), Av Dr. Arce 37, 28002, Madrid, Spain.
| |
Collapse
|
36
|
Vrontou S, Bédécarrats A, Wei X, Ayodeji M, Brassai A, Molnár L, Mody I. Altered brain rhythms and behaviour in the accelerated ovarian failure mouse model of human menopause. Brain Commun 2022; 4:fcac166. [PMID: 35794872 PMCID: PMC9253886 DOI: 10.1093/braincomms/fcac166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
To date, potential mechanisms of menopause-related memory and cognitive deficits have not been elucidated. Therefore, we studied brain oscillations, their phase–amplitude coupling, sleep and vigilance state patterns, running wheel use and other behavioural measures in a translationally valid mouse model of menopause, the 4-vinylcyclohexene-diepoxide-induced accelerated ovarian failure. After accelerated ovarian failure, female mice show significant alterations in brain rhythms, including changes in the frequencies of θ (5–12 Hz) and γ (30–120 Hz) oscillations, a reversed phase–amplitude coupling, altered coupling of hippocampal sharp-wave ripples to medial prefrontal cortical sleep spindles and reduced δ oscillation (0.5–4 Hz) synchrony between the two regions during non-rapid eye movement sleep. In addition, we report on significant circadian variations in the frequencies of θ and γ oscillations, and massive synchronous δ oscillations during wheel running. Our results reveal novel and specific network alterations and feasible signs for diminished brain connectivity in the accelerated ovarian failure mouse model of menopause. Taken together, our results may have identified changes possibly responsible for some of the memory and cognitive deficits previously described in this model. Corresponding future studies in menopausal women could shed light on fundamental mechanisms underlying the neurological and psychiatric comorbidities present during this important transitional phase in women’s lives.
Collapse
Affiliation(s)
- Sophia Vrontou
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Alexis Bédécarrats
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| | | | - Attila Brassai
- Department of Pharmacology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology , Târgu Mureş 540139 , Romania
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania , Târgu Mureş 540485 , Romania
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
- Department of Physiology, The David Geffen School of Medicine at UCLA , Los Angeles, CA 90095 , USA
| |
Collapse
|
37
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
38
|
Rustamov N, Humphries J, Carter A, Leuthardt EC. Theta-gamma coupling as a cortical biomarker of brain-computer interface-mediated motor recovery in chronic stroke. Brain Commun 2022; 4:fcac136. [PMID: 35702730 PMCID: PMC9188323 DOI: 10.1093/braincomms/fcac136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic stroke patients with upper-limb motor disabilities are now beginning to see treatment options that were not previously available. To date, the two options recently approved by the United States Food and Drug Administration include vagus nerve stimulation and brain-computer interface therapy. While the mechanisms for vagus nerve stimulation have been well defined, the mechanisms underlying brain-computer interface-driven motor rehabilitation are largely unknown. Given that cross-frequency coupling has been associated with a wide variety of higher-order functions involved in learning and memory, we hypothesized this rhythm-specific mechanism would correlate with the functional improvements effected by a brain-computer interface. This study investigated whether the motor improvements in chronic stroke patients induced with a brain-computer interface therapy are associated with alterations in phase-amplitude coupling, a type of cross-frequency coupling. Seventeen chronic hemiparetic stroke patients used a robotic hand orthosis controlled with contralesional motor cortical signals measured with EEG. Patients regularly performed a therapeutic brain-computer interface task for 12 weeks. Resting-state EEG recordings and motor function data were acquired before initiating brain-computer interface therapy and once every 4 weeks after the therapy. Changes in phase-amplitude coupling values were assessed and correlated with motor function improvements. To establish whether coupling between two different frequency bands was more functionally important than either of those rhythms alone, we calculated power spectra as well. We found that theta-gamma coupling was enhanced bilaterally at the motor areas and showed significant correlations across brain-computer interface therapy sessions. Importantly, an increase in theta-gamma coupling positively correlated with motor recovery over the course of rehabilitation. The sources of theta-gamma coupling increase following brain-computer interface therapy were mostly located in the hand regions of the primary motor cortex on the left and right cerebral hemispheres. Beta-gamma coupling decreased bilaterally at the frontal areas following the therapy, but these effects did not correlate with motor recovery. Alpha-gamma coupling was not altered by brain-computer interface therapy. Power spectra did not change significantly over the course of the brain-computer interface therapy. The significant functional improvement in chronic stroke patients induced by brain-computer interface therapy was strongly correlated with increased theta-gamma coupling in bihemispheric motor regions. These findings support the notion that specific cross-frequency coupling dynamics in the brain likely play a mechanistic role in mediating motor recovery in the chronic phase of stroke recovery.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph Humphries
