1
|
Raza ML. The stress-immune system axis: Exploring the interplay between stress and immunity. PROGRESS IN BRAIN RESEARCH 2025; 291:289-317. [PMID: 40222784 DOI: 10.1016/bs.pbr.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The chapter talks about how our body and mind respond to stress and how it affects our immune system. Stress reactions, especially the fight-or-flight reaction, are helpful at first but can be harmful if they last too long. Long-term stress, caused by hormones like cortisol and adrenaline, weakens the immune system and makes people more likely to get sick. Important brain chemicals like serotonin and norepinephrine help control how our immune system works. Also, the connection between our gut and brain is an important way that mental health affects how our immune system functions. Getting older and experiencing stress early in life can affect how our immune system works. Inflammation caused by stress is connected to health issues like heart disease, depression, and autoimmune diseases. There are ways to manage stress, like being mindful and having support from friends, are important for keeping your immune system healthy and lessening harm caused by stress.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Yan H, Wang Y, Huo F, Yin C. Fast-Specific Fluorescent Probes to Visualize Norepinephrine Signaling Pathways and Its Flux in the Epileptic Mice Brain. J Am Chem Soc 2023; 145:3229-3237. [PMID: 36701205 DOI: 10.1021/jacs.2c13223] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Norepinephrine (NE) is synthesized in the locus coeruleus and widely projected throughout the brain and spinal cord. It regulates various actions and consciousness linked to a variety of neurological diseases. A "hunting-shooting" strategy was proposed in this work to improve the specificity and response rate of an NE fluorescent probe: 2-(cyclohex-2-en-1-ylidene)malononitrile derivatives were chosen as a fluorophore. To create a dual-site probe, an aldehyde group was added to the ortho of the ester group (or benzene sulfonate). Because of its excellent electrophilic activity, the aldehyde group could rapidly "hunt" the amino group and then form an intramolecular five-membered ring via the nucleophilic reaction with the β-hydroxyl group. The -NH- in the five-membered ring "shoots" the adjacent ester group, releasing the fluorophore and allowing for rapid and specific NE detection. The NE release and reuptake ″emetic″-″swallow″ transient process is captured and visualized under the action of the primary NE receptor drug. Furthermore, by introducing halogen into the fluorophore to lengthen the absorption wavelength, improve lipid solubility, and adjust the pKa appropriately, the probe successfully penetrated the blood-brain barrier (BBB). In situ synchronous probe imaging was used to detect the NE level in the brains of epileptic and normal mice, and abnormal expression of NE in the brain was discovered during epilepsy. Brain anatomy was used to examine the distribution and level changes of NE in various brain regions before and after epilepsy. This research provides useful tools and a theoretical foundation for diagnosing and treating central nervous system diseases early.
Collapse
Affiliation(s)
- Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yuting Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
4
|
Liu Y, Yin H, Ma H, Yu X, Liu G, Guo L, Geng Q. The salivary-α-amylase level after stroop test in anxious patients can predict the severity of anxiety. Neurosci Lett 2020; 715:134613. [PMID: 31726179 DOI: 10.1016/j.neulet.2019.134613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Abstract
Individuals with anxiety disorder often exhibit as imbalance in response to stressors. We sought to explore the relationship between physiological as well as psychological responses under acute mental stress and the severity of the disease. 20 Generalized Anxiety Disorder (GAD) patients (14 males, mean age 46 ± 10 years) were confronted with the stroop test, during which salivary-α-amylase (sAA), salivary cortisol, and heart rate variability (HRV) were assessed. The results showed that stroop test as a stressor induced autonomic nervous response in GAD patients, which was mainly manifested as the increase in HRV representing sympathetic nervous system and the decrease in HRV representing vagal nerve activity. Moreover, the basic function of sympathetic-adrenal medulla system was hyperfunctional in GAD patients while theirs reactivity was limited, which showed the more serious the lesion was, the higher the baseline value of sAA was, and the less sAA secretion increase would be, or even decrease after mental stress. The change of sAA after stroop test in GAD patients can predict the severity of anxiety, but subjective psychological perception can not.
