1
|
Lees RM, Bianco IH, Campbell RAA, Orlova N, Peterka DS, Pichler B, Smith SL, Yatsenko D, Yu CH, Packer AM. Standardized measurements for monitoring and comparing multiphoton microscope systems. Nat Protoc 2025:10.1038/s41596-024-01120-w. [PMID: 40097833 DOI: 10.1038/s41596-024-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/18/2024] [Indexed: 03/19/2025]
Abstract
The goal of this protocol is to improve the characterization and performance standardization of multiphoton microscopy hardware across a large user base. We purposefully focus on hardware and only briefly touch on software and data analysis routines where relevant. Here we cover the measurement and quantification of laser power, pulse width optimization, field of view, resolution and photomultiplier tube performance. The intended audience is scientists with little expertise in optics who either build or use multiphoton microscopes in their laboratories. They can use our procedures to test whether their multiphoton microscope performs well and produces consistent data over the lifetime of their system. Individual procedures are designed to take 1-2 h to complete without the use of expensive equipment. The procedures listed here help standardize the microscopes and facilitate the reproducibility of data across setups.
Collapse
Affiliation(s)
- Robert M Lees
- Science and Technology Facilities Council, Octopus imaging facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd, Lewes, UK
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Quirin S. Compact module for video-rate image mosaics in two-photon microscopy. OPTICS EXPRESS 2025; 33:1647-1659. [PMID: 39876333 PMCID: PMC12011383 DOI: 10.1364/oe.544906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025]
Abstract
Biological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design. To address this, the use of a liquid crystal polarization grating stack is proposed here to temporally sequence through multiple fields of view. This solution pans the native field of view with minimal latency and zero inertial movement of either the microscope or biological sample. Implemented as a simple add-on unit to existing multi-photon microscopes, this device increases the total field size by 4x, covering up to 7.6mm2. Performance constraints and functional demonstration of imaging neural activity are presented.
Collapse
Affiliation(s)
- Sean Quirin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
García S, Carmona-Santiago G, Jiménez-Sánchez A. Redefining Molecular Probes for Monitoring Subcellular Environment: A Perspective. Anal Chem 2024; 96:19183-19189. [PMID: 39576991 PMCID: PMC11635757 DOI: 10.1021/acs.analchem.4c05022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The development of small-molecule fluorescent probes has revolutionized the monitoring of in vivo physicochemical parameters, offering unprecedented insights into biological processes. In this perspective, we critically examine recent advances and trends in the design and application of fluorescent probes for real-time in vivo monitoring of subcellular environments. Traditional concepts such as membrane potential, microviscosity, and micropolarity have been superseded by more biologically relevant parameters like membrane voltage, tension, and hydration, enhancing the accuracy of physiological assessments. This redefinition not only presents an evolved concept with broader applications in monitoring subcellular dynamics but also addresses the unmet needs of subcellular biology more effectively. We also highlight the limitations of commonly used probes in providing specific information about the redox environment, noting their nonspecificity to oxidants and the influence of various chemical interactions. These probes typically rely on free radical mechanisms and require metal catalysts to react with hydrogen peroxide. They include naphthalimide, fluorescein, BODIPY, rhodamine, cyanine cores to cover the UV-vis-near-infrared window. The motif of this perspective is to provide critical insights into trending fluorescent-based systems employed in real-time or in vivo physicochemical-responsive monitoring, thus aiming to inform and inspire further research in creating robust and efficient fluorescent probes for comprehensive in vivo monitoring applications.
Collapse
Affiliation(s)
- Santiago García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Gustavo Carmona-Santiago
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior
s/n, Coyoacán, Ciudad de México 04510, México
| |
Collapse
|
4
|
Cloves M, Margrie TW. In vivo dual-plane 3-photon microscopy: spanning the depth of the mouse neocortex. BIOMEDICAL OPTICS EXPRESS 2024; 15:7022-7034. [PMID: 39679389 PMCID: PMC11640578 DOI: 10.1364/boe.544383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Cortical computations arise from patterns of neuronal activity that span across all cortical layers and cell types. Three-photon excitation has extended the depth limit of in vivo imaging within the mouse brain to encompass all cortical layers. However, simultaneous three-photon imaging throughout cortical layers has yet to be demonstrated. Here, we combine non-unity magnification remote focusing with adaptive optics to achieve single-cell resolution imaging from two temporally multiplexed planes separated by up to 600 µm. This approach enables the simultaneous acquisition of neuronal activity from genetically defined cell types in any pair of cortical layers across the mouse neocortical column.
Collapse
Affiliation(s)
- Matilda Cloves
- The Sainsbury Wellcome Centre for Circuits and Behaviour, University College London, 25 Howland Street, W1T 4JG, London, United Kingdom
| | - Troy W. Margrie
- The Sainsbury Wellcome Centre for Circuits and Behaviour, University College London, 25 Howland Street, W1T 4JG, London, United Kingdom
| |
Collapse
|
5
|
Hsieh YT, Jhan KC, Lee JC, Huang GJ, Chung CL, Chen WC, Chang TC, Chen BC, Pan MK, Wu SC, Chu SW. TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405293. [PMID: 39283040 DOI: 10.1002/advs.202405293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Indexed: 11/07/2024]
Abstract
Two-photon high-speed fluorescence calcium imaging stands as a mainstream technique in neuroscience for capturing neural activities with high spatiotemporal resolution. However, challenges arise from the inherent tradeoff between acquisition speed and image quality, grappling with a low signal-to-noise ratio (SNR) due to limited signal photon flux. Here, a contrast-enhanced video-rate volumetric system, integrating a tunable acoustic gradient (TAG) lens-based high-speed microscopy with a TAG-SPARK denoising algorithm is demonstrated. The former facilitates high-speed dense z-sampling at sub-micrometer-scale intervals, allowing the latter to exploit the spatial redundancy of z-slices for self-supervised model training. This spatial redundancy-based approach, tailored for 4D (xyzt) dataset, not only achieves >700% SNR enhancement but also retains fast-spiking functional profiles of neuronal activities. High-speed plus high-quality images are exemplified by in vivo Purkinje cells calcium observation, revealing intriguing dendritic-to-somatic signal convolution, i.e., similar dendritic signals lead to reverse somatic responses. This tailored technique allows for capturing neuronal activities with high SNR, thus advancing the fundamental comprehension of neuronal transduction pathways within 3D neuronal architecture.
Collapse
Affiliation(s)
- Yin-Tzu Hsieh
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Kai-Chun Jhan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Guan-Jie Huang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Ling Chung
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Wun-Ci Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ting-Chen Chang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 115, Taiwan
| | - Ming-Kai Pan
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10002, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shi-Wei Chu
- Molecular Imaging Center, National Taiwan University, Taipei, 10617, Taiwan
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
6
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the surface: unmasking the brain's complexity exploiting optical scattering. NEUROPHOTONICS 2024; 11:S11510. [PMID: 38617592 PMCID: PMC11014413 DOI: 10.1117/1.nph.11.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Caio Vaz Rimoli
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Walther Akemann
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Cathie Ventalon
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Laurent Bourdieu
- Université PSL, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Sylvain Gigan
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| | - Hilton B. de Aguiar
- Sorbonne Université, Collège de France, Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Paris, France
| |
Collapse
|
7
|
Li Y, Guo S, Mattison B, Hu J, Man KNM, Yang W. High-speed two-photon microscopy with adaptive line-excitation. OPTICA 2024; 11:1138-1145. [PMID: 39610401 PMCID: PMC11601119 DOI: 10.1364/optica.529930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 11/30/2024]
Abstract
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortex in vivo. Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.