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Alexandre Carter
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric C. Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
39
|
Guardamagna M, Eichler R, Pedrosa R, Aarts AAA, Meyer AF, Battaglia F. The Hybrid Drive: a chronic implant device combining tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology in freely moving mice. J Neural Eng 2022; 19. [PMID: 35421850 DOI: 10.1088/1741-2552/ac6771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Objective. Understanding the function of brain cortices requires simultaneous investigation at multiple spatial and temporal scales and to link neural activity to an animal's behavior. A major challenge is to measure within- and across-layer information in actively behaving animals, in particular in mice that have become a major species in neuroscience due to an extensive genetic toolkit. Here we describe the Hybrid Drive, a new chronic implant for mice that combines tetrode arrays to record within-layer information with silicon probes to simultaneously measure across-layer information.Approach. The design of our device combines up to 14 tetrodes and 2 silicon probes, that can be arranged in custom arrays to generate unique areas-specific (and multi-area) layouts.Main Results. We show that large numbers of neurons and layer-resolved local field potentials can be recorded from the same brain region across weeks without loss in electrophysiological signal quality. The drive's lightweight structure (~3.5 g) leaves animal behavior largely unchanged, compared to other tetrode drives, during a variety of experimental paradigms. We demonstrate how the data collected with the Hybrid Drive allow state-of-the-art analysis in a series of experiments linking the spiking activity of CA1 pyramidal layer neurons to the oscillatory activity across hippocampal layers.Significance. Our new device fits a gap in the existing technology and increases the range and precision of questions that can be addressed about neural computations in freely behaving mice.
Collapse
Affiliation(s)
| | - Ronny Eichler
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | - Rafael Pedrosa
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | - Arno A A Aarts
- ATLAS Neuroengineering, Kapeldreef 75, Leuven, B-3000, BELGIUM
| | - Arne F Meyer
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | | |
Collapse
|
40
|
Gu Z, Yakel JL. Cholinergic Regulation of Hippocampal Theta Rhythm. Biomedicines 2022; 10:biomedicines10040745. [PMID: 35453495 PMCID: PMC9027244 DOI: 10.3390/biomedicines10040745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cholinergic regulation of hippocampal theta rhythm has been proposed as one of the central mechanisms underlying hippocampal functions including spatial memory encoding. However, cholinergic transmission has been traditionally associated with atropine-sensitive type II hippocampal theta oscillations that occur during alert immobility or in urethane-anesthetized animals. The role of cholinergic regulation of type I theta oscillations in behaving animals is much less clear. Recent studies strongly suggest that both cholinergic muscarinic and nicotinic receptors do actively regulate type I hippocampal theta oscillations and thus provide the cholinergic mechanism for theta-associated hippocampal learning. Septal cholinergic activation can regulate hippocampal circuit and theta expression either through direct septohippocampal cholinergic projections, or through septal glutamatergic and GABAergic neurons, that can precisely entrain hippocampal theta rhythmicity.
Collapse
|
41
|
Akkad H, Dupont-Hadwen J, Kane E, Evans C, Barrett L, Frese A, Tetkovic I, Bestmann S, Stagg CJ. Increasing human motor skill acquisition by driving theta-gamma coupling. eLife 2021; 10:67355. [PMID: 34812140 PMCID: PMC8687660 DOI: 10.7554/elife.67355] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Skill learning is a fundamental adaptive process, but the mechanisms remain poorly understood. Some learning paradigms, particularly in the memory domain, are closely associated with gamma activity that is amplitude modulated by the phase of underlying theta activity, but whether such nested activity patterns also underpin skill learning is unknown. Here, we addressed this question by using transcranial alternating current stimulation (tACS) over sensorimotor cortex to modulate theta–gamma activity during motor skill acquisition, as an exemplar of a non-hippocampal-dependent task. We demonstrated, and then replicated, a significant improvement in skill acquisition with theta–gamma tACS, which outlasted the stimulation by an hour. Our results suggest that theta–gamma activity may be a common mechanism for learning across the brain and provides a putative novel intervention for optimizing functional improvements in response to training or therapy.