Collapse
Affiliation(s)
- Yuting Liu
- School of Medicine, South China University of Technology, Guangdong General Hospital, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Han Yin
- School of Medicine, South China University of Technology, Guangdong General Hospital, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Huan Ma
- Guangdong General Hospital, School of Medicine, South China University of Technology, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Xueju Yu
- School of Medicine, South China University of Technology, Guangdong General Hospital, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Guihao Liu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lan Guo
- Guangdong General Hospital, School of Medicine, South China University of Technology, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Qingshan Geng
- Guangdong General Hospital, School of Medicine, South China University of Technology, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou 510080, China.
| |
Collapse
|
5
|
Giorgi FS, Saccaro LF, Galgani A, Busceti CL, Biagioni F, Frati A, Fornai F. The role of Locus Coeruleus in neuroinflammation occurring in Alzheimer’s disease. Brain Res Bull 2019; 153:47-58. [DOI: 10.1016/j.brainresbull.2019.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
|
6
|
HCN channel antagonist ZD7288 ameliorates neuropathic pain and associated depression. Brain Res 2019; 1717:204-213. [DOI: 10.1016/j.brainres.2019.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
|
7
|
Jongbloets BC, Ma L, Mao T, Zhong H. Visualizing Protein Kinase A Activity In Head-fixed Behaving Mice Using In Vivo Two-photon Fluorescence Lifetime Imaging Microscopy. J Vis Exp 2019. [PMID: 31233029 DOI: 10.3791/59526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neuromodulation exerts powerful control over brain function. Dysfunction of neuromodulatory systems results in neurological and psychiatric disorders. Despite their importance, technologies for tracking neuromodulatory events with cellular resolution are just beginning to emerge. Neuromodulators, such as dopamine, norepinephrine, acetylcholine, and serotonin, trigger intracellular signaling events via their respective G protein-coupled receptors to modulate neuronal excitability, synaptic communications, and other neuronal functions, thereby regulating information processing in the neuronal network. The above mentioned neuromodulators converge onto the cAMP/protein kinase A (PKA) pathway. Therefore, in vivo PKA imaging with single-cell resolution was developed as a readout for neuromodulatory events in a manner analogous to calcium imaging for neuronal electrical activities. Herein, a method is presented to visualize PKA activity at the level of individual neurons in the cortex of head-fixed behaving mice. To do so, an improved A-kinase activity reporter (AKAR), called tAKARα, is used, which is based on Förster resonance energy transfer (FRET). This genetically-encoded PKA sensor is introduced into the motor cortex via in utero electroporation (IUE) of DNA plasmids, or stereotaxic injection of adeno-associated virus (AAV). FRET changes are imaged using two-photon fluorescence lifetime imaging microscopy (2pFLIM), which offers advantages over ratiometric FRET measurements for quantifying FRET signal in light-scattering brain tissue. To study PKA activities during enforced locomotion, tAKARα is imaged through a chronic cranial window above the cortex of awake, head-fixed mice, which run or rest on a speed-controlled motorized treadmill. This imaging approach will be applicable to many other brain regions to study corresponding behavior-induced PKA activities and to other FLIM-based sensors for in vivo imaging.
