1
|
Indelicato E, Zech M, Eberl A, Boesch S. Insights on the Shared Genetic Landscape of Neurodevelopmental and Movement Disorders. Curr Neurol Neurosci Rep 2025; 25:24. [PMID: 40095113 PMCID: PMC11914236 DOI: 10.1007/s11910-025-01414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW Large-scale studies using hypothesis-free exome sequencing have revealed the strong heritability of neurodevelopmental disorders (NDDs) and their molecular overlap with later-onset, progressive, movement disorders phenotypes. In this review, we focus on the shared genetic landscape of NDDs and movement disorders. RECENT FINDINGS Cumulative research has shown that up to 30% of cases labelled as "cerebral palsy" have a monogenic etiology. Causal pathogenic variants are particularly enriched in genes previously associated with adult-onset progressive movement disorders, such as spastic paraplegias, dystonias, and cerebellar ataxias. Biological pathways that have emerged as common culprits are transcriptional regulation, neuritogenesis, and synaptic function. Defects in the same genes can cause neurological dysfunction both during early development and later in life. We highlight the implications of the increasing number of NDD gene etiologies for genetic testing in movement disorders. Finally, we discuss gaps and opportunities in the translation of this knowledge to the bedside.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Anna Eberl
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Etemad A, Tanaka Y, Wang S, Slae M, Sultan M, Elpeleg O, Hirokawa N. Mutations in the kinesin KIF12 promote MASH in humans and mice by disrupting lipogenic enzyme turnover. EMBO J 2025; 44:1608-1640. [PMID: 39920308 PMCID: PMC11914266 DOI: 10.1038/s44318-025-00366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
As a common cause of liver cirrhosis, metabolic dysfunction-associated steatohepatitis (MASH) is regarded as a target of therapeutic intervention. However, a successful therapy has not yet been found, partly because the molecular pathogenesis is largely elusive. Here we show that KIF12 kinesin suppresses MASH development by accelerating the breakdown of two lipid biosynthesis enzymes, acetyl-CoA carboxylase 1 (ACC1) and pyruvate carboxylase (PC), in hepatocytes. We report three familial early-onset liver cirrhosis pedigrees with homozygous KIF12 mutations, accompanying MASH-like steatosis and cholestasis. The mouse genetic model carrying the corresponding Kif12 nonsense mutation faithfully reproduced the phenotypes as early as between 8 and 10 weeks of age. Furthermore, KIF12-deficient HepG2 cells exhibited significant steatosis, which was ameliorated by overexpressing a proline-rich domain (PRD) of KIF12. We found that KIF12-PRD promotes the degradation of ACC1 and PC, and this effect is likely to be through its direct interaction with these enzymes. Interestingly, KIF12 enhanced the ubiquitination of ACC1 by the E3 ligase COP1 and colocalized with these proteins as seen by super-resolution microscopy imaging. These data propose a role for KIF12 in suppressing MASH by accelerating turnover of lipogenic enzymes.
Collapse
Affiliation(s)
- Asieh Etemad
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Shuo Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mordechai Slae
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Mutaz Sultan
- Makassed Hospital, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
3
|
Jiang W, Yu P, Yang Y, Cai MT, Gan L, Qu K, Cheng YY, Dong M. PI3K-mediated Kif1a DNA methylation contributes to neuropathic pain: an in vivo study. Pain 2025:00006396-990000000-00817. [PMID: 39907503 DOI: 10.1097/j.pain.0000000000003536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/25/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Neuropathic pain (NP) is a chronic condition caused by nerve injuries, such as nerve compression. Understanding its underlying neurobiological mechanisms is critical for developing effective treatments. Previous studies have shown that Kinesin family member 1A (Kif1a) heterozygous deficient mice display sensory deficits in response to nociceptive stimuli. PI3K has been found to mitigate these sensory deficits by enhancing Kif1a transcription, highlighting KIF1A's key role in sensory pain. However, the exact mechanism through which PI3K regulates KIF1A expression in relation to pain remains unclear. In this study, we observed a significant increase in PI3K/AKT/CREB (cyclic AMP response element-binding protein) protein levels in the dorsal root ganglia and spinal cord after chronic constriction injury in both male and female C57BL/6 mice. Notably, elevated levels of TET1, as well as Kif1a mRNA and protein, were detected in both male and female mice. Activated (phosphorylated-CREB) p-CREB recruited the DNA demethylase TET1, which interacted with the Kif1a promoter, reducing methylation and increasing Kif1a mRNA and protein expression. PI3K inhibition using wortmannin reversed the demethylation of Kif1a and decreased its expression in male mice. Furthermore, TET1 knockdown or overexpression significantly affected pain-related behaviors, as well as Kif1a methylation and transcription. Female mice given intrathecal injections of PI3K inhibitors exhibited similar molecular and behavioral outcomes as male mice. These findings offer new insights into NP mechanisms, suggesting that targeting the PI3K/KIF1A axis could be a promising therapeutic approach for NP treatment.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meng-Tan Cai
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Kang Qu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ying-Ying Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
He D, Zhang X, Su J, Zhang Q, Zhao L, Wu T, Ren H, Jia R, Lei X, Hou W, Sun W, Fan Y, Wang Z. Identification of AS1842856 as a novel small-molecule GSK3α/β inhibitor against Tauopathy by accelerating GSK3α/β exocytosis. Aging Cell 2025; 24:e14336. [PMID: 39287420 PMCID: PMC11709109 DOI: 10.1111/acel.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Glycogen synthase kinase-3α/β (GSK3α/β) is a critical kinase for Tau hyperphosphorylation which contributes to neurodegeneration. Despite the termination of clinical trials for GSK3α/β inhibitors in Alzheimer's disease (AD) treatment, there is a pressing need for novel therapeutic strategies targeting GSK3α/β. Here, we identified the compound AS1842856 (AS), a specific forkhead box protein O1 (FOXO1) inhibitor, reduced intracellular GSK3α/β content in a FOXO1-independent manner. Specifically, AS directly bound to GSK3α/β, promoting its translocation to the multivesicular bodies (MVBs) and accelerating exocytosis, ultimately decreasing intracellular GSK3α/β content. Expectedly, AS treatment effectively suppressed Tau hyperphosphorylation in cells exposed to okadaic acid or expressing the TauP301S mutant. Furthermore, AS was visualized to penetrate the blood-brain barrier (BBB) using an imaging mass microscope. Long-term treatment of AS enhanced cognitive function in P301S transgenic mice by mitigating Tau hyperphosphorylation through downregulation of GSK3α/β expression in the brain. Altogether, AS represents a novel small-molecule GSK3α/β inhibitor that facilitates GSK3α/β exocytosis, holding promise as a therapeutic agent for GSK3α/β hyperactivation-associated disorders.