Collapse
Affiliation(s)
- Haya Akkad
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joshua Dupont-Hadwen
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Edward Kane
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Carys Evans
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Liam Barrett
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Amba Frese
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Irena Tetkovic
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Sven Bestmann
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Paterno R, Marafiga JR, Ramsay H, Li T, Salvati KA, Baraban SC. Hippocampal gamma and sharp-wave ripple oscillations are altered in a Cntnap2 mouse model of autism spectrum disorder. Cell Rep 2021; 37:109970. [PMID: 34758298 PMCID: PMC8783641 DOI: 10.1016/j.celrep.2021.109970] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Impaired synaptic neurotransmission may underly circuit alterations contributing to behavioral autism spectrum disorder (ASD) phenotypes. A critical component of impairments reported in somatosensory and prefrontal cortex of ASD mouse models are parvalbumin (PV)-expressing fast-spiking interneurons. However, it remains unknown whether PV interneurons mediating hippocampal networks crucial to navigation and memory processing are similarly impaired. Using PV-labeled transgenic mice, a battery of behavioral assays, in vitro patch-clamp electrophysiology, and in vivo 32-channel silicon probe local field potential recordings, we address this question in a Cntnap2-null mutant mouse model representing a human ASD risk factor gene. Cntnap2-/- mice show a reduction in hippocampal PV interneuron density, reduced inhibitory input to CA1 pyramidal cells, deficits in spatial discrimination ability, and frequency-dependent circuit changes within the hippocampus, including alterations in gamma oscillations, sharp-wave ripples, and theta-gamma modulation. Our findings highlight hippocampal involvement in ASD and implicate interneurons as a potential therapeutical target.
Collapse
Affiliation(s)
- Rosalia Paterno
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA.
| | - Joseane Righes Marafiga
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Harrison Ramsay
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Tina Li
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Kathryn A Salvati
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Scott C Baraban
- Department of Neurological Surgery and Weill Institute of Neuroscience, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Barbieri Caus L, Pasquetti MV, Seminotti B, Woontner M, Wajner M, Calcagnotto ME. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I. J Neurosci Res 2021; 100:992-1007. [PMID: 34713466 DOI: 10.1002/jnr.24980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-I) is an inborn error of metabolism of lysine, hydroxylysine, and tryptophan, caused by glutaryl-CoA-dehydrogenase (GCDH) deficiency, characterized by the buildup of toxic organic acids predominantly in the brain. After acute catabolic states, patients usually develop striatal degeneration, but the mechanisms behind this damage are still unknown. Quinolinic acid (QA), a metabolite of the kynurenine pathway, increases especially during infections/inflammatory processes, and could act synergically with organic acids, contributing to the neurological features of GA-I. The aim of this study was to investigate whether QA increases seizure susceptibility and modifies brain oscillation patterns in an animal model of GA-I, the Gcdh-/- mice taking high-lysine diet (Gcdh-/- -Lys). Therefore, the characteristics of QA-induced seizures and changes in brain oscillatory patterns were evaluated by video-electroencephalography (EEG) analysis recorded in Gcdh-/- -Lys, Gcdh+/+ -Lys, and Gcdh-/- -N (normal diet) animals. We found that the number of seizures per animal was similar for all groups receiving QA, Gcdh-/- -Lys-QA, Gcdh+/+ -Lys-QA, and Gcdh-/- -N-QA. However, severe seizures were observed in the majority of Gcdh-/- -Lys-QA mice (82%), and only in 25% of Gcdh+/+ -Lys-QA and 44% of Gcdh-/- -N-QA mice. All Gcdh-/- -Lys animals developed spontaneous recurrent seizures (SRS), but Gcdh-/- -Lys-QA animals had increased number of SRS, higher mortality rate, and significant predominance of lower frequency oscillations on EEG. Our results suggest that QA plays an important role in the neurological features of GA-I, as Gcdh-/- -Lys mice exhibit increased susceptibility to intrastriatal QA-induced seizures and long-term changes in brain oscillations.