Collapse
Affiliation(s)
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University;
| |
Collapse
|
8
|
Szabadi E. Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited and Light-Stimulated Pathways. Front Neurol 2018; 9:1069. [PMID: 30619035 PMCID: PMC6305320 DOI: 10.3389/fneur.2018.01069] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Pupil dilation is mediated by a sympathetic output acting in opposition to parasympathetically mediated pupil constriction. While light stimulates the parasympathetic output, giving rise to the light reflex, it can both inhibit and stimulate the sympathetic output. Light-inhibited sympathetic pathways originate in retina-receptive neurones of the pretectum and the suprachiasmatic nucleus (SCN): by attenuating sympathetic activity, they allow unimpeded operation of the light reflex. Light stimulates the noradrenergic and serotonergic pathways. The hub of the noradrenergic pathway is the locus coeruleus (LC) containing both excitatory sympathetic premotor neurones (SympPN) projecting to preganglionic neurones in the spinal cord, and inhibitory parasympathetic premotor neurones (ParaPN) projecting to preganglionic neurones in the Edinger-Westphal nucleus (EWN). SympPN receive inputs from the SCN via the dorsomedial hypothalamus, orexinergic neurones of the latero-posterior hypothalamus, wake- and sleep-promoting neurones of the hypothalamus and brain stem, nociceptive collaterals of the spinothalamic tract, whereas ParaPN receive inputs from the amygdala, sleep/arousal network, nociceptive spinothalamic collaterals. The activity of LC neurones is regulated by inhibitory α2-adrenoceptors. There is a species difference in the function of the preautonomic LC. In diurnal animals, the α2-adrenoceptor agonist clonidine stimulates mainly autoreceptors on SymPN, causing miosis, whereas in nocturnal animals it stimulates postsynaptic α2-arenoceptors in the EWN, causing mydriasis. Noxious stimulation activates SympPN in diurnal animals and ParaPN in nocturnal animals, leading to pupil dilation via sympathoexcitation and parasympathetic inhibition, respectively. These differences may be attributed to increased activity of excitatory LC neurones due to stimulation by light in diurnal animals. This may also underlie the wake-promoting effect of light in diurnal animals, in contrast to its sleep-promoting effect in nocturnal species. The hub of the serotonergic pathway is the dorsal raphe nucleus that is light-sensitive, both directly and indirectly (via an orexinergic input). The light-stimulated pathways mediate a latent mydriatic effect of light on the pupil that can be unmasked by drugs that either inhibit or stimulate SympPN in these pathways. The noradrenergic pathway has widespread connections to neural networks controlling a variety of functions, such as sleep/arousal, pain, and fear/anxiety. Many physiological and psychological variables modulate pupil function via this pathway.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Ma L, Jongbloets BC, Xiong WH, Melander JB, Qin M, Lameyer TJ, Harrison MF, Zemelman BV, Mao T, Zhong H. A Highly Sensitive A-Kinase Activity Reporter for Imaging Neuromodulatory Events in Awake Mice. Neuron 2018; 99:665-679.e5. [PMID: 30100256 PMCID: PMC6152931 DOI: 10.1016/j.neuron.2018.07.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Neuromodulation imposes powerful control over brain function, and cAMP-dependent protein kinase (PKA) is a central downstream mediator of multiple neuromodulators. Although genetically encoded PKA sensors have been developed, single-cell imaging of PKA activity in living mice has not been established. Here, we used two-photon fluorescence lifetime imaging microscopy (2pFLIM) to visualize genetically encoded PKA sensors in response to the neuromodulators norepinephrine and dopamine. We screened available PKA sensors for 2pFLIM and further developed a variant (named tAKARα) with increased sensitivity and a broadened dynamic range. This sensor allowed detection of PKA activation by norepinephrine at physiologically relevant concentrations and kinetics, and by optogenetically released dopamine. In vivo longitudinal 2pFLIM imaging of tAKARα tracked bidirectional PKA activities in individual neurons in awake mice and revealed neuromodulatory PKA events that were associated with wakefulness, pharmacological manipulation, and locomotion. This new sensor combined with 2pFLIM will enable interrogation of neuromodulation-induced PKA signaling in awake animals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bart C Jongbloets
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Wei-Hong Xiong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joshua B Melander