Collapse
Affiliation(s)
- Da‐Long He
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiao‐Yu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Jing‐Yang Su
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Ling‐Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Ting‐Yao Wu
- First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Rong‐Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xian‐Fang Lei
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Wen‐Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Wen‐Ge Sun
- Department of RadiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yong‐Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Zhan‐You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
| |
Collapse
|
5
|
Falnikar A, Quintremil S, Zhao HJ, Cheng HY, Helmer P, Tsai JW, Vallee RB. The nucleoporin Nup153 is the anchor for Kif1a during basal nuclear migration in brain progenitor cells. Cell Rep 2024; 43:115008. [PMID: 39666457 PMCID: PMC11702353 DOI: 10.1016/j.celrep.2024.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Radial glial progenitors (RGPs) are highly elongated epithelial cells that give rise to most stem cells, neurons, and glia in the vertebrate cerebral cortex. During development, the RGP nuclei exhibit a striking pattern of cell-cycle-dependent oscillatory movements known as interkinetic nuclear migration (INM), which we previously found to be mediated during G1 by the kinesin Kif1a and during G2 by cytoplasmic dynein, recruited to the nuclear envelope by the nucleoporins RanBP2 and Nup133. We now identify Nup153 as a nucleoporin anchor for Kif1a, responsible for G1-specific basal nuclear migration, providing a complete model for the mechanisms underlying this basic but mysterious behavior, with broad implications for understanding brain development.
Collapse
Affiliation(s)
- Aditi Falnikar
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hung-Jun Zhao
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Haw-Yuan Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024; 25:4777-4802. [PMID: 39322740 PMCID: PMC11549326 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
7
|
Zheng W, He J, Chen L, Yu W, Zhang N, Liu X, Fan D. Genetic link between KIF1A mutations and amyotrophic lateral sclerosis: evidence from whole-exome sequencing. Front Aging Neurosci 2024; 16:1421841. [PMID: 39076207 PMCID: PMC11284166 DOI: 10.3389/fnagi.2024.1421841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Objectives Genetics have been shown to have a substantial impact on amyotrophic lateral sclerosis (ALS). The ALS process involves defects in axonal transport and cytoskeletal dynamics. It has been identified that KIF1A, responsible for encoding a kinesin-3 motor protein that carries synaptic vesicles, is considered a genetic predisposing factor for ALS. Methods The analysis of whole-exome sequencing data from 1,068 patients was conducted to examine the genetic link between ALS and KIF1A. For patients with KIF1A gene mutations and a family history, we extended the analysis to their families and reanalyzed them using Sanger sequencing for cosegregation analysis. Results In our cohort, the KIF1A mutation frequency was 1.31% (14/1,068). Thirteen nonsynonymous variants were detected in 14 ALS patients. Consistent with the connection between KIF1A and ALS, the missense mutation p.A1083T (c.3247G>A) was shown to cosegregate with disease. The mutations related to ALS in our study were primarily located in the cargo-binding region at the C-terminal, as opposed to the mutations of motor domain at the N-terminal of KIF1A which were linked to hereditary peripheral neuropathy and spastic paraplegia. We observed high clinical heterogeneity in ALS patients with missense mutations in the KIF1A gene. KIF5A is a more frequent determinant of ALS in the European population, while KIF1A accounts for a similar proportion of ALS in both the European and Chinese populations. Conclusion Our investigation revealed that mutations in the C-terminus of KIF1A could increase the risk of ALS, support the pathogenic role of KIF1A in ALS and expand the phenotypic and genetic spectrum of KIF1A-related ALS.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
8
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Lee SG, Kim J, Lee YI, Kim J, Choi YS, Ham S, Lee JH. Cutaneous neurogenic inflammation mediated by TRPV1-NGF-TRKA pathway activation in rosacea is exacerbated by the presence of Demodex mites. J Eur Acad Dermatol Venereol 2023; 37:2589-2600. [PMID: 37606610 DOI: 10.1111/jdv.19449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Rosacea is a common chronic inflammatory skin condition that is often refractory to treatment, with frequent relapses. Alterations in the skin immunological response and Demodex mite infestation are the primary aetiologic factors targeted for treatment. Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a nociceptive cation channel that plays a role in cutaneous neurogenic pain and can be activated by various rosacea triggers. OBJECTIVES We investigated the effects of TRPV1 modulation in rosacea, focussing on Demodex mite colonization and cutaneous neurogenic inflammation. METHODS We examined mRNA expression levels according to Demodex population counts. An in vitro study using capsazepine as a TRPV1 antagonist was performed to assess the influence of TRPV1 in keratinocytes. A rosacea-like mouse model was generated by the injection of the 37-amino acid C-terminal cathelicidin peptide (LL37), and changes in the skin, dorsal root ganglion (DRG) and ears were examined. RESULTS Increased Demodex mite population counts were associated with increased expression levels of TRPV1, tropomyosin receptor kinase A (TrkA) and nerve growth factor (NGF), and these levels could be reduced by capsazepine treatment in keratinocytes. In an in vivo study, the downstream effects of TRPV1 activation were investigated in the skin, DRG and ears of the rosacea-like mouse model. CONCLUSIONS The findings of this study are instrumental for understanding the underlying causes of rosacea and could potentially lead to the development of new treatments targeting the NGF-TrkA-TRPV1 pathway. The identification of this pathway as a therapeutic target could represent a major breakthrough for rosacea research, potentially resulting in more effective and targeted rosacea treatments. This study contributes to an improved understanding of rosacea pathophysiology, which may lead to the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Sang Gyu Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihee Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| | - Jemin Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| | - Ye Seul Choi
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul, South Korea
| |
Collapse
|
10
|