Collapse
Affiliation(s)
- Yunyang Li
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Shu Guo
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Ben Mattison
- Department of Biomedical Engineering,
University of California, Davis, California
95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California 95616, USA
| | - Junjie Hu
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
| | - Kwun Nok Mimi Man
- Department of Biochemistry and Molecular
Medicine, University of California, Davis,
California 95616, USA
- Current address: Max Planck
Florida Institute for Neuroscience, Jupiter, Florida
33458, USA
| | - Weijian Yang
- Department of Electrical and Computer
Engineering, University of California, Davis, California 95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California 95616, USA
| |
Collapse
|
8
|
Liu G, Chen B, Tian Z, Zhong Q, Chen SC. Compressive sensing-based multi-focus line-scanning two-photon microscopy for fast 3D imaging. OPTICS EXPRESS 2024; 32:17143-17151. [PMID: 38858904 DOI: 10.1364/oe.522671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024]
Abstract
Fast 3D volume imaging methods have been playing increasingly important roles in biological studies. In this article, we present the design and characterization of a multi-focus line-scanning two-photon microscope. Specifically, a digital micromirror device (DMD) is employed to generate a randomly distributed focus array on a plane (i.e., x-z) via binary holography. Next, a galvanometric mirror scans the focus array in a direction normal to the plane (i.e., y-axis) over the imaging volume. For sparse samples, e.g., neural networks in a brain, 1-3 foci are used together with compressive sensing algorithm to achieve a volume imaging rate of 15.5 volumes/sec over 77 × 120 × 40 µm3. High-resolution optical cross-sectional images on selected planes and regions can be generated by sequentially scanning the laser focus generated on the x-z plane with good imaging speeds (e.g., 107 frames/sec over 80 × 120 × 40 µm3). In the experiments, microbeads, pollens, and mouse brain slices have been imaged to characterize the point spread function and volume image rate and quality at different sampling ratios. The results show that the multi-focus line-scanning microscope presents a fast and versatile 3D imaging platform for deep tissue imaging and dynamic live animal studies.
Collapse
|
9
|
Zhang Z, Liu SJ, Mattison B, Yang W. Simultaneous Dual-region Functional Imaging in Miniaturized Two-photon Microscopy. BIOMEDICAL OPTICS (WASHINGTON, D.C.) 2024; 2024:BM3C.4. [PMID: 39634364 PMCID: PMC11617035 DOI: 10.1364/brain.2024.bm3c.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We demonstrate simultaneous dual-region in-vivo imaging of brain activity in mouse cortex through a miniaturized spatial-multiplexed two-photon microscope platform, which doubles the imaging speed. Neuronal signals from the two regions are computationally demixed and extracted.
Collapse
Affiliation(s)
- Zixiao Zhang
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Shing-Jiuan Liu
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Ben Mattison
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Xia F, Rimoli CV, Akemann W, Ventalon C, Bourdieu L, Gigan S, de Aguiar HB. Neurophotonics beyond the Surface: Unmasking the Brain's Complexity Exploiting Optical Scattering. ARXIV 2024:arXiv:2403.14809v1. [PMID: 38562443 PMCID: PMC10984001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.
Collapse
Affiliation(s)
- Fei Xia
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Caio Vaz Rimoli
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
11
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
12
|
Lees RM, Bianco IH, Campbell RAA, Orlova N, Peterka DS, Pichler B, Smith SL, Yatsenko D, Yu CH, Packer AM. Standardised Measurements for Monitoring and Comparing Multiphoton Microscope Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576417. [PMID: 38328224 PMCID: PMC10849699 DOI: 10.1101/2024.01.23.576417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The goal of this protocol is to enable better characterisation of multiphoton microscopy hardware across a large user base. The scope of this protocol is purposefully limited to focus on hardware, touching on software and data analysis routines only where relevant. The intended audiences are scientists using and building multiphoton microscopes in their laboratories. The goal is that any scientist, not only those with optical expertise, can test whether their multiphoton microscope is performing well and producing consistent data over the lifetime of their system.
Collapse
Affiliation(s)
- Robert M Lees
- Science and Technology Facilities Council, Octopus imaging facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | | | | | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Bruno Pichler
- Independent NeuroScience Services INSS Ltd, Lewes, East Sussex, UK
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
14
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Liu Y, Zhang H, Li X. Technologies for depth scanning in miniature optical imaging systems [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:6542-6562. [PMID: 38420321 PMCID: PMC10898578 DOI: 10.1364/boe.507078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024]
Abstract
Biomedical optical imaging has found numerous clinical and research applications. For achieving 3D imaging, depth scanning presents the most significant challenge, particularly in miniature imaging devices. This paper reviews the state-of-art technologies for depth scanning in miniature optical imaging systems, which include two general approaches: 1) physically shifting part of or the entire imaging device to allow imaging at different depths and 2) optically changing the focus of the imaging optics. We mainly focus on the second group of methods, introducing a wide variety of tunable microlenses, covering the underlying physics, actuation mechanisms, and imaging performance. Representative applications in clinical and neuroscience research are briefly presented. Major challenges and future perspectives of depth/focus scanning technologies for biomedical optical imaging are also discussed.
Collapse
Affiliation(s)
- Yuehan Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Haolin Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Xingde Li
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
16
|
Lee CH, Park YK, Lee K. Recent strategies for neural dynamics observation at a larger scale and wider scope. Biosens Bioelectron 2023; 240:115638. [PMID: 37647685 DOI: 10.1016/j.bios.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The tremendous technical progress in neuroscience offers opportunities to observe a more minor or/and broader dynamic picture of the brain. Moreover, the large-scale neural activity of individual neurons enables the dissection of detailed mechanistic links between neural populations and behaviors. To measure neural activity in-vivo, multi-neuron recording, and neuroimaging techniques are employed and developed to acquire more neurons. The tools introduced concurrently recorded dozens to hundreds of neurons in the coordinated brain regions and elucidated the neuronal ensembles from a massive population perspective of diverse neurons at cellular resolution. In particular, the increasing spatiotemporal resolution of neuronal monitoring across the whole brain dramatically facilitates our understanding of additional nervous system functions in health and disease. Here, we will introduce state-of-the-art neuroscience tools involving large-scale neural population recording and the long-range connections spanning multiple brain regions. Their synergic effects provide to clarify the controversial circuitry underlying neuroscience. These challenging neural tools present a promising outlook for the fundamental dynamic interplay across levels of synaptic cellular, circuit organization, and brain-wide. Hence, more observations of neural dynamics will provide more clues to elucidate brain functions and push forward innovative technology at the intersection of neural engineering disciplines. We hope this review will provide insight into the use or development of recent neural techniques considering spatiotemporal scales of brain observation.