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tess J Lameyer
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Madeleine F Harrison
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA
| | - Boris V Zemelman
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
10
|
Purvis EM, Klein AK, Ettenberg A. Lateral habenular norepinephrine contributes to states of arousal and anxiety in male rats. Behav Brain Res 2018; 347:108-115. [PMID: 29526789 PMCID: PMC5988948 DOI: 10.1016/j.bbr.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/16/2023]
Abstract
Recent research has identified the lateral habenula (LHb) as a brain region playing an important role in the production of stressful and anxiogenic states. Additionally, norepinephrine (NE) has long been known to be involved in arousal, stress and anxiety, and NE projections to the LHb have been identified emanating from the locus coeruleus (LC). The current research was devised to test the hypothesis that NE release within the LHb contributes to the occurrence of anxiogenic behaviors. Male rats were implanted with bilateral guide cannula aimed at the LHb and subsequently treated with intracranial (IC) infusions of the selective α2 adrenergic autoreceptor agonist, dexmedetomidine (DEX) (0, 0.5, 1.0 μg/side), prior to assessment of ambulatory and anxiogenic behavior in tests of spontaneous locomotion, open field behavior, and acoustic startle-response. Results demonstrated that DEX administration significantly reduced the overall locomotor behavior of subjects at both doses indicating that infusion of even small doses of this α2 agonist into the LHb can have profound effects on the subjects' general levels of alertness and activity. DEX was also found to attenuate anxiety as evidenced by a reduction in the magnitude of a startle-response to an acoustic 110 dB stimulus. Taken together, these results identify a role for NE release within the LHb in both arousal and anxiety.
Collapse
Affiliation(s)
- Erin M Purvis
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Adam K Klein
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA.
| |
Collapse
|
11
|
Zhao Z, Wang L, Gao W, Hu F, Zhang J, Ren Y, Lin R, Feng Q, Cheng M, Ju D, Chi Q, Wang D, Song S, Luo M, Zhan C. A Central Catecholaminergic Circuit Controls Blood Glucose Levels during Stress. Neuron 2017. [PMID: 28625488 DOI: 10.1016/j.neuron.2017.05.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stress-induced hyperglycemia is a fundamental adaptive response that mobilizes energy stores in response to threats. Here, our examination of the contributions of the central catecholaminergic (CA) neuronal system to this adaptive response revealed that CA neurons in the ventrolateral medulla (VLM) control stress-induced hyperglycemia. Ablation of VLM CA neurons abolished the hyperglycemic response to both physical and psychological stress, whereas chemogenetic activation of these neurons was sufficient to induce hyperglycemia. We further found that CA neurons in the rostral VLM, but not those in the caudal VLM, cause hyperglycemia via descending projections to the spinal cord. Monosynaptic tracing experiments showed that VLM CA neurons receive direct inputs from multiple stress-responsive brain areas. Optogenetic studies identified an excitatory PVN-VLM circuit that induces hyperglycemia. This study establishes the central role of VLM CA neurons in stress-induced hyperglycemia and substantially expands our understanding of the central mechanism that controls glucose metabolism.
Collapse
Affiliation(s)
- Zhe Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Liang Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Wenling Gao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Fei Hu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Juen Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yuqi Ren
- National Institute of Biological Sciences, Beijing, 102206, China; PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100081, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing, 102206, China; PTN Graduate Program, School of Life Sciences, Peking University, Beijing 100081, China
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing, 102206, China; PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mingxiu Cheng
- Department of Biomedical Engineering, Center for Brain-inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing, 102206, China; College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Qingsheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Song
- Department of Biomedical Engineering, Center for Brain-inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng Zhan
- National Institute of Biological Sciences, Beijing, 102206, China.
| |
Collapse
|
12
|
Zangeneh FZ, Naghizadeh MM, Bagheri M, Jafarabadi M. Are CRH & NGF as psychoneuroimmune regulators in women with polycystic ovary syndrome? Gynecol Endocrinol 2017; 33:227-233. [PMID: 27908212 DOI: 10.1080/09513590.2016.1250152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) affects quality of life and can worsen anxiety and depression either due to the features of PCOS or due to the diagnosis of a chronic disease. Corticotrophin-releasing hormone (CRH) and nerves growth factor (NGF) are the modulator for the actions of the sympathetic nervous and immune systems. METHODS In total, 171 women divided into two groups: study and control groups. Serum CRH, NGF, and interleukins: IL-1α. IL-1β, 17A, and TNFα were determined by ELISA Kits in both groups. RESULTS The results showed that IL-1α (p < 0.001) and β (p = 0.017) significantly increased in PCO group. CRH, NGF, and IL-17α in serum of patients with PCO significantly lower than the control group (p < 0.001). The results of this study indicate: (1) destruction of three cytokines pattern, (2) Reduction of CRH, NGF, and IL-17α in serum of PCO patients can be under the direct influence of the sympathetic nervous system (SAS), and (3) reduction of CRH and NGFα can be reason of psych/emotional distress in women with PCOS. CONCLUSIONS The results of this study confirm (1) low-grade chronic inflammation in PCOS. This impaired cytokine pattern can play a major role in the immune-pathogenesis of PCOS; (2) hyponeurotrophinemia and reduction of CRH in women with PCOS could reflect deficit of neuronal stress-adaptation in these patients.
Collapse
Affiliation(s)
- F Z Zangeneh
- a Reproductive Health Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - M M Naghizadeh
- b Department of Community Medicine , Medical Faculty, Fasa University of Medical Sciences , Fasa , Iran
| | - M Bagheri
- a Reproductive Health Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| | - M Jafarabadi
- a Reproductive Health Research Center, Tehran University of Medical Sciences , Tehran , Iran and
| |
Collapse
|
13
|
Corticotropin-releasing factor in the locus coeruleus as a modulator of ventilation in rats. Respir Physiol Neurobiol 2016; 233:73-80. [DOI: 10.1016/j.resp.2016.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
|
14
|
Lee HR, Kim TD, Kim HJ, Jung Y, Lee D, Lee KH, Kim DY, Woo KC, Kim KT. Heterogeneous ribonucleoprotein R regulates arylalkylamine N-acetyltransferase synthesis via internal ribosomal entry site-mediated translation in a circadian manner. J Pineal Res 2015; 59:518-29. [PMID: 26444903 DOI: 10.1111/jpi.12284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023]
Abstract
Rhythmic arylalkylamine N-acetyltransferase (AANAT) synthesis is a prominent circadian-controlled response that occurs in most mammals. AANAT is the core enzyme in melatonin production; because melatonin participates in many physiological processes, the regulation of AANAT is an important research topic. In this study, we focused on the role of heterogeneous ribonucleoprotein R (hnRNP R) in the translation of AANAT. A novel RNA-binding protein hnRNP R widely interacted with the 5' untranslated region (UTR) of AANAT mRNA and contributed to translation through an internal ribosomal entry site (IRES). Fine-tuning of AANAT protein synthesis occurred in response to knockdown and overexpression of hnRNP R. Nocturnal elevation of AANAT protein was dependent on the rhythmic changes of hnRNP R, whose levels are elevated in the pineal gland during nighttime. Increases in hnRNP R additionally improved AANAT production in rat pinealocytes under norepinephrine (NE) treatment. These results suggest that cap-independent translation of AANAT mRNA plays a role in the rhythmic synthesis of melatonin through the recruitment of translational machinery to hnRNP R-bound AANAT mRNA.
Collapse
Affiliation(s)
- Hwa-Rim Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Tae-Don Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Hyo-Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Kyung-Ha Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Kyung-Chul Woo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Newlife Cosmetics R&D Center for Skin Science, Gyeongsansi, Gyeongbuk, Korea
| | - Kyong-Tai Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| |
Collapse
|