Collapse
Affiliation(s)
- Letícia Barbieri Caus
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mayara Vendramin Pasquetti
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bianca Seminotti
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Woontner
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Moacir Wajner
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab), Biochemistry Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Leung LS, Chu L. Aberrant slow waves in the hippocampus during activation in mice with low cholinergic tone. Hippocampus 2021; 31:1233-1253. [PMID: 34520598 DOI: 10.1002/hipo.23387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The effects of acetylcholine on cortical activation were studied in wild-type (WT) mice, compared to knockout (KO) mice depleted of the vesicular acetylcholine transporter (VAChT) gene in the basal forebrain, and knockdown (KD) mice with heterogeneous depletion of VAChT gene in the brain. Cortical activation was assessed by comparing power spectra of local field potentials (LFPs) during activated states of rapid-eye-movement sleep (REM) or walk (WLK), with those during non-activated states of slow-wave sleep (SWS) or awake-immobility (IMM). Activation-induced suppression of delta (1-4 Hz) and beta (13-30 Hz) power in the hippocampus, and delta power in frontal cortex, were reduced in KO and KD mice compared to WT mice. Mean theta frequency was higher in KD than KO mice during WLK and REM, but not different between WT and KO mice. Peak theta (4-12 Hz) and integrated gamma (30-150 Hz) power were not significantly different among mouse groups. However, theta-peak-frequency selected gamma2 (62-100 Hz) power was lower in KO than WT or KD mice during WLK, and theta-peak-frequency selected theta power during REM decreased faster with high theta frequency in KO than WT/ KD mice. Theta power increase during REM compared to WLK was lower in KO and KD mice compared to WT mice. Theta-gamma cross-frequency coherence, a measure of synchronization of gamma with theta phase, was not different among mouse groups. However, during REM, SWS, and IMM, delta-gamma coherence was significantly higher and proximal-distal delta coherence in CA1 was lower in KO than WT/KD mice. We conclude that a deficiency in basal forebrain acetylcholine release not only enhances slow waves and suppresses theta-associated gamma waves during activation, but also increases delta-gamma cross-frequency coherence during nonactivated states, with a possible effect of disrupting cognitive processing during any brain state.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Liangwei Chu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
45
|
Dvorak D, Chung A, Park EH, Fenton AA. Dentate spikes and external control of hippocampal function. Cell Rep 2021; 36:109497. [PMID: 34348165 PMCID: PMC8369486 DOI: 10.1016/j.celrep.2021.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 11/11/2022] Open
Abstract
Mouse hippocampus CA1 place-cell discharge typically encodes current location, but during slow gamma dominance (SGdom), when SG oscillations (30-50 Hz) dominate mid-frequency gamma oscillations (70-90 Hz) in CA1 local field potentials, CA1 discharge switches to represent distant recollected locations. We report that dentate spike type 2 (DSM) events initiated by medial entorhinal cortex II (MECII)→ dentate gyrus (DG) inputs promote SGdom and change excitation-inhibition coordinated discharge in DG, CA3, and CA1, whereas type 1 (DSL) events initiated by lateral entorhinal cortex II (LECII)→DG inputs do not. Just before SGdom, LECII-originating SG oscillations in DG and CA3-originating SG oscillations in CA1 phase and frequency synchronize at the DSM peak when discharge within DG and CA3 increases to promote excitation-inhibition cofiring within and across the DG→CA3→CA1 pathway. This optimizes discharge for the 5-10 ms DG-to-CA1 neuro-transmission that SGdom initiates. DSM properties identify extrahippocampal control of SGdom and a cortico-hippocampal mechanism that switches between memory-related modes of information processing.