Pacifico P, Coy-Dibley JS, Miller RJ, Menichella DM. Peripheral mechanisms of peripheral neuropathic pain. Front Mol Neurosci 2023; 16:1252442. [PMID: 37781093 PMCID: PMC10537945 DOI: 10.3389/fnmol.2023.1252442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or disease affecting the peripheral nervous system, is associated with an extremely large disease burden, and there is an increasing and urgent need for new therapies for treating this disorder. In this review we have highlighted therapeutic targets that may be translated into disease modifying therapies for PNP associated with peripheral neuropathy. We have also discussed how genetic studies and novel technologies, such as optogenetics, chemogenetics and single-cell RNA-sequencing, have been increasingly successful in revealing novel mechanisms underlying PNP. Additionally, consideration of the role of non-neuronal cells and communication between the skin and sensory afferents is presented to highlight the potential use of drug treatment that could be applied topically, bypassing drug side effects. We conclude by discussing the current difficulties to the development of effective new therapies and, most importantly, how we might improve the translation of targets for peripheral neuropathic pain identified from studies in animal models to the clinic.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James S. Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Tanaka Y, Morozumi A, Hirokawa N. Nodal flow transfers polycystin to determine mouse left-right asymmetry. Dev Cell 2023; 58:1447-1461.e6. [PMID: 37413993 DOI: 10.1016/j.devcel.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Left-dominant [Ca2+]i elevation on the left margin of the ventral node furnishes the initial laterality of mouse embryos. It depends on extracellular leftward fluid flow (nodal flow), fibroblast growth factor receptor (FGFR)/sonic hedgehog (Shh) signaling, and the PKD1L1 polycystin subunit, of which interrelationship is still elusive. Here, we show that leftward nodal flow directs PKD1L1-containing fibrous strands and facilitates Nodal-mediated [Ca2+]i elevation on the left margin. We generate KikGR-PKD1L1 knockin mice in order to monitor protein dynamics with a photoconvertible fluorescence protein tag. By imaging those embryos, we have identified fragile meshwork being gradually transferred leftward involving pleiomorphic extracellular events. A portion of the meshwork finally bridges over the left nodal crown cells in an FGFR/Shh-dependent manner. As PKD1L1 N-term is predominantly associated with Nodal on the left margin and that PKD1L1/PKD2 overexpression significantly augments cellular Nodal sensitivity, we propose that leftward transfer of polycystin-containing fibrous strands determines left-right asymmetry in developing embryos.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ai Morozumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
12
|
Pacifico P, Testa G, Amodeo R, Mainardi M, Tiberi A, Convertino D, Arevalo JC, Marchetti L, Costa M, Cattaneo A, Capsoni S. Human TrkAR649W mutation impairs nociception, sweating and cognitive abilities: a mouse model of HSAN IV. Hum Mol Genet 2023; 32:1380-1400. [PMID: 36537577 PMCID: PMC10077510 DOI: 10.1093/hmg/ddac295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/11/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
A functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV. Here, we report the generation of a knock-in mouse line carrying the HSAN IV TrkAR649W mutation. First, by in vitro biochemical and biophysical analyses, we show that the pathological R649W mutation leads to kinase-inactive TrkA also affecting its membrane dynamics and trafficking. In agreement with the HSAN IV human phenotype, TrkAR649W/m mice display a lower response to thermal and chemical noxious stimuli, correlating with reduced skin innervation, in addition to decreased sweating in comparison to TrkAh/m controls. Moreover, the R649W mutation decreases anxiety-like behavior and compromises cognitive abilities, by impairing spatial-working and social memory. Our results further uncover unexplored roles of TrkA in thermoregulation and sociability. In addition to accurately recapitulating the clinical manifestations of HSAN IV patients, our findings contribute to clarifying the involvement of the NGF-TrkA system in pain sensation.
Collapse
Affiliation(s)
- Paola Pacifico
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Giovanna Testa
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Rosy Amodeo
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | - Marco Mainardi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Neuroscience Institute, National Research Council (IN-CNR), Pisa 56124, Italy
| | - Alexia Tiberi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | - Juan Carlos Arevalo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council (IN-CNR), Pisa 56124, Italy
- Pisa Center for Research and Clinical Implementation Flash Radiotherapy (CPFR@CISUP), Pisa 56126, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Rome 00161, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa 56124, Italy
- Department of Neuroscience and Rehabilitation, Institute of Physiology, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
13
|
Chiba K, Kita T, Anazawa Y, Niwa S. Insight into the regulation of axonal transport from the study of KIF1A-associated neurological disorder. J Cell Sci 2023; 136:286709. [PMID: 36655764 DOI: 10.1242/jcs.260742] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuronal function depends on axonal transport by kinesin superfamily proteins (KIFs). KIF1A is the molecular motor that transports synaptic vesicle precursors, synaptic vesicles, dense core vesicles and active zone precursors. KIF1A is regulated by an autoinhibitory mechanism; many studies, as well as the crystal structure of KIF1A paralogs, support a model whereby autoinhibited KIF1A is monomeric in solution, whereas activated KIF1A is dimeric on microtubules. KIF1A-associated neurological disorder (KAND) is a broad-spectrum neuropathy that is caused by mutations in KIF1A. More than 100 point mutations have been identified in KAND. In vitro assays show that most mutations are loss-of-function mutations that disrupt the motor activity of KIF1A, whereas some mutations disrupt its autoinhibition and abnormally hyperactivate KIF1A. Studies on disease model worms suggests that both loss-of-function and gain-of-function mutations cause KAND by affecting the axonal transport and localization of synaptic vesicles. In this Review, we discuss how the analysis of these mutations by molecular genetics, single-molecule assays and force measurements have helped to reveal the physiological significance of KIF1A function and regulation, and what physical parameters of KIF1A are fundamental to axonal transport.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Tomoki Kita
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuzu Anazawa
- Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan.,Department of Applied Physics, Graduate School of Engineering, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
14
|
Burk K. The endocytosis, trafficking, sorting and signaling of neurotrophic receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:141-165. [PMID: 36813356 DOI: 10.1016/bs.pmbts.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurotrophins are soluble factors secreted by neurons themselves as well as by post-synaptic target tissues. Neurotrophic signaling regulates several processes such as neurite growth, neuronal survival and synaptogenesis. In order to signal, neurotrophins bind to their receptors, the tropomyosin receptor tyrosine kinase (Trk), which causes internalization of the ligand-receptor complex. Subsequently, this complex is routed into the endosomal system from where Trks can start their downstream signaling. Depending on their endosomal localization, co-receptors involved, but also due to the expression patterns of adaptor proteins, Trks regulate a variety of mechanisms. In this chapter, I provide an overview of the endocytosis, trafficking, sorting and signaling of neurotrophic receptors.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
| |
Collapse
|
15
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
16
|
Theme 02 - Genetics and Genomics. Amyotroph Lateral Scler Frontotemporal Degener 2022. [DOI: 10.1080/21678421.2022.2120678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Frank M, Nabb AT, Gilbert SP, Bentley M. Propofol attenuates kinesin-mediated axonal vesicle transport and fusion. Mol Biol Cell 2022; 33:ar119. [PMID: 36103253 PMCID: PMC9634964 DOI: 10.1091/mbc.e22-07-0276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Propofol is a widely used general anesthetic, yet the understanding of its cellular effects is fragmentary. General anesthetics are not as innocuous as once believed and have a wide range of molecular targets that include kinesin motors. Propofol, ketamine, and etomidate reduce the distances that Kinesin-1 KIF5 and Kinesin-2 KIF3 travel along microtubules in vitro. These transport kinesins are highly expressed in the CNS, and their dysfunction leads to a range of human pathologies including neurodevelopmental and neurodegenerative diseases. While in vitro data suggest that general anesthetics may disrupt kinesin transport in neurons, this hypothesis remains untested. Here we find that propofol treatment of hippocampal neurons decreased vesicle transport mediated by Kinesin-1 KIF5 and Kinesin-3 KIF1A ∼25-60%. Propofol treatment delayed delivery of the KIF5 cargo NgCAM to the distal axon. Because KIF1A participates in axonal transport of presynaptic vesicles, we tested whether prolonged propofol treatment affects synaptic vesicle fusion mediated by VAMP2. The data show that propofol-induced transport delay causes a significant decrease in vesicle fusion in distal axons. These results are the first to link a propofol-induced delay in neuronal trafficking to a decrease in axonal vesicle fusion, which may alter physiological function during and after anesthesia.
Collapse
Affiliation(s)
- Madeline Frank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alec T. Nabb
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Susan P. Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180,*Address correspondence to: Marvin Bentley ()
| |
Collapse
|
18
|
Liao P, Yuan Y, Liu Z, Hou X, Li W, Wen J, Zhang K, Jiao B, Shen L, Jiang H, Guo J, Tang B, Zhang Z, Hu Z, Wang J. Association of variants in the KIF1A gene with amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:46. [PMID: 36284339 PMCID: PMC9597953 DOI: 10.1186/s40035-022-00320-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord. As in many other neurodegenerative disorders, the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport. Notably, sensory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2 (HSAN2) and spastic paraplegia 30 (SPG30) share several causative genes with ALS, as well as having common clinical phenotypes. KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors (SVPs) and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30. METHODS Here, we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS. RESULTS We identified rare damage variants (RDVs) in the KIF1A gene associated with ALS and delineated the clinical characteristics of ALS patients with KIF1A RDVs. Clinically, these patients tended to exhibit sensory disturbance. Interestingly, the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein. Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A, VAMP2, and synaptophysin. Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor. CONCLUSIONS Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS, indicating KIF1A as an important player in the oligogenic scenario of ALS.
Collapse
Affiliation(s)
- Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, China.
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
| |
Collapse
|
19
|
Wang S, Tanaka Y, Xu Y, Takeda S, Hirokawa N. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 2022; 57:2273-2289.e11. [DOI: 10.1016/j.devcel.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
|
20
|
Hemorrhagic shock and encephalopathy syndrome in a patient with a de novo heterozygous variant in KIF1A. Brain Dev 2022; 44:249-253. [PMID: 34916088 DOI: 10.1016/j.braindev.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION KIF1A, a gene that encodes a neuron-specific motor protein, plays important roles in cargo transport along neurites. Variants in KIF1A have been described in three different disorders, and neurodegeneration and spasticity with or without cerebellar atrophy or cortical visual impairment syndrome (NESCAVS) is the severest phenotype. CASE REPORT A 3-year-old girl was born at term with a birth weight of 2590 g. At five months of age, she visited our hospital due to developmental delay. An EEG showed multiple epileptic discharge, and a nerve conduction study showed severe axonopathy of both motor and sensory nerves. We performed exome sequencing and identified a de novo heterozygous missense variant in KIF1A (NM_001244008.1: c. 757G > A, p.E253K). At six months of age, she developed acute encephalopathy, multiple organ failure and disseminated intravascular coagulation, necessitating intensive care. Her brain CT showed severe brain edema, followed by profound brain atrophy. We diagnosed hemorrhagic shock and encephalopathy syndrome (HSES) according to the clinico-radiological features. Currently, she is bed-ridden, and requires gastrostomy because of dysphagia. CONCLUSION The clinical course of our case confirmed that p.E253K is associated with severe neurological features. Severe KIF1A deficiency could cause thermoregulatory dysfunction and may increase the risk of acute encephalopathy including HSES.