Collapse
Affiliation(s)
- Chang Hak Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Young Kwon Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Kwang Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea.
| |
Collapse
|
17
|
Shymkiv Y, Yuste R. Aberration-free holographic microscope for simultaneous imaging and stimulation of neuronal populations. OPTICS EXPRESS 2023; 31:33461-33474. [PMID: 37859128 PMCID: PMC10544954 DOI: 10.1364/oe.498051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
A technical challenge in neuroscience is to record and specifically manipulate the activity of neurons in living animals. This can be achieved in some preparations with two-photon calcium imaging and photostimulation. These methods can be extended to three dimensions by holographic light sculpting with spatial light modulators (SLMs). At the same time, performing simultaneous holographic imaging and photostimulation is still cumbersome, requiring two light paths with separate SLMs. Here we present an integrated optical design using a single SLM for simultaneous imaging and photostimulation. Furthermore, we applied axially dependent adaptive optics to make the system aberration-free, and developed software for calibrations and closed-loop neuroscience experiments. Finally, we demonstrate the performance of the system with simultaneous calcium imaging and optogenetics in mouse primary auditory cortex in vivo. Our integrated holographic system could facilitate the systematic investigation of neural circuit function in awake behaving animals.
Collapse
Affiliation(s)
- Yuriy Shymkiv
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, USA
| | - Rafael Yuste
- Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Pasarkar A, Kinsella I, Zhou P, Wu M, Pan D, Fan JL, Wang Z, Abdeladim L, Peterka DS, Adesnik H, Ji N, Paninski L. maskNMF: A denoise-sparsen-detect approach for extracting neural signals from dense imaging data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557777. [PMID: 37745388 PMCID: PMC10515957 DOI: 10.1101/2023.09.14.557777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
A number of calcium imaging methods have been developed to monitor the activity of large populations of neurons. One particularly promising approach, Bessel imaging, captures neural activity from a volume by projecting within the imaged volume onto a single imaging plane, therefore effectively mixing signals and increasing the number of neurons imaged per pixel. These signals must then be computationally demixed to recover the desired neural activity. Unfortunately, currently-available demixing methods can perform poorly in the regime of high imaging density (i.e., many neurons per pixel). In this work we introduce a new pipeline (maskNMF) for demixing dense calcium imaging data. The main idea is to first denoise and temporally sparsen the observed video; this enhances signal strength and reduces spatial overlap significantly. Next we detect neurons in the sparsened video using a neural network trained on a library of neural shapes. These shapes are derived from segmented electron microscopy images input into a Bessel imaging model; therefore no manual selection of "good" neural shapes from the functional data is required here. After cells are detected, we use a constrained non-negative matrix factorization approach to demix the activity, using the detected cells' shapes to initialize the factorization. We test the resulting pipeline on both simulated and real datasets and find that it is able to achieve accurate demixing on denser data than was previously feasible, therefore enabling faithful imaging of larger neural populations. The method also provides good results on more "standard" two-photon imaging data. Finally, because much of the pipeline operates on a significantly compressed version of the raw data and is highly parallelizable, the algorithm is fast, processing large datasets faster than real time.
Collapse
Affiliation(s)
- Amol Pasarkar
- Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Ian Kinsella
- Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Statistics, Columbia University, New York, NY, 10027, USA
| | - Pengcheng Zhou
- Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Daisong Pan
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Jiang Lan Fan
- Joint Bioengineering Graduate Program, University of California, Berkeley, CA 94720
| | - Zhen Wang
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, USA
| | - Lamiae Abdeladim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darcy S Peterka
- Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Liam Paninski
- Center for Theoretical Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Statistics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
19
|
Lecoq JA, Podgorski K, Grewe BF. AI to the rescue of voltage imaging. CELL REPORTS METHODS 2023; 3:100505. [PMID: 37426751 PMCID: PMC10326374 DOI: 10.1016/j.crmeth.2023.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In a recent issue of Nature Methods, Platisa et al. present an approach for long-term, in vivo population voltage imaging with single spike resolution across a local population of 100 neurons.1 Key to this step forward was the combination of a customized high-speed two-photon microscope with an optimized, positive-going, genetically encoded voltage indicator and a tailored machine learning denoising algorithm.
Collapse
Affiliation(s)
| | | | - Benjamin F. Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Zhao Z, Zhou Y, Liu B, He J, Zhao J, Cai Y, Fan J, Li X, Wang Z, Lu Z, Wu J, Qi H, Dai Q. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell 2023; 186:2475-2491.e22. [PMID: 37178688 DOI: 10.1016/j.cell.2023.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Holistic understanding of physio-pathological processes requires noninvasive 3D imaging in deep tissue across multiple spatial and temporal scales to link diverse transient subcellular behaviors with long-term physiogenesis. Despite broad applications of two-photon microscopy (TPM), there remains an inevitable tradeoff among spatiotemporal resolution, imaging volumes, and durations due to the point-scanning scheme, accumulated phototoxicity, and optical aberrations. Here, we harnessed the concept of synthetic aperture radar in TPM to achieve aberration-corrected 3D imaging of subcellular dynamics at a millisecond scale for over 100,000 large volumes in deep tissue, with three orders of magnitude reduction in photobleaching. With its advantages, we identified direct intercellular communications through migrasome generation following traumatic brain injury, visualized the formation process of germinal center in the mouse lymph node, and characterized heterogeneous cellular states in the mouse visual cortex, opening up a horizon for intravital imaging to understand the organizations and functions of biological systems at a holistic level.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Yiliang Zhou
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing He
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jiayin Zhao
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Yeyi Cai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jingtao Fan
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China
| | - Xinyang Li
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518071, China
| | - Zilin Wang
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Lu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Faini G, Tanese D, Molinier C, Telliez C, Hamdani M, Blot F, Tourain C, de Sars V, Del Bene F, Forget BC, Ronzitti E, Emiliani V. Ultrafast light targeting for high-throughput precise control of neuronal networks. Nat Commun 2023; 14:1888. [PMID: 37019891 PMCID: PMC10074378 DOI: 10.1038/s41467-023-37416-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables the generation of precise spatiotemporal neuronal activity patterns and thus a broad range of experimental applications, such as high throughput connectivity mapping and probing neural codes for perception. Yet, current holographic approaches limit the resolution for tuning the relative spiking time of distinct cells to a few milliseconds, and the achievable number of targets to 100-200, depending on the working depth. To overcome these limitations and expand the capabilities of single-cell optogenetics, we introduce an ultra-fast sequential light targeting (FLiT) optical configuration based on the rapid switching of a temporally focused beam between holograms at kHz rates. We used FLiT to demonstrate two illumination protocols, termed hybrid- and cyclic-illumination, and achieve sub-millisecond control of sequential neuronal activation and high throughput multicell illumination in vitro (mouse organotypic and acute brain slices) and in vivo (zebrafish larvae and mice), while minimizing light-induced thermal rise. These approaches will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.