Collapse
Affiliation(s)
- Dino Dvorak
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Ain Chung
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eun Hye Park
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - André Antonio Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute at the NYU Langone Medical Center, New York, NY 10003, USA.
| |
Collapse
|
46
|
Hammer M, Schwale C, Brankačk J, Draguhn A, Tort ABL. Theta-gamma coupling during REM sleep depends on breathing rate. Sleep 2021; 44:6326772. [PMID: 34297128 DOI: 10.1093/sleep/zsab189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/23/2021] [Indexed: 11/12/2022] Open
Abstract
Temporal coupling between theta and gamma oscillations is a hallmark activity pattern of several cortical networks and becomes especially prominent during REM sleep. In a parallel approach, nasal breathing has been recently shown to generate phase-entrained network oscillations which also modulate gamma. Both slow rhythms (theta and respiration-entrained oscillations) have been suggested to aid large-scale integration but they differ in frequency, display low coherence, and modulate different gamma sub-bands. Respiration and theta are therefore believed to be largely independent. In the present work, however, we report an unexpected but robust relation between theta-gamma coupling and respiration in mice. Interestingly, this relation takes place not through the phase of individual respiration cycles, but through respiration rate: the strength of theta-gamma coupling exhibits an inverted V-shaped dependence on breathing rate, leading to maximal coupling at breathing frequencies of 4-6 Hz. Noteworthy, when subdividing sleep epochs into phasic and tonic REM patterns, we find that breathing differentially relates to theta-gamma coupling in each state, providing new evidence for their physiological distinctiveness. Altogether, our results reveal that breathing correlates with brain activity not only through phase-entrainment but also through rate-dependent relations with theta-gamma coupling. Thus, the link between respiration and other patterns of cortical network activity is more complex than previously assumed.
Collapse
Affiliation(s)
- Maximilian Hammer
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Chrysovalandis Schwale
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany.,Department of General Internal Medicine and Psychosomatics, Heidelberg University, 69120 Heidelberg, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| |
Collapse
|
47
|
Zhang WW, Li RR, Zhang J, Yan J, Zhang QH, Hu ZA, Hu B, Yao ZX, Chen H. Hippocampal Interneurons are Required for Trace Eyeblink Conditioning in Mice. Neurosci Bull 2021; 37:1147-1159. [PMID: 33991316 PMCID: PMC8353031 DOI: 10.1007/s12264-021-00700-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
While the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Rong-Rong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Qian-Hui Zhang
- Department of Foreign Language, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China. .,Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, 400038, China.
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
48
|
Leung LS, Chu L, Prado MAM, Prado VF. Forebrain Acetylcholine Modulates Isoflurane and Ketamine Anesthesia in Adult Mice. Anesthesiology 2021; 134:588-606. [PMID: 33635947 DOI: 10.1097/aln.0000000000003713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cholinergic drugs are known to modulate general anesthesia, but anesthesia responses in acetylcholine-deficient mice have not been studied. It was hypothesized that mice with genetic deficiency of forebrain acetylcholine show increased anesthetic sensitivity to isoflurane and ketamine and decreased gamma-frequency brain activity. METHODS Male adult mice with heterozygous knockdown of vesicular acetylcholine transporter in the brain or homozygous knockout of the transporter in the basal forebrain were compared with wild-type mice. Hippocampal and frontal cortical electrographic activity and righting reflex were studied in response to isoflurane and ketamine doses. RESULTS The loss-of-righting-reflex dose for isoflurane was lower in knockout (mean ± SD, 0.76 ± 0.08%, n = 18, P = 0.005) but not knockdown (0.78 ± 0.07%, n = 24, P = 0.021), as compared to wild-type mice (0.83 ± 0.07%, n = 23), using a significance criterion of P = 0.017 for three planned comparisons. Loss-of-righting-reflex dose for ketamine was lower in knockout (144 ± 39 mg/kg, n = 14, P = 0.006) but not knockdown (162 ± 32 mg/kg, n = 20, P = 0.602) as compared to wild-type mice (168 ± 24 mg/kg, n = 21). Hippocampal high-gamma (63 to 100 Hz) power after isoflurane was significantly lower in knockout and knockdown mice compared to wild-type mice (isoflurane-dose and mouse-group interaction effect, F[8,56] = 2.87, P = 0.010; n = 5 to 6 mice per group). Hippocampal high-gamma power after ketamine was significantly lower in both knockout and knockdown mice when compared to wild-type mice (interaction effect F[2,13] = 6.06, P = 0.014). The change in frontal cortical gamma power with isoflurane or ketamine was not statistically different among knockout, knockdown, and wild-type mice. CONCLUSIONS These findings suggest that forebrain cholinergic neurons modulate behavioral sensitivity and hippocampal gamma activity during isoflurane and ketamine anesthesia. EDITOR’S PERSPECTIVE