Collapse
|
21
|
Morikawa M, Jerath NU, Ogawa T, Morikawa M, Tanaka Y, Shy ME, Zuchner S, Hirokawa N. A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle. EMBO J 2022; 41:e108899. [PMID: 35132656 PMCID: PMC8886545 DOI: 10.15252/embj.2021108899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022] Open
Abstract
The mechanochemical coupling of ATPase hydrolysis and conformational dynamics in kinesin motors facilitates intramolecular interaction cycles between the kinesin motor and neck domains, which are essential for microtubule-based motility. Here, we characterized a charge-inverting KIF1A-E239K mutant that we identified in a family with axonal-type Charcot-Marie-Tooth disease and also in 24 cases in human neuropathies including spastic paraplegia and hereditary sensory and autonomic neuropathy. We show that Glu239 in the β7 strand is a key residue of the motor domain that regulates the motor-neck interaction. Expression of the KIF1A-E239K mutation has decreased ability to complement Kif1a+/- neurons, and significantly decreases ATPase activity and microtubule gliding velocity. X-ray crystallography shows that this mutation causes an excess positive charge on β7, which may electrostatically interact with a negative charge on the neck. Quantitative mass spectrometric analysis supports that the mutation hyper-stabilizes the motor-neck interaction at the late ATP hydrolysis stage. Thus, the negative charge of Glu239 dynamically regulates the kinesin motor-neck interaction, promoting release of the neck from the motor domain upon ATP hydrolysis.
Collapse
Affiliation(s)
- Manatsu Morikawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Nivedita U Jerath
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIAUSA,Neuromuscular DivisionAdventHealth OrlandoWinter ParkFLUSA
| | - Tadayuki Ogawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan,Research Center for Advanced Medical ScienceDokkyo Medical UniversityMibuJapan
| | - Momo Morikawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan,Department of Anatomy and NeuroscienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yosuke Tanaka
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Michael E Shy
- Department of NeurologyCarver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human GenomicsMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Nobutaka Hirokawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
22
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
23
|
Motor domain-mediated autoinhibition dictates axonal transport by the kinesin UNC-104/KIF1A. PLoS Genet 2021; 17:e1009940. [PMID: 34843479 PMCID: PMC8659337 DOI: 10.1371/journal.pgen.1009940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 12/09/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022] Open
Abstract
The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo. UNC-104/KIF1A is the founding member of the kinesin-3 family. When not transporting cargos, most kinesin-3 motors adopt an autoinhibited conformation, and how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified gain-of-function mutations in the motor domain or CC1 domain that significantly enhance the synaptic vesicle transport. Further biochemical and structural analyses revealed that these mutations could disrupt the CC1/motor mediated autoinhibition. Thus, our work provides a mechanistic explanation for the role of some disease-related mutations in motor hyperactivation.
Collapse
|
24
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
25
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
26
|
Aiken J, Holzbaur ELF. Cytoskeletal regulation guides neuronal trafficking to effectively supply the synapse. Curr Biol 2021; 31:R633-R650. [PMID: 34033795 DOI: 10.1016/j.cub.2021.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development and proper function of the brain requires the formation of highly complex neuronal circuitry. These circuits are shaped from synaptic connections between neurons and must be maintained over a lifetime. The formation and continued maintenance of synapses requires accurate trafficking of presynaptic and postsynaptic components along the axon and dendrite, respectively, necessitating deliberate and specialized delivery strategies to replenish essential synaptic components. Maintenance of synaptic transmission also requires readily accessible energy stores, produced in part by localized mitochondria, that are tightly regulated with activity level. In this review, we focus on recent developments in our understanding of the cytoskeletal environment of axons and dendrites, examining how local regulation of cytoskeletal dynamics and organelle trafficking promotes synapse-specific delivery and plasticity. These new insights shed light on the complex and coordinated role that cytoskeletal elements play in establishing and maintaining neuronal circuitry.
Collapse
Affiliation(s)
- Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Boyle L, Rao L, Kaur S, Fan X, Mebane C, Hamm L, Thornton A, Ahrendsen JT, Anderson MP, Christodoulou J, Gennerich A, Shen Y, Chung WK. Genotype and defects in microtubule-based motility correlate with clinical severity in KIF1A-associated neurological disorder. HGG ADVANCES 2021; 2:100026. [PMID: 33880452 PMCID: PMC8054982 DOI: 10.1016/j.xhgg.2021.100026] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
KIF1A-associated neurological disorder (KAND) encompasses a group of rare neurodegenerative conditions caused by variants in KIF1A,a gene that encodes an anterograde neuronal microtubule (MT) motor protein. Here we characterize the natural history of KAND in 117 individuals using a combination of caregiver or self-reported medical history, a standardized measure of adaptive behavior, clinical records, and neuropathology. We developed a heuristic severity score using a weighted sum of common symptoms to assess disease severity. Focusing on 100 individuals, we compared the average clinical severity score for each variant with in silico predictions of deleteriousness and location in the protein. We found increased severity is strongly associated with variants occurring in protein regions involved with ATP and MT binding: the P loop, switch I, and switch II. For a subset of variants, we generated recombinant proteins, which we used to assess transport in vivo by assessing neurite tip accumulation and to assess MT binding, motor velocity, and processivity using total internal reflection fluorescence microscopy. We find all modeled variants result in defects in protein transport, and we describe three classes of protein dysfunction: reduced MT binding, reduced velocity and processivity, and increased non-motile rigor MT binding. The rigor phenotype is consistently associated with the most severe clinical phenotype, while reduced MT binding is associated with milder clinical phenotypes. Our findings suggest the clinical phenotypic heterogeneity in KAND likely reflects and parallels diverse molecular phenotypes. We propose a different way to describe KAND subtypes to better capture the breadth of disease severity.