Collapse
Affiliation(s)
- Giulia Faini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Clément Molinier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Cécile Telliez
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Massilia Hamdani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Francois Blot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Vincent de Sars
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Benoît C Forget
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
22
|
Berthon B, Bergel A, Matei M, Tanter M. Decoding behavior from global cerebrovascular activity using neural networks. Sci Rep 2023; 13:3541. [PMID: 36864293 PMCID: PMC9981746 DOI: 10.1038/s41598-023-30661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Functional Ultrasound (fUS) provides spatial and temporal frames of the vascular activity in the brain with high resolution and sensitivity in behaving animals. The large amount of resulting data is underused at present due to the lack of appropriate tools to visualize and interpret such signals. Here we show that neural networks can be trained to leverage the richness of information available in fUS datasets to reliably determine behavior, even from a single fUS 2D image after appropriate training. We illustrate the potential of this method with two examples: determining if a rat is moving or static and decoding the animal's sleep/wake state in a neutral environment. We further demonstrate that our method can be transferred to new recordings, possibly in other animals, without additional training, thereby paving the way for real-time decoding of brain activity based on fUS data. Finally, the learned weights of the network in the latent space were analyzed to extract the relative importance of input data to classify behavior, making this a powerful tool for neuroscientific research.
Collapse
Affiliation(s)
- Béatrice Berthon
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France.
| | - Antoine Bergel
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France
| | - Marta Matei
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France
| | - Mickaël Tanter
- Physics for Medicine Institute, INSERM U1273, CNRS UMR 8063, ESPCI Paris, PSL Research University, Paris, France
| |
Collapse
|
23
|
Zhao J, Vleck AV, Winetraub Y, Du L, Han Y, Aasi S, Sarin KY, de la Zerda A. Rapid Cellular-Resolution Skin Imaging with Optical Coherence Tomography Using All-Glass Multifocal Metasurfaces. ACS NANO 2023; 17:3442-3451. [PMID: 36745734 PMCID: PMC10619470 DOI: 10.1021/acsnano.2c09542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cellular-resolution optical coherence tomography (OCT) is a powerful tool offering noninvasive histology-like imaging. However, like other optical microscopy tools, a high numerical aperture (N.A.) lens is required to generate a tight focus, generating a narrow depth of field, which necessitates dynamic focusing and limiting the imaging speed. To overcome this limitation, we developed a metasurface platform that generates multiple axial foci, which multiplies the volumetric OCT imaging speed by offering several focal planes. This platform offers accurate and flexible control over the number, positions, and intensities of axial foci generated. All-glass metasurface optical elements 8 mm in diameter are fabricated from fused-silica wafers and implemented into our scanning OCT system. With a constant lateral resolution of 1.1 μm over all depths, the multifocal OCT triples the volumetric acquisition speed for dermatological imaging, while still clearly revealing features of stratum corneum, epidermal cells, and dermal-epidermal junctions and offering morphological information as diagnostic criteria for basal cell carcinoma. The imaging speed can be further improved in a sparse sample, e.g., 7-fold with a seven-foci beam. In summary, this work demonstrates the concept of metasurface-based multifocal OCT for rapid virtual biopsy, further providing insights for developing rapid volumetric imaging systems with high resolution and compact volume.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Aidan Van Vleck
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Yonatan Winetraub
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States; Biophysics Program at Stanford, Molecular Imaging Program at Stanford, and The Bio-X Program, Stanford University, Stanford, California 94305, United States
| | - Lin Du
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley 94720, United States
| | - Yong Han
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Sumaira Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kavita Yang Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, United States; Biophysics Program at Stanford, Molecular Imaging Program at Stanford, and The Bio-X Program, Stanford University, Stanford, California 94305, United States; The Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
24
|
Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat Biotechnol 2023; 41:282-292. [PMID: 36163547 PMCID: PMC9931589 DOI: 10.1038/s41587-022-01450-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
A fundamental challenge in fluorescence microscopy is the photon shot noise arising from the inevitable stochasticity of photon detection. Noise increases measurement uncertainty and limits imaging resolution, speed and sensitivity. To achieve high-sensitivity fluorescence imaging beyond the shot-noise limit, we present DeepCAD-RT, a self-supervised deep learning method for real-time noise suppression. Based on our previous framework DeepCAD, we reduced the number of network parameters by 94%, memory consumption by 27-fold and processing time by a factor of 20, allowing real-time processing on a two-photon microscope. A high imaging signal-to-noise ratio can be acquired with tenfold fewer photons than in standard imaging approaches. We demonstrate the utility of DeepCAD-RT in a series of photon-limited experiments, including in vivo calcium imaging of mice, zebrafish larva and fruit flies, recording of three-dimensional (3D) migration of neutrophils after acute brain injury and imaging of 3D dynamics of cortical ATP release. DeepCAD-RT will facilitate the morphological and functional interrogation of biological dynamics with a minimal photon budget.
Collapse
|
25
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Xue Y. Computational optics for high-throughput imaging of neural activity. NEUROPHOTONICS 2022; 9:041408. [PMID: 35607516 PMCID: PMC9122092 DOI: 10.1117/1.nph.9.4.041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Optical microscopy offers a noninvasive way to image neural activity in the mouse brain. To simultaneously record neural activity across a large population of neurons, optical systems that have high spatiotemporal resolution and can access a large volume are necessary. The throughput of a system, that is, the number of resolvable spots acquired by the system at a given time, is usually limited by optical hardware. To overcome this limitation, computation optics that designs optical hardware and computer software jointly becomes a new approach that achieves micronscale resolution, millimeter-scale field-of-view, and hundreds of hertz imaging speed at the same time. This review article summarizes recent advances in computational optics for high-throughput imaging of neural activity, highlighting technologies for three-dimensional parallelized excitation and detection. Computational optics can substantially accelerate the study of neural circuits with previously unattainable precision and speed.
Collapse
Affiliation(s)
- Yi Xue
- University of California, Davis, Department of Biomedical Engineering, Davis, California, United States
| |
Collapse
|
27
|
Eybposh MH, Curtis VR, Rodríguez-Romaguera J, Pégard NC. Advances in computer-generated holography for targeted neuronal modulation. NEUROPHOTONICS 2022; 9:041409. [PMID: 35719844 PMCID: PMC9201973 DOI: 10.1117/1.nph.9.4.041409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/17/2022] [Indexed: 05/08/2023]
Abstract
Genetically encoded calcium indicators and optogenetics have revolutionized neuroscience by enabling the detection and modulation of neural activity with single-cell precision using light. To fully leverage the immense potential of these techniques, advanced optical instruments that can place a light on custom ensembles of neurons with a high level of spatial and temporal precision are required. Modern light sculpting techniques that have the capacity to shape a beam of light are preferred because they can precisely target multiple neurons simultaneously and modulate the activity of large ensembles of individual neurons at rates that match natural neuronal dynamics. The most versatile approach, computer-generated holography (CGH), relies on a computer-controlled light modulator placed in the path of a coherent laser beam to synthesize custom three-dimensional (3D) illumination patterns and illuminate neural ensembles on demand. Here, we review recent progress in the development and implementation of fast and spatiotemporally precise CGH techniques that sculpt light in 3D to optically interrogate neural circuit functions.