Collapse
|
49
|
Fernández-Ruiz A, Oliva A, Soula M, Rocha-Almeida F, Nagy GA, Martin-Vazquez G, Buzsáki G. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 2021; 372:eabf3119. [PMID: 33795429 PMCID: PMC8285088 DOI: 10.1126/science.abf3119] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/29/2021] [Indexed: 01/02/2023]
Abstract
Gamma oscillations are thought to coordinate the spike timing of functionally specialized neuronal ensembles across brain regions. To test this hypothesis, we optogenetically perturbed gamma spike timing in the rat medial (MEC) and lateral (LEC) entorhinal cortices and found impairments in spatial and object learning tasks, respectively. MEC and LEC were synchronized with the hippocampal dentate gyrus through high- and low-gamma-frequency rhythms, respectively, and engaged either granule cells or mossy cells and CA3 pyramidal cells in a task-dependent manner. Gamma perturbation disrupted the learning-induced assembly organization of target neurons. Our findings imply that pathway-specific gamma oscillations route task-relevant information between distinct neuronal subpopulations in the entorhinal-hippocampal circuit. We hypothesize that interregional gamma-time-scale spike coordination is a mechanism of neuronal communication.
Collapse
Affiliation(s)
- Antonio Fernández-Ruiz
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA.
| | - Azahara Oliva
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Marisol Soula
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Florbela Rocha-Almeida
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
- Division of Neurosciences, University Pablo de Olavide, 41013 Seville, Spain
| | - Gergo A Nagy
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Szigony utca 43, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
| | - Gonzalo Martin-Vazquez
- Department of Theoretical Physics, Complutense University, 28040 Madrid, Spain
- School of Experimental Sciences, University Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - György Buzsáki
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA.
- Center for Neural Science, New York University, New York, NY 10016, USA
| |
Collapse
|
50
|
França ASC, Borgesius NZ, Souza BC, Cohen MX. Beta2 Oscillations in Hippocampal-Cortical Circuits During Novelty Detection. Front Syst Neurosci 2021; 15:617388. [PMID: 33664653 PMCID: PMC7921172 DOI: 10.3389/fnsys.2021.617388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
Novelty detection is a core feature of behavioral adaptation and involves cascades of neuronal responses-from initial evaluation of the stimulus to the encoding of new representations-resulting in the behavioral ability to respond to unexpected inputs. In the past decade, a new important novelty detection feature, beta2 (~20-30 Hz) oscillations, has been described in the hippocampus (HC). However, the interactions between beta2 and the hippocampal network are unknown, as well as the role-or even the presence-of beta2 in other areas involved with novelty detection. In this work, we combined multisite local field potential (LFP) recordings with novelty-related behavioral tasks in mice to describe the oscillatory dynamics associated with novelty detection in the CA1 region of the HC, parietal cortex, and mid-prefrontal cortex. We found that transient beta2 power increases were observed only during interaction with novel contexts and objects, but not with familiar contexts and objects. Also, robust theta-gamma phase-amplitude coupling was observed during the exploration of novel environments. Surprisingly, bursts of beta2 power had strong coupling with the phase of delta-range oscillations. Finally, the parietal and mid-frontal cortices had strong coherence with the HC in both theta and beta2. These results highlight the importance of beta2 oscillations in a larger hippocampal-cortical circuit, suggesting that beta2 plays a role in the mechanism for detecting and modulating behavioral adaptation to novelty.
Collapse
Affiliation(s)
- Arthur S. C. França
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | | | | | | |
Collapse
|