Collapse
Affiliation(s)
- Lia Boyle
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Simranpreet Kaur
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Xiao Fan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Caroline Mebane
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laura Hamm
- Genetic & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Thornton
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared T. Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew P. Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Boston Children’s Hospital Intellectual and Developmental Disabilities Research Center, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - John Christodoulou
- Murdoch Children’s Research Institute, Parkville, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
28
|
Betaine ameliorates schizophrenic traits by functionally compensating for KIF3-based CRMP2 transport. Cell Rep 2021; 35:108971. [PMID: 33852848 DOI: 10.1016/j.celrep.2021.108971] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/22/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
In schizophrenia (SCZ), neurons in the brain tend to undergo gross morphological changes, but the related molecular mechanism remains largely elusive. Using Kif3b+/- mice as a model with SCZ-like behaviors, we found that a high-betaine diet can significantly alleviate schizophrenic traits related to neuronal morphogenesis and behaviors. According to a deficiency in the transport of collapsin response mediator protein 2 (CRMP2) by the KIF3 motor, we identified a significant reduction in lamellipodial dynamics in developing Kif3b+/- neurons as a cause of neurite hyperbranching. Betaine administration significantly decreases CRMP2 carbonylation, which enhances the F-actin bundling needed for proper lamellipodial dynamics and microtubule exclusion and may thus functionally compensate for KIF3 deficiency. Because the KIF3 expression levels tend to be downregulated in the human prefrontal cortex of the postmortem brains of SCZ patients, this mechanism may partly participate in human SCZ pathogenesis, which we hypothesize could be alleviated by betaine administration.
Collapse
|
29
|
Zahavi EE, Hummel JJA, Han Y, Bar C, Stucchi R, Altelaar M, Hoogenraad CC. Combined kinesin-1 and kinesin-3 activity drives axonal trafficking of TrkB receptors in Rab6 carriers. Dev Cell 2021; 56:494-508.e7. [PMID: 33571451 PMCID: PMC7907685 DOI: 10.1016/j.devcel.2021.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons depend on proper localization of neurotrophic receptors in their distal processes for their function. The Trk family of neurotrophin receptors controls neuronal survival, differentiation, and remodeling and are well known to function as retrograde signal carriers transported from the distal axon toward the cell body. However, the mechanism driving anterograde trafficking of Trk receptors into the axon is not well established. We used microfluidic compartmental devices and inducible secretion assay to systematically investigate the retrograde and anterograde trafficking routes of TrkB receptor along the axon in rat hippocampal neurons. We show that newly synthesized TrkB receptors traffic through the secretory pathway and are directly delivered into axon. We found that these TrkB carriers associate and are regulated by Rab6. Furthermore, the combined activity of kinesin-1 and kinesin-3 is needed for the formation of axon-bound TrkB secretory carriers and their effective entry and processive anterograde transport beyond the proximal axon.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Yuhao Han
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Citlali Bar
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
30
|
Charles Bronson S, Suresh E, Stephen Abraham Suresh Kumar S, Mythili C, Shanmugam A. A Novel Synergistic Association of Variants in PTRH2 and KIF1A Relates to a Syndrome of Hereditary Axonopathy, Outer Hair Cell Dysfunction, Intellectual Disability, Pancreatic Lipomatosis, Diabetes, Cerebellar Atrophy, and Vertebral Artery Hypoplasia. Cureus 2021; 13:e13174. [PMID: 33717719 PMCID: PMC7939034 DOI: 10.7759/cureus.13174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The gene PTRH2 encodes a protein with peptidyl-tRNA hydrolase activity and is involved in the translation process in protein synthesis. The kinesin family member 1-A (KIF1A) gene encodes a molecular motor involved in axonal transport along microtubules. Mutations in these genes lead to respective phenotypical conditions that have been reported in the literature. In this paper, we present a novel syndrome of concurrent occurrence of mutations in the PTRH2 and KIF1A genes in a 19-year-old girl of Dravidian-Tamil descent from the Southern part of India. The girl presented with global developmental delay, intellectual disability, weakness of upper and lower limbs, and diabetes. On workup, she was found to have severe peripheral axonopathy, outer hair cell (OHC) dysfunction, severe bilateral sensorineural hearing loss (SNHL), total pancreatic lipomatosis, exocrine pancreatic insufficiency, cerebellar atrophy, vertebral artery hypoplasia, and scoliosis. The patient had a deceased elder sibling who also had had a similar phenotype. Whole exome sequencing (WES) revealed a novel variant in the PTRH2 gene and a rare variant in the KIF1A gene. The predominant axonal involvement seen in our patient, which was attributable to KIF1A involvement, distinguishes this syndrome from the infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) caused by PTRH2 involvement alone. To the best of our knowledge, this is the first report in the medical literature of a syndrome caused by the synergistic occurrence of mutations in the PTRH2 and KIF1A genes. In order to provide more clarity on the genetic and clinical features of such syndromes and to aid the treating clinician to recognize the existence of such syndromes, we propose the broader umbrella term "neuro-pancreatic syndromes" (NPS). Presently, under NPS, we include two entities: the syndrome described by us in this paper and the IMNEPD. Prompt and effective recognition and management of such NPS would immensely benefit the patient in terms of treatment and prognosis. Furthermore, we hope that this paper will promote further understanding of NPS and foster more research, both clinical and genetic, which would widen the spectrum of NPS. Eventually, this would throw more light on treatment options and ultimately benefit patients with NPS.
Collapse
Affiliation(s)
- S Charles Bronson
- Internal Medicine: Diabetes and Endocrinology, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| | - E Suresh
- Internal Medicine: Diabetes and Endocrinology, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| | | | - C Mythili
- Biochemistry, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| | - A Shanmugam
- Internal Medicine: Diabetes and Endocrinology, Institute of Diabetology, Stanley Medical College & Hospital, Chennai, IND
| |
Collapse
|
31
|
Chiabrando D, Fiorito V, Petrillo S, Bertino F, Tolosano E. HEME: a neglected player in nociception? Neurosci Biobehav Rev 2021; 124:124-136. [PMID: 33545213 DOI: 10.1016/j.neubiorev.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Despite increasing progress in the understanding of the pathophysiology of pain, current management of pain syndromes is still unsatisfactory. The recent discovery of novel pathways associated with pain insensitivity in humans represents a unique opportunity to improve our knowledge on the pathophysiology of pain. Heme metabolism recently emerged as a crucial regulator of nociception. Of note, alteration of heme metabolism has been associated with pain insensitivity as well as with acute and chronic pain in porphyric neuropathy and hemolytic diseases. However, the molecular mechanisms linking heme to the pain pathways still remain unclear. The review focuses on the major heme-regulated processes relevant for sensory neurons' maintenance, peripheral and central sensitization as well as for pain comorbidities, like anxiety and depression. By discussing the body of knowledge on the topic, we provide a novel perspective on the molecular mechanisms linking heme to nociception.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy.
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
32
|
Ni S, Li J, Qiu S, Xie Y, Gong K, Duan Y. KIF21B Expression in Osteosarcoma and Its Regulatory Effect on Osteosarcoma Cell Proliferation and Apoptosis Through the PI3K/AKT Pathway. Front Oncol 2021; 10:606765. [PMID: 33585227 PMCID: PMC7879035 DOI: 10.3389/fonc.2020.606765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignancy that occurs mainly during childhood and adolescence; however, no clear molecular or biological mechanism has been identified. In this study, we aimed to explore new biomarkers for the early diagnosis, targeted treatment, and prognostic determination of osteosarcoma. We first used bioinformatics analysis to show that KIF21B can be used as a biomarker for the diagnosis and prognosis of osteosarcoma. We then examined the expression of KIF21B in human osteosarcoma tissues and cell lines using immunohistochemistry, western blotting, and qRT-PCR. It was found that KIF21B expression was significantly upregulated in osteosarcoma tissues and cell lines. After knocking down the expression of KIF21B in the osteosarcoma cell lines 143B and U2-OS, we used cell fluorescence counting, CCK-8 assays, flow cytometry, and TUNEL staining to examine the effects of KIF21B on osteosarcoma cell proliferation and apoptosis. The results demonstrated that knocking down KIF21B in 143B and U2-OS cells could increase cell apoptosis, inhibit cell proliferation, and reduce tumor formation in nude mice. Subsequently, we used gene chips and bioinformatics to analyze the differential gene expression caused by knocking down KIF21B. The results showed that KIF21B may regulate OS cell proliferation and apoptosis by targeting the PI3K/AKT pathway. We then examined the expression of PI3K/AKT- and apoptosis-related proteins using western blotting. KIF21B knockdown inhibited the PI3K pathway, downregulated Bcl-2, and upregulated Bax. Moreover, the use of PI3K/AKT pathway agonists reversed the regulatory effect of KIF21B on the apoptosis and proliferation of 143B and U2-OS cells. In conclusion, our results indicated that KIF21B plays a key role in osteosarcoma. Low KIF21B expression might indirectly increase the apoptosis and inhibit the proliferation of osteosarcoma cells through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Songjia Ni
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingming Xie
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaiqin Gong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Fukuda Y, Pazyra-Murphy MF, Silagi ES, Tasdemir-Yilmaz OE, Li Y, Rose L, Yeoh ZC, Vangos NE, Geffken EA, Seo HS, Adelmant G, Bird GH, Walensky LD, Marto JA, Dhe-Paganon S, Segal RA. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. J Cell Biol 2021; 220:e202005051. [PMID: 33284322 PMCID: PMC7721913 DOI: 10.1083/jcb.202005051] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Complex neural circuitry requires stable connections formed by lengthy axons. To maintain these functional circuits, fast transport delivers RNAs to distal axons where they undergo local translation. However, the mechanism that enables long-distance transport of RNA granules is not yet understood. Here, we demonstrate that a complex containing RNA and the RNA-binding protein (RBP) SFPQ interacts selectively with a tetrameric kinesin containing the adaptor KLC1 and the motor KIF5A. We show that the binding of SFPQ to the KIF5A/KLC1 motor complex is required for axon survival and is impacted by KIF5A mutations that cause Charcot-Marie Tooth (CMT) disease. Moreover, therapeutic approaches that bypass the need for local translation of SFPQ-bound proteins prevent axon degeneration in CMT models. Collectively, these observations indicate that KIF5A-mediated SFPQ-RNA granule transport may be a key function disrupted in KIF5A-linked neurologic diseases and that replacing axonally translated proteins serves as a therapeutic approach to axonal degenerative disorders.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Maria F. Pazyra-Murphy
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth S. Silagi
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Ozge E. Tasdemir-Yilmaz
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Yihang Li
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Lillian Rose
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Zoe C. Yeoh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gregory H. Bird
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Loren D. Walensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jarrod A. Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Rosalind A. Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
34
|
Iwata S, Morikawa M, Takei Y, Hirokawa N. An activity-dependent local transport regulation via degradation and synthesis of KIF17 underlying cognitive flexibility. SCIENCE ADVANCES 2020; 6:6/51/eabc8355. [PMID: 33328231 PMCID: PMC7744090 DOI: 10.1126/sciadv.abc8355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Synaptic weight changes among postsynaptic densities within a single dendrite are regulated by the balance between localized protein degradation and synthesis. However, the molecular mechanism via these opposing regulatory processes is still elusive. Here, we showed that the molecular motor KIF17 was locally degraded and synthesized in an N-methyl-d-aspartate receptor (NMDAR)-mediated activity-dependent manner. Accompanied by the degradation of KIF17, its transport was temporarily dampened in dendrites. We also observed that activity-dependent local KIF17 synthesis driven by its 3' untranslated region (3'UTR) occurred at dendritic shafts, and the newly synthesized KIF17 moved along the dendrites. Furthermore, hippocampus-specific deletion of Kif17 3'UTR disrupted KIF17 synthesis induced by fear memory retrieval, leading to impairment in extinction of fear memory. These results indicate that the regulation of the KIF17 transport is driven by the single dendrite-restricted cycle of degradation and synthesis that underlies cognitive flexibility.
Collapse
Affiliation(s)
- Suguru Iwata
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Ichinose S, Ogawa T, Jiang X, Hirokawa N. The Spatiotemporal Construction of the Axon Initial Segment via KIF3/KAP3/TRIM46 Transport under MARK2 Signaling. Cell Rep 2020; 28:2413-2426.e7. [PMID: 31461655 DOI: 10.1016/j.celrep.2019.07.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023] Open
Abstract
The axon initial segment (AIS) is a compartment that serves as a molecular barrier to achieve axon-dendrite differentiation. Distribution of specific proteins during early neuronal development has been proposed to be critical for AIS construction. However, it remains unknown how these proteins are specifically targeted to the proximal axon within this limited time period. Here, we reveal spatiotemporal regulation driven by the microtubule (MT)-based motor KIF3A/B/KAP3 that transports TRIM46, influenced by a specific MARK2 phosphorylation cascade. In the proximal part of the future axon under low MARK2 activity, the KIF3/KAP3 motor recognizes TRIM46 as cargo and transports it to the future AIS. In contrast, in the somatodendritic area under high MARK2 activity, KAP3 phosphorylated at serine 60 by MARK2 cannot bind with TRIM46 and be transported. This spatiotemporal regulation between KIF3/KAP3 and TRIM46 under specific MARK2 activity underlies the specific transport needed for axonal differentiation.
Collapse
Affiliation(s)
- Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xuguang Jiang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
36
|
Gavrilovici C, Jiang Y, Kiroski I, Teskey GC, Rho JM, Nguyen MD. Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cereb Cortex Commun 2020; 1:tgaa024. [PMID: 32864616 PMCID: PMC7446231 DOI: 10.1093/texcom/tgaa024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - G Campbell Teskey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| |
Collapse
|
37
|
Kurihara M, Ishiura H, Bannai T, Mitsui J, Yoshimura J, Morishita S, Hayashi T, Shimizu J, Toda T, Tsuji S. A Novel de novo KIF1A Mutation in a Patient with Autism, Hyperactivity, Epilepsy, Sensory Disturbance, and Spastic Paraplegia. Intern Med 2020; 59:839-842. [PMID: 31813911 PMCID: PMC7118386 DOI: 10.2169/internalmedicine.3661-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heterozygous mutations in KIF1A have been reported to cause syndromic intellectual disability or pure spastic paraplegia. However, their genotype-phenotype correlations have not been fully elucidated. We herein report a man with autism and hyperactivity along with sensory disturbance and spastic paraplegia, carrying a novel de novo mutation in KIF1A [c.37C>T (p.R13C)]. Autism and hyperactivity have only previously been reported in a patient with c.38 G>A (R13H) mutation. This case suggests that alterations in this arginine at codon 13 might lead to a common clinical spectrum and further expand the genetic and clinical spectra associated with KIF1A mutations.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Taro Bannai
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Toshihiro Hayashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Physiology, Teikyo University School of Medicine, Japan
| | - Jun Shimizu
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
38
|
Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T, Li Y, Wang J, Zhang H, Li X, Xiao J. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020; 10:1649-1677. [PMID: 32042328 PMCID: PMC6993217 DOI: 10.7150/thno.40919] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Autophagy in Schwann cells (SCs) is crucial for myelin debris degradation and clearance following peripheral nerve injury (PNI). Nerve growth factor (NGF) plays an important role in reconstructing peripheral nerve fibers and promoting axonal regeneration. However, it remains unclear if NGF effect in enhancing nerve regeneration is mediated through autophagic clearance of myelin debris in SCs. Methods: In vivo, free NGF solution plus with/without pharmacological inhibitors were administered to a rat sciatic nerve crush injury model. In vitro, the primary Schwann cells (SCs) and its cell line were cultured in normal medium containing NGF, their capable of swallowing or clearing degenerated myelin was evaluated through supplement of homogenized myelin fractions. Results: Administration of exogenous NGF could activate autophagy in dedifferentiated SCs, accelerate myelin debris clearance and phagocytosis, as well as promote axon and myelin regeneration at early stage of PNI. These NGF effects were effectively blocked by autophagy inhibitors. In addition, inhibition of the p75 kD neurotrophin receptor (p75NTR) signal or inactivation of the AMP-activated protein kinase (AMPK) also inhibited the NGF effect as well. Conclusions: NGF effect on promoting early nerve regeneration is closely associated with its accelerating autophagic clearance of myelin debris in SCs, which probably regulated by the p75NTR/AMPK/mTOR axis. Our studies thus provide strong support that NGF may serve as a powerful pharmacological therapy for peripheral nerve injuries.
Collapse
|
39
|
An isoform-selective inhibitor of tropomyosin receptor kinase A behaves as molecular glue. Bioorg Med Chem Lett 2020; 30:126775. [PMID: 31699609 DOI: 10.1016/j.bmcl.2019.126775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
The production of TrkA-selective inhibitors is considerably difficult because the kinase domains of TrkA and its isoforms TrkB/C have highly homologous amino acid sequences. Here we describe the structural basis for the acquisition of selectivity for a isoform-selective TrkA inhibitor, namely compound V1. The X-ray structure revealed that V1 acts as a molecular glue to stabilize the symmetrical dimer of the TrkA kinase domains. V1 binds to the ATP-binding site and simultaneously engages in the dimeric interface of TrkA. The region of the dimeric interface in TrkA is not conserved in TrkB/C; thus, dimer formation may be a novel mechanism for the production of selective TrkA inhibitors. The biochemical and biophysical assay results confirmed that V1 selectively inhibited TrkA and induced the dimer formation of TrkA, but not TrkB. The binding pocket at the TrkA dimer interface can be used for the production of new isoform-selective TrkA inhibitors.
Collapse
|
40
|
Morikawa M, Tanaka Y, Cho HS, Yoshihara M, Hirokawa N. The Molecular Motor KIF21B Mediates Synaptic Plasticity and Fear Extinction by Terminating Rac1 Activation. Cell Rep 2019; 23:3864-3877. [PMID: 29949770 DOI: 10.1016/j.celrep.2018.05.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/16/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Fear extinction is a component of cognitive flexibility that is relevant for important psychiatric diseases, but its molecular mechanism is still largely elusive. We established mice lacking the kinesin-4 motor KIF21B as a model for fear extinction defects. Postsynaptic NMDAR-dependent long-term depression (LTD) is specifically impaired in knockouts. NMDAR-mediated LTD-causing stimuli induce dynamic association of KIF21B with the Rac1GEF subunit engulfment and cell motility protein 1 (ELMO1), leading to ELMO1 translocation out of dendritic spines and its sequestration in endosomes. This process may essentially terminate transient activation of Rac1, shrink spines, facilitate AMPAR endocytosis, and reduce postsynaptic strength, thereby forming a mechanistic