Collapse
Affiliation(s)
- M. Hossein Eybposh
- University of North Carolina at Chapel Hill, Department of Applied Physical Sciences, Chapel Hill, North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, North Carolina, United States
| | - Vincent R. Curtis
- University of North Carolina at Chapel Hill, Department of Applied Physical Sciences, Chapel Hill, North Carolina, United States
- University of North Carolina, Department of Psychiatry, Chapel Hill, North Carolina, United States
| | - Jose Rodríguez-Romaguera
- University of North Carolina, Department of Psychiatry, Chapel Hill, North Carolina, United States
- University of North Carolina, Neuroscience Center, Chapel Hill, North Carolina, United States
- University of North Carolina, Carolina Institute for Developmental Disabilities, Chapel Hill, North Carolina, United States
- University of North Carolina, Carolina Stress Initiative, Chapel Hill, North Carolina, United States
| | - Nicolas C. Pégard
- University of North Carolina at Chapel Hill, Department of Applied Physical Sciences, Chapel Hill, North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, North Carolina, United States
- University of North Carolina, Neuroscience Center, Chapel Hill, North Carolina, United States
- University of North Carolina, Carolina Stress Initiative, Chapel Hill, North Carolina, United States
| |
Collapse
|
28
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
29
|
Spampinato GLB, Ronzitti E, Zampini V, Ferrari U, Trapani F, Khabou H, Agraval A, Dalkara D, Picaud S, Papagiakoumou E, Marre O, Emiliani V. All-optical inter-layers functional connectivity investigation in the mouse retina. CELL REPORTS METHODS 2022; 2:100268. [PMID: 36046629 PMCID: PMC9421538 DOI: 10.1016/j.crmeth.2022.100268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 07/19/2022] [Indexed: 06/01/2023]
Abstract
We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.
Collapse
Affiliation(s)
| | - Emiliano Ronzitti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ulisse Ferrari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Hanen Khabou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | | | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Valentina Emiliani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
30
|
Wan L, Liu D, Xiao WB, Zhang BX, Yan XX, Luo ZH, Xiao B. Association of SHANK Family with Neuropsychiatric Disorders: An Update on Genetic and Animal Model Discoveries. Cell Mol Neurobiol 2022; 42:1623-1643. [PMID: 33595806 PMCID: PMC11421742 DOI: 10.1007/s10571-021-01054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The Shank family proteins are enriched at the postsynaptic density (PSD) of excitatory glutamatergic synapses. They serve as synaptic scaffolding proteins and appear to play a critical role in the formation, maintenance and functioning of synapse. Increasing evidence from genetic association and animal model studies indicates a connection of SHANK genes defects with the development of neuropsychiatric disorders. In this review, we first update the current understanding of the SHANK family genes and their encoded protein products. We then denote the literature relating their alterations to the risk of neuropsychiatric diseases. We further review evidence from animal models that provided molecular insights into the biological as well as pathogenic roles of Shank proteins in synapses, and the potential relationship to the development of abnormal neurobehavioral phenotypes.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Du Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Taikang Tongji Hospital, Wuhan, 430050, Hubei, China
| | - Wen-Biao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo-Xin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, Hunan, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Russell LE, Dalgleish HWP, Nutbrown R, Gauld OM, Herrmann D, Fişek M, Packer AM, Häusser M. All-optical interrogation of neural circuits in behaving mice. Nat Protoc 2022; 17:1579-1620. [PMID: 35478249 PMCID: PMC7616378 DOI: 10.1038/s41596-022-00691-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Recent advances combining two-photon calcium imaging and two-photon optogenetics with computer-generated holography now allow us to read and write the activity of large populations of neurons in vivo at cellular resolution and with high temporal resolution. Such 'all-optical' techniques enable experimenters to probe the effects of functionally defined neurons on neural circuit function and behavioral output with new levels of precision. This greatly increases flexibility, resolution, targeting specificity and throughput compared with alternative approaches based on electrophysiology and/or one-photon optogenetics and can interrogate larger and more densely labeled populations of neurons than current voltage imaging-based implementations. This protocol describes the experimental workflow for all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system (~3 h), the preparation of an indicator and opsin-expressing and task-performing animal (~3-6 weeks), the characterization of functional and photostimulation responses (~2 h per field of view) and the design and implementation of an all-optical experiment (achievable within the timescale of a normal behavioral experiment; ~3-5 h per field of view). We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy in three brain areas by using different experimental setups. This approach can in principle be adapted to any brain area to probe functional connectivity in neural circuits and investigate the relationship between neural circuit activity and behavior.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Rebecca Nutbrown
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dustin Herrmann
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
32
|
Charles AS, Cermak N, Affan RO, Scott BB, Schiller J, Mishne G. GraFT: Graph Filtered Temporal Dictionary Learning for Functional Neural Imaging. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:3509-3524. [PMID: 35533160 PMCID: PMC9278524 DOI: 10.1109/tip.2022.3171414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Optical imaging of calcium signals in the brain has enabled researchers to observe the activity of hundreds-to-thousands of individual neurons simultaneously. Current methods predominantly use morphological information, typically focusing on expected shapes of cell bodies, to better identify neurons in the field-of-view. The explicit shape constraints limit the applicability of automated cell identification to other important imaging scales with more complex morphologies, e.g., dendritic or widefield imaging. Specifically, fluorescing components may be broken up, incompletely found, or merged in ways that do not accurately describe the underlying neural activity. Here we present Graph Filtered Temporal Dictionary (GraFT), a new approach that frames the problem of isolating independent fluorescing components as a dictionary learning problem. Specifically, we focus on the time-traces-the main quantity used in scientific discovery-and learn a time trace dictionary with the spatial maps acting as the presence coefficients encoding which pixels the time-traces are active in. Furthermore, we present a novel graph filtering model which redefines connectivity between pixels in terms of their shared temporal activity, rather than spatial proximity. This model greatly eases the ability of our method to handle data with complex non-local spatial structure. We demonstrate important properties of our method, such as robustness to morphology, simultaneously detecting different neuronal types, and implicitly inferring number of neurons, on both synthetic data and real data examples. Specifically, we demonstrate applications of our method to calcium imaging both at the dendritic, somatic, and widefield scales.
Collapse
|
33
|
Moore JJ, Robert V, Rashid SK, Basu J. Assessing Local and Branch-specific Activity in Dendrites. Neuroscience 2022; 489:143-164. [PMID: 34756987 PMCID: PMC9125998 DOI: 10.1016/j.neuroscience.2021.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
Dendrites are elaborate neural processes which integrate inputs from various sources in space and time. While decades of work have suggested an independent role for dendrites in driving nonlinear computations for the cell, only recently have technological advances enabled us to capture the variety of activity in dendrites and their coupling dynamics with the soma. Under certain circumstances, activity generated in a given dendritic branch remains isolated, such that the soma or even sister dendrites are not privy to these localized signals. Such branch-specific activity could radically increase the capacity and flexibility of coding for the cell as a whole. Here, we discuss these forms of localized and branch-specific activity, their functional relevance in plasticity and behavior, and their supporting biophysical and circuit-level mechanisms. We conclude by showcasing electrical and optical approaches in hippocampal area CA3, using original experimental data to discuss experimental and analytical methodology and key considerations to take when investigating the functional relevance of independent dendritic activity.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Vincent Robert
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
34
|
Sacconi L, Silvestri L, Rodríguez EC, Armstrong GA, Pavone FS, Shrier A, Bub G. KHz-rate volumetric voltage imaging of the whole Zebrafish heart. BIOPHYSICAL REPORTS 2022; 2:100046. [PMID: 36425080 PMCID: PMC9680780 DOI: 10.1016/j.bpr.2022.100046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 05/11/2023]
Abstract
Fast volumetric imaging is essential for understanding the function of excitable tissues such as those found in the brain and heart. Measuring cardiac voltage transients in tissue volumes is challenging, especially at the high spatial and temporal resolutions needed to give insight to cardiac function. We introduce a new imaging modality based on simultaneous illumination of multiple planes in the tissue and parallel detection with multiple cameras, avoiding compromises inherent in any scanning approach. The system enables imaging of voltage transients in situ, allowing us, for the first time to our knowledge, to map voltage activity in the whole heart volume at KHz rates. The high spatiotemporal resolution of our method enabled the observation of novel dynamics of electrical propagation through the zebrafish atrioventricular canal.
Collapse
Affiliation(s)
- Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Corresponding author
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | - Gary A.B. Armstrong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Francesco S. Pavone
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Canada
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
- Corresponding author
| |
Collapse
|
35
|
Hypothesis of Cyclic Structures of Pre- and Consciousness as a Transition in Neuron-like Graphs to a Special Type of Symmetry. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We study the proposed statistical kinetic model for describing the pre- and consciousness structures based on the cognitive neural networks. The method of statistics of the growth graph systems and a possible transition to symmetric structures (a kind of phase transition) is applied. With the complication of a random Erdőos-Rényi (ER) graph during the percolation transition from the tree structure to the large cluster structures is obtained. In the evolutionary model two classes of algorithms have been developed. The differences between the cycle parameters in the obtained neural network models can reach thousands or more times. This is due to the tree-like architecture of the neural graph, which mimics the columnar structures of the neocortex. These cluster and cyclic structures can be interpreted as the primary elements of consciousness and as a necessary condition for the effect of consciousness itself. The comparison with other known theoretical mainly statistical models of consciousness is discussed. The presented results are promising in neurocomputer interfaces, man-machine systems and artificial intelligence systems.
Collapse
|
36
|
Ito KN, Isobe K, Osakada F. Fast z-focus controlling and multiplexing strategies for multiplane two-photon imaging of neural dynamics. Neurosci Res 2022; 179:15-23. [DOI: 10.1016/j.neures.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
37
|
Bando Y, Ishibashi M, Yamagishi S, Fukuda A, Sato K. Orchestration of Ion Channels and Transporters in Neocortical Development and Neurological Disorders. Front Neurosci 2022; 16:827284. [PMID: 35237124 PMCID: PMC8884360 DOI: 10.3389/fnins.2022.827284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Electrical activity plays crucial roles in neural circuit formation and remodeling. During neocortical development, neurons are generated in the ventricular zone, migrate to their correct position, elongate dendrites and axons, and form synapses. In this review, we summarize the functions of ion channels and transporters in neocortical development. Next, we discuss links between neurological disorders caused by dysfunction of ion channels (channelopathies) and neocortical development. Finally, we introduce emerging optical techniques with potential applications in physiological studies of neocortical development and the pathophysiology of channelopathies.
Collapse
Affiliation(s)
- Yuki Bando
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Yuki Bando,
| | - Masaru Ishibashi
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
38
|
Kim TH, Schnitzer MJ. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022; 185:9-41. [PMID: 34995519 PMCID: PMC8849612 DOI: 10.1016/j.cell.2021.12.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
Recent progress in fluorescence imaging allows neuroscientists to observe the dynamics of thousands of individual neurons, identified genetically or by their connectivity, across multiple brain areas and for extended durations in awake behaving mammals. We discuss advances in fluorescent indicators of neural activity, viral and genetic methods to express these indicators, chronic animal preparations for long-term imaging studies, and microscopes to monitor and manipulate the activity of large neural ensembles. Ca2+ imaging studies of neural activity can track brain area interactions and distributed information processing at cellular resolution. Across smaller spatial scales, high-speed voltage imaging reveals the distinctive spiking patterns and coding properties of targeted neuron types. Collectively, these innovations will propel studies of brain function and dovetail with ongoing neuroscience initiatives to identify new neuron types and develop widely applicable, non-human primate models. The optical toolkit's growing sophistication also suggests that "brain observatory" facilities would be useful open resources for future brain-imaging studies.
Collapse
Affiliation(s)
- Tony Hyun Kim
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Mark J Schnitzer
- James Clark Center for Biomedical Engineering & Sciences, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Akemann W, Wolf S, Villette V, Mathieu B, Tangara A, Fodor J, Ventalon C, Léger JF, Dieudonné S, Bourdieu L. Fast optical recording of neuronal activity by three-dimensional custom-access serial holography. Nat Methods 2022; 19:100-110. [PMID: 34949810 DOI: 10.1038/s41592-021-01329-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/25/2021] [Indexed: 11/08/2022]
Abstract
Optical recording of neuronal activity in three-dimensional (3D) brain circuits at cellular and millisecond resolution in vivo is essential for probing information flow in the brain. While random-access multiphoton microscopy permits fast optical access to neuronal targets in three dimensions, the method is challenged by motion artifacts when recording from behaving animals. Therefore, we developed three-dimensional custom-access serial holography (3D-CASH). Built on a fast acousto-optic light modulator, 3D-CASH performs serial sampling at 40 kHz from neurons at freely selectable 3D locations. Motion artifacts are eliminated by targeting each neuron with a size-optimized pattern of excitation light covering the cell body and its anticipated displacement field. Spike rates inferred from GCaMP6f recordings in visual cortex of awake mice tracked the phase of a moving bar stimulus with higher spike correlation between intra compared to interlaminar neuron pairs. 3D-CASH offers access to the millisecond correlation structure of in vivo neuronal activity in 3D microcircuits.
Collapse
Affiliation(s)
- Walther Akemann
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sébastien Wolf
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Laboratoire de Physique de l'ENS (LPENS), École Normale Supérieure, CNRS, Université PSL, Paris, France
| | - Vincent Villette
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benjamin Mathieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Astou Tangara
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Jozsua Fodor
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Jean-François Léger
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Stéphane Dieudonné
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | - Laurent Bourdieu
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
40
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
41
|
Crouzier L, Richard EM, Sourbron J, Lagae L, Maurice T, Delprat B. Use of Zebrafish Models to Boost Research in Rare Genetic Diseases. Int J Mol Sci 2021; 22:13356. [PMID: 34948153 PMCID: PMC8706563 DOI: 10.3390/ijms222413356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.
Collapse
Affiliation(s)
- Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Elodie M. Richard
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, 3000 Leuven, Belgium; (J.S.); (L.L.)
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| | - Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France; (L.C.); (E.M.R.); (T.M.)
| |
Collapse
|
42
|
Yu CH, Stirman JN, Yu Y, Hira R, Smith SL. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. Nat Commun 2021; 12:6639. [PMID: 34789723 PMCID: PMC8599518 DOI: 10.1038/s41467-021-26736-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Imaging the activity of neurons that are widely distributed across brain regions deep in scattering tissue at high speed remains challenging. Here, we introduce an open-source system with Dual Independent Enhanced Scan Engines for Large field-of-view Two-Photon imaging (Diesel2p). Combining optical design, adaptive optics, and temporal multiplexing, the system offers subcellular resolution over a large field-of-view of ~25 mm2, encompassing distances up to 7 mm, with independent scan engines. We demonstrate the flexibility and various use cases of this system for calcium imaging of neurons in the living brain.
Collapse
Affiliation(s)
- Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | | | - Yiyi Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Riichiro Hira
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Spencer L Smith
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
43
|
Xiong B, Zhu T, Xiang Y, Li X, Yu J, Jiang Z, Niu Y, Jiang D, Zhang X, Fang L, Wu J, Dai Q. Mirror-enhanced scanning light-field microscopy for long-term high-speed 3D imaging with isotropic resolution. LIGHT, SCIENCE & APPLICATIONS 2021; 10:227. [PMID: 34737265 PMCID: PMC8568963 DOI: 10.1038/s41377-021-00665-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/05/2023]
Abstract
Various biological behaviors can only be observed in 3D at high speed over the long term with low phototoxicity. Light-field microscopy (LFM) provides an elegant compact solution to record 3D information in a tomographic manner simultaneously, which can facilitate high photon efficiency. However, LFM still suffers from the missing-cone problem, leading to degraded axial resolution and ringing effects after deconvolution. Here, we propose a mirror-enhanced scanning LFM (MiSLFM) to achieve long-term high-speed 3D imaging at super-resolved axial resolution with a single objective, by fully exploiting the extended depth of field of LFM with a tilted mirror placed below samples. To establish the unique capabilities of MiSLFM, we performed extensive experiments, we observed various organelle interactions and intercellular interactions in different types of photosensitive cells under extremely low light conditions. Moreover, we demonstrated that superior axial resolution facilitates more robust blood cell tracking in zebrafish larvae at high speed.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Automation, Tsinghua University, Beijing, 100084, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, 100084, China
| | - Tianyi Zhu
- Department of Automation, Tsinghua University, Beijing, 100084, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, 100084, China
| | - Yuhan Xiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaopeng Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinqiang Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zheng Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yihan Niu
- Department of Automation, Tsinghua University, Beijing, 100084, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, 100084, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- Beijing Institute of Collaborative Innovation, Beijing, 100094, China
| | - Lu Fang
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, 100084, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, 100084, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, 100084, China.
| |
Collapse
|
44
|
Zhang Y, Lu Z, Wu J, Lin X, Jiang D, Cai Y, Xie J, Wang Y, Zhu T, Ji X, Dai Q. Computational optical sectioning with an incoherent multiscale scattering model for light-field microscopy. Nat Commun 2021; 12:6391. [PMID: 34737278 PMCID: PMC8568979 DOI: 10.1038/s41467-021-26730-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
Quantitative volumetric fluorescence imaging at high speed across a long term is vital to understand various cellular and subcellular behaviors in living organisms. Light-field microscopy provides a compact computational solution by imaging the entire volume in a tomographic way, while facing severe degradation in scattering tissue or densely-labelled samples. To address this problem, we propose an incoherent multiscale scattering model in a complete space for quantitative 3D reconstruction in complicated environments, which is called computational optical sectioning. Without the requirement of any hardware modifications, our method can be generally applied to different light-field schemes with reduction in background fluorescence, reconstruction artifacts, and computational costs, facilitating more practical applications of LFM in a broad community. We validate the superior performance by imaging various biological dynamics in Drosophila embryos, zebrafish larvae, and mice.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhi Lu
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, 100084, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China.
| | - Xing Lin
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
- Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Centre for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yeyi Cai
- Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Jiachen Xie
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuling Wang
- Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Tianyi Zhu
- Department of Automation, Tsinghua University, 100084, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiangyang Ji
- Department of Automation, Tsinghua University, 100084, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
| | - Qionghai Dai
- Department of Automation, Tsinghua University, 100084, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, 100084, Beijing, China.
- Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
45
|
Han J, Kim S, Choi P, Lee S, Jo Y, Kim E, Choi M. Robust functional imaging of taste sensation with a Bessel beam. BIOMEDICAL OPTICS EXPRESS 2021; 12:5855-5864. [PMID: 34692220 PMCID: PMC8515959 DOI: 10.1364/boe.430643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Functional imaging of intact taste cells in response to various tastant solutions poses a technical challenge since the refractive index of the immersion medium dynamically changes during tastant delivery. Critically, the focal shift introduced by high-index tastant solutions has been the fundamental limit in experimental design. Here we seek to address this issue by introducing an axially elongated Bessel beam in two-photon microscopy. Compared to the conventional Gaussian beam, the Bessel beam provides superior robustness to the index-induced focal shift, allowing us to acquire near artifact-free imaging of taste cells in response to a physiological taste stimulus.
Collapse
Affiliation(s)
- Jisoo Han
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seonghoon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Pyonggang Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongjae Jo
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunsoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
46
|
Siegle JH, Ledochowitsch P, Jia X, Millman DJ, Ocker GK, Caldejon S, Casal L, Cho A, Denman DJ, Durand S, Groblewski PA, Heller G, Kato I, Kivikas S, Lecoq J, Nayan C, Ngo K, Nicovich PR, North K, Ramirez TK, Swapp J, Waughman X, Williford A, Olsen SR, Koch C, Buice MA, de Vries SEJ. Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology. eLife 2021; 10:e69068. [PMID: 34270411 PMCID: PMC8285106 DOI: 10.7554/elife.69068] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.
Collapse
Affiliation(s)
| | | | - Xiaoxuan Jia
- MindScope Program, Allen InstituteSeattleUnited States
| | | | | | | | - Linzy Casal
- MindScope Program, Allen InstituteSeattleUnited States
| | - Andy Cho
- MindScope Program, Allen InstituteSeattleUnited States
| | - Daniel J Denman
- Allen Institute for Brain Science, Allen InstituteSeattleUnited States
| | | | | | - Gregg Heller
- MindScope Program, Allen InstituteSeattleUnited States
| | - India Kato
- MindScope Program, Allen InstituteSeattleUnited States
| | - Sara Kivikas
- MindScope Program, Allen InstituteSeattleUnited States
| | - Jérôme Lecoq
- MindScope Program, Allen InstituteSeattleUnited States
| | - Chelsea Nayan
- MindScope Program, Allen InstituteSeattleUnited States
| | - Kiet Ngo
- Allen Institute for Brain Science, Allen InstituteSeattleUnited States
| | - Philip R Nicovich
- Allen Institute for Brain Science, Allen InstituteSeattleUnited States
| | - Kat North
- MindScope Program, Allen InstituteSeattleUnited States
| | | | - Jackie Swapp
- MindScope Program, Allen InstituteSeattleUnited States
| | - Xana Waughman
- MindScope Program, Allen InstituteSeattleUnited States
| | - Ali Williford
- MindScope Program, Allen InstituteSeattleUnited States
| | - Shawn R Olsen
- MindScope Program, Allen InstituteSeattleUnited States
| | - Christof Koch
- MindScope Program, Allen InstituteSeattleUnited States
| | | | | |
Collapse
|
47
|
Bruzzone M, Chiarello E, Albanesi M, Miletto Petrazzini ME, Megighian A, Lodovichi C, Dal Maschio M. Whole brain functional recordings at cellular resolution in zebrafish larvae with 3D scanning multiphoton microscopy. Sci Rep 2021; 11:11048. [PMID: 34040051 PMCID: PMC8154985 DOI: 10.1038/s41598-021-90335-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Optical recordings of neuronal activity at cellular resolution represent an invaluable tool to investigate brain mechanisms. Zebrafish larvae is one of the few model organisms where, using fluorescence-based reporters of the cell activity, it is possible to optically reconstruct the neuronal dynamics across the whole brain. Typically, leveraging the reduced light scattering, methods like lightsheet, structured illumination, and light-field microscopy use spatially extended excitation profiles to detect in parallel activity signals from multiple cells. Here, we present an alternative design for whole brain imaging based on sequential 3D point-scanning excitation. Our approach relies on a multiphoton microscope integrating an electrically tunable lens. We first apply our approach, adopting the GCaMP6s activity reporter, to detect functional responses from retinal ganglion cells (RGC) arborization fields at different depths within the zebrafish larva midbrain. Then, in larvae expressing a nuclear localized GCaMP6s, we recorded whole brain activity with cellular resolution. Adopting a semi-automatic cell segmentation, this allowed reconstructing the activity from up to 52,000 individual neurons across the brain. In conclusion, this design can easily retrofit existing imaging systems and represents a compact, versatile and reliable tool to investigate neuronal activity across the larva brain at high resolution.
Collapse
Affiliation(s)
- Matteo Bruzzone
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | - Enrico Chiarello
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | - Marco Albanesi
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58, Padua, Italy
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58, Padua, Italy
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy
- Veneto Institute of Molecular Medicine, VIMM, via Orus 2, Padua, Italy
- Institute of Neuroscience, CNR-IN, Padua, Italy
| | - Marco Dal Maschio
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58, Padua, Italy.
- Padua Neuroscience Center - PNC, University of Padua, via Orus 2B, Padua, Italy.
| |
Collapse
|
48
|
Kazwiny Y, Pedrosa J, Zhang Z, Boesmans W, D'hooge J, Vanden Berghe P. Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline Explicit Active Surfaces (BEAS) cell tracking. Sci Rep 2021; 11:10937. [PMID: 34035411 PMCID: PMC8149687 DOI: 10.1038/s41598-021-90448-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+ imaging is a widely used microscopy technique to simultaneously study cellular activity in multiple cells. The desired information consists of cell-specific time series of pixel intensity values, in which the fluorescence intensity represents cellular activity. For static scenes, cellular signal extraction is straightforward, however multiple analysis challenges are present in recordings of contractile tissues, like those of the enteric nervous system (ENS). This layer of critical neurons, embedded within the muscle layers of the gut wall, shows optical overlap between neighboring neurons, intensity changes due to cell activity, and constant movement. These challenges reduce the applicability of classical segmentation techniques and traditional stack alignment and regions-of-interest (ROIs) selection workflows. Therefore, a signal extraction method capable of dealing with moving cells and is insensitive to large intensity changes in consecutive frames is needed. Here we propose a b-spline active contour method to delineate and track neuronal cell bodies based on local and global energy terms. We develop both a single as well as a double-contour approach. The latter takes advantage of the appearance of GCaMP expressing cells, and tracks the nucleus' boundaries together with the cytoplasmic contour, providing a stable delineation of neighboring, overlapping cells despite movement and intensity changes. The tracked contours can also serve as landmarks to relocate additional and manually-selected ROIs. This improves the total yield of efficacious cell tracking and allows signal extraction from other cell compartments like neuronal processes. Compared to manual delineation and other segmentation methods, the proposed method can track cells during large tissue deformations and high-intensity changes such as during neuronal firing events, while preserving the shape of the extracted Ca2+ signal. The analysis package represents a significant improvement to available Ca2+ imaging analysis workflows for ENS recordings and other systems where movement challenges traditional Ca2+ signal extraction workflows.
Collapse
Affiliation(s)
- Youcef Kazwiny
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven (KU Leuven), Leuven, Belgium
| | - João Pedrosa
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, University of Leuven (KU Leuven), Leuven, Belgium
- Institute for Systems and Computer Engineering, Technology and Science, INESC TEC, Porto, Portugal
| | - Zhiqing Zhang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven (KU Leuven), Leuven, Belgium
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Jan D'hooge
- Laboratory of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
49
|
Abstract
Neural processing of sensory information is strongly influenced by context. For instance, cortical responses are reduced to predictable stimuli, while responses are increased to novel stimuli that deviate from contextual regularities. Such bidirectional modulation based on preceding sensory context is likely a critical component or manifestation of attention, learning, and behavior, yet how it arises in cortical circuits remains unclear. Using volumetric two-photon calcium imaging and local field potentials in primary visual cortex (V1) from awake mice presented with visual "oddball" paradigms, we identify both reductions and augmentations of stimulus-evoked responses depending, on whether the stimulus was redundant or deviant, respectively. Interestingly, deviance-augmented responses were limited to a specific subset of neurons mostly in supragranular layers. These deviance-detecting cells were spatially intermixed with other visually responsive neurons and were functionally correlated, forming a neuronal ensemble. Optogenetic suppression of prefrontal inputs to V1 reduced the contextual selectivity of deviance-detecting ensembles, demonstrating a causal role for top-down inputs. The presence of specialized context-selective ensembles in primary sensory cortex, modulated by higher cortical areas, provides a circuit substrate for the brain's construction and selection of prediction errors, computations which are key for survival and deficient in many psychiatric disorders.
Collapse
|
50
|
Zhuang C, Cao J, Zhang R, Xiao G, Hu J, Xie H, Dai Q. Real-time brain-wide multi-planar microscopy for simultaneous cortex and hippocampus imaging at the cellular resolution in mice. BIOMEDICAL OPTICS EXPRESS 2021; 12:1858-1868. [PMID: 33996203 PMCID: PMC8086472 DOI: 10.1364/boe.418229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Interactions between the cerebral cortex and the deep cerebellar nuclei play important roles in cognitive processes. However, conventional microscopes fail to dynamically record cellular structures in distinct brain regions and at different depths, which requires high resolution, large field of view (FOV), and depth of field (DOF). Here we propose a single-photon excited fluorescence microscopy technique that performs simultaneous cortex and hippocampus imaging, enabled by a customized microscope and a chronic optical window. After we implant a glass microwindow above the hippocampus, the surface of the hippocampus is shifted to the superficial plane. We demonstrate that the proposed technique is able to image cellular structures and blood vessel dynamics in the cortex and the hippocampus in in vivo experiments, and is compatible with various mesoscopic systems.
Collapse
Affiliation(s)
- Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing 100084, China
- These authors contributed equally to this work
| | - Jiangbei Cao
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- These authors contributed equally to this work
| | - Rujin Zhang
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Medical Company, CPLA Unit No. 32139, Beijing 101200, China
- These authors contributed equally to this work
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing 100084, China
- Institute of Brain and Cognitive Science, Tsinghua University, Beijing 100084, China
| | - Jing Hu
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing 100084, China
- Institute of Brain and Cognitive Science, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
- Institute of Brain and Cognitive Science, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|