1
|
Li K, Zheng Y, Cai S, Fan Z, Yang J, Liu Y, Liang S, Song M, Du S, Qi L. The subventricular zone structure, function and implications for neurological disease. Genes Dis 2025; 12:101398. [PMID: 39935607 PMCID: PMC11810716 DOI: 10.1016/j.gendis.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 07/28/2024] [Indexed: 02/13/2025] Open
Abstract
The subventricular zone (SVZ) is a region surrounding the lateral ventricles that contains neural stem cells and neural progenitor cells, which can proliferate and differentiate into various neural and glial cells. SVZ cells play important roles in neurological diseases like neurodegeneration, neural injury, and glioblastoma multiforme. Investigating the anatomy, structure, composition, physiology, disease associations, and related mechanisms of SVZ is significant for neural stem cell therapy and treatment/prevention of neurological disorders. However, challenges remain regarding the mechanisms regulating SVZ cell proliferation, differentiation, and migration, delivering cells to damaged areas, and immune responses. In-depth studies of SVZ functions and related therapeutic developments may provide new insights and approaches for treating brain injuries and degenerative diseases, as well as a scientific basis for neural stem cell therapy. This review summarizes research findings on SVZ and neurological diseases to provide references for relevant therapies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yin Zheng
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shubing Cai
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhiming Fan
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Junyi Yang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yuanrun Liu
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shengqi Liang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Meihui Song
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Siyuan Du
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| |
Collapse
|
2
|
Athanassi A, Breton M, Chalençon L, Brunelin J, Didier A, Bath K, Mandairon N. Chronic unpredictable mild stress alters odor hedonics and adult olfactory neurogenesis in mice. Front Neurosci 2023; 17:1224941. [PMID: 37600017 PMCID: PMC10435088 DOI: 10.3389/fnins.2023.1224941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Marine Breton
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Laura Chalençon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Jérome Brunelin
- Centre Hospitalier Le Vinatier, Bron, France
- INSERM, U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Anne Didier
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, United States
- Department of Psychiatry, Columbia University Medical College, New York, NY, United States
| | - Nathalie Mandairon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| |
Collapse
|
3
|
Wu X, Li L, Zhou B, Wang J, Shao W. Connexin 43 regulates astrocyte dysfunction and cognitive deficits in early life stress-treated mice. Exp Brain Res 2023; 241:1207-1214. [PMID: 36939885 DOI: 10.1007/s00221-023-06587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
Early life stress such as maternal separation (MS), is a major risk factor for developing psychiatric disorders in adulthood. Connexin 43 (CX43), the main type of connexins expressed in astrocytes, has been indicated to participate in depression disorders. Nevertheless, the role of CX43 in MS-induced cognitive impairment and astrocyte dysfunction is unclear. Neonatal C57BL/6 mice were exposed to MS to mimic early life stress. Adeno-associated virus carrying CX43 was inoculated into mice for CX43 overexpression. Sucrose preference test, forced swim test and Morris water maze were performed for evaluating depression-like behaviors and spatial learning and memory of mice in adulthood. Real time quantitative polymerase chain reaction was conducted to detect CX43 mRNA expression in mouse brain. Immunofluorescence staining and western blotting were used for measuring expression levels of astrocytic markers in murine hippocampal dentate gyrus. The results showed that overexpressing CX43 attenuated MS exposure-induced depression-like behaviors and decrease in spatial learning and memory in mice. Upregulating CX43 alleviated MS exposure-induced downregulation of astrocytic markers. Collectively, CX43 overexpression attenuates cognitive deficits and astrocyte dysfunction in mice exposed to MS.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Lijuan Li
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Bingling Zhou
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Junli Wang
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Wei Shao
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China.
| |
Collapse
|
4
|
Chang KC, Rhodes CT, Zhang JQ, Moseley MC, Cardona SM, Huang SWA, Rawls A, Lemmon VP, Berger MS, Abate AR, Lin CHA. The chromatin repressors EZH2 and Suv4-20h coregulate cell fate specification during hippocampal development. FEBS Lett 2022; 596:294-308. [PMID: 34890048 DOI: 10.1002/1873-3468.14254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022]
Abstract
The cell fate transition from radial glial-like (RGL) cells to neurons and astrocytes is crucial for development and pathological conditions. Two chromatin repressors-the enhancer of zeste homolog 2 and suppressor of variegation 4-20 homolog-are expressed in RGL cells in the hippocampus, implicating these epigenetic regulators in hippocampal cell fate commitment. Using a double knockout mouse model, we demonstrated that loss of both chromatin repressors in the RGL population leads to deficits in hippocampal development. Single-nuclei RNA-Seq revealed differential gene expression and provided mechanistic insight into how the two chromatin repressors are critical for the maintenance of cycling cells in the dentate gyrus as well as the balance of cell trajectories between neuronal and astroglial lineages.
Collapse
Affiliation(s)
- Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, CA, USA
| | - Christopher T Rhodes
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, TX, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH/NICHD, Bethesda, MD, USA
| | - Jesse Q Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, CA, USA
| | - Madeleine C Moseley
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, TX, USA
| | - Sandra M Cardona
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, TX, USA
| | - Shu-Wei Angela Huang
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, TX, USA
| | - Ashley Rawls
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, TX, USA
| | - Vance P Lemmon
- The Miami Project to Cure Paralysis, University of Miami, FL, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California at San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, CA, USA
| | - Chin-Hsing Annie Lin
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, TX, USA
- Department of Integrative Biology, University of Texas at San Antonio, One UTSA Circle, TX, USA
- Neuroscience Institute, University of Texas at San Antonio, TX, USA
| |
Collapse
|
5
|
Verkhratsky A. Astroglial Calcium Signaling in Aging and Alzheimer's Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035188. [PMID: 31110130 DOI: 10.1101/cshperspect.a035188] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Astrocytes are the homeostatic and protective cells of the central nervous system (CNS). In neurological diseases, astrocytes undergo complex changes, which are subclassified into (1) reactive astrogliosis, an evolutionary conserved defensive rearrangement of cellular phenotype aimed at neuroprotection; (2) pathological remodeling, when astrocytes acquire new features driving pathology; and (3) astrodegeneration, which is manifested by astroglial atrophy and loss of homeostatic functions. In aging brains as well as in the brains affected by Alzheimer's disease (AD), astrocytes acquire both atrophic and reactive phenotypes in a region- and disease-stage-dependent manner. Prevalence of atrophy overreactivity, observed in certain brain regions and in terminal stages of the disease, arguably facilitates the development of neurological deficits. Astrocytes exhibit ionic excitability mediated by changes in intracellular concentration of ions, most importantly of Ca2+ and Na+, with intracellular ion dynamics triggered by the activity of neural networks. AD astrocytes associated with senile plaques demonstrate Ca2+ hyperactivity in the form of aberrant Ca2+ oscillations and pathological long-range Ca2+ waves. Astroglial Ca2+ signaling originating from Ca2+ release from the endoplasmic reticulum is a key factor in initiating astrogliotic response; deficient Ca2+ signaling toolkits observed in entorhinal and prefrontal cortices of AD model animals may account for vulnerability of these regions to the pathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.,Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
6
|
Abbink MR, van Deijk ALF, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early-life adversity induced programming of the brain. Glia 2019; 67:1637-1653. [PMID: 31038797 PMCID: PMC6767561 DOI: 10.1002/glia.23625] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Early‐life adversity (ELA) in the form of stress, inflammation, or malnutrition, can increase the risk of developing psychopathology or cognitive problems in adulthood. The neurobiological substrates underlying this process remain unclear. While neuronal dysfunction and microglial contribution have been studied in this context, only recently the role of astrocytes in early‐life programming of the brain has been appreciated. Astrocytes serve many basic roles for brain functioning (e.g., synaptogenesis, glutamate recycling), and are unique in their capacity of sensing and integrating environmental signals, as they are the first cells to encounter signals from the blood, including hormonal changes (e.g., glucocorticoids), immune signals, and nutritional information. Integration of these signals is especially important during early development, and therefore we propose that astrocytes contribute to ELA induced changes in the brain by sensing and integrating environmental signals and by modulating neuronal development and function. Studies in rodents have already shown that ELA can impact astrocytes on the short and long term, however, a critical review of these results is currently lacking. Here, we will discuss the developmental trajectory of astrocytes, their ability to integrate stress, immune, and nutritional signals from the early environment, and we will review how different types of early adversity impact astrocytes.
Collapse
Affiliation(s)
- Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Lieke F van Deijk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mark H Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Stevenson ME, Lensmire NA, Swain RA. Astrocytes and radial glia-like cells, but not neurons, display a nonapoptotic increase in caspase-3 expression following exercise. Brain Behav 2018; 8:e01110. [PMID: 30240148 PMCID: PMC6192401 DOI: 10.1002/brb3.1110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/18/2018] [Accepted: 08/05/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Exercise induces plasticity in the hippocampus, which includes increases in neurogenesis, the proliferation of new neurons, and angiogenesis, the sprouting of new capillaries from preexisting blood vessels. Following exercise, astrocytes also undergo morphological changes that parallel the events occurring in the neurovascular system. Interestingly, there have also been reports of apoptosis in the hippocampus following aerobic exercise. This experiment aimed to identify which population of hippocampal cells undergoes apoptosis after an acute bout of exercise. METHODS Cleaved caspase-3, a terminal protein in the apoptotic cascade, was initially used to identify apoptotic cells in the hippocampus after rats completed an acute bout of exercise. Next, the proportion of immature neurons, adult neurons, astrocytes, or radial glia-like cells expressing cleaved caspase-3 was quantified. TUNEL staining was completed as a second measure of apoptosis. RESULTS Following exercise, cleaved caspase-3 expression was increased in the CA1 and DG regions of the hippocampus. Cleaved caspase-3 was not highly expressed in neuronal populations, and expression was not increased in these cells postexercise. Instead, cleaved caspase-3 was predominantly expressed in astrocytes. Following exercise, there was an increased number of cleaved caspase-3 positive astrocytes in DG and CA1, and cleaved caspase-3 positive radial glia-like cells located in the subgranular zone. To determine whether cleaved caspase-3 expression in these glial cells was associated with apoptosis, a TUNEL assay was completed. TUNEL staining was negligible in all groups and did not mirror the pattern of caspase-3 labeling. CONCLUSIONS Cleaved caspase-3 expression was detected largely in non-neuronal cell populations, and the pattern of cleaved caspase-3 expression did not match that of TUNEL. This suggests that after exercise, cleaved caspase-3 expression may serve a nonapoptotic role in these hippocampal astrocytes and radial glia-like cells. It will be important to identify the function of exercise-induced cleaved caspase-3 expression in the future experiments.
Collapse
Affiliation(s)
| | - Nicole A. Lensmire
- Department of PsychologyUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsin
| | - Rodney A. Swain
- Department of PsychologyUniversity of Wisconsin‐MilwaukeeMilwaukeeWisconsin
| |
Collapse
|
8
|
Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms. Transl Psychiatry 2018; 8:126. [PMID: 29976924 PMCID: PMC6033856 DOI: 10.1038/s41398-018-0129-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/20/2017] [Accepted: 02/18/2018] [Indexed: 12/21/2022] Open
Abstract
Definitive data are lacking on the mechanism of action and biomarkers of repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression. Low-intensity rTMS (LI-rTMS) has demonstrated utility in preclinical models of rTMS treatments but the effects of LI-rTMS in murine models of depression are unknown. We examined the behavioral and neurobiologic changes in olfactory bulbectomy (OB) mice with medium-intensity rTMS (MI-rTMS) treatment and fluoxetine hydrochloride. We then compared 10-Hz rTMS sessions for 3 min at intensities (measured at the cortical surface) of 4 mT (LI-rTMS), 50 mT (medium-intensity rTMS [MI-rTMS]), or 1 T (high-intensity rTMS [HI-rTMS]) 5 days per week over 4 weeks in an OB model of agitated depression. Behavioral effects were assessed with forced swim test; neurobiologic effects were assessed with brain levels of 5-hydroxytryptamine, brain-derived neurotrophic factor (BDNF), and neurogenesis. Peripheral metabolomic changes induced by OB and rTMS were monitored through enzyme-linked immunosorbent assay and ultrapressure liquid chromatography-driven targeted metabolomics evaluated with ingenuity pathway analysis (IPA). MI-rTMS and HI-rTMS attenuated psychomotor agitation but only MI-rTMS increased BDNF and neurogenesis levels. HI-rTMS normalized the plasma concentration of α-amino-n-butyric acid and 3-methylhistidine. IPA revealed significant changes in glutamine processing and glutamate signaling in the OB model and following MI-rTMS and HI-rTMS treatment. The present findings suggest that MI-rTMS and HI-rTMS induce differential neurobiologic changes in a mouse model of agitated depression. Further, α-amino-n-butyric acid and 3-methylhistidine may have utility as biomarkers to objectively monitor the response to rTMS treatment of depression.
Collapse
|
9
|
Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, Henzi R. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes. Stem Cells Int 2017; 2017:1719050. [PMID: 29081809 PMCID: PMC5610870 DOI: 10.1155/2017/1719050] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023] Open
Abstract
Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.
Collapse
Affiliation(s)
- Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Pablo Cisternas
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Ariel Caviedes
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Federico Batiz
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Roberto Henzi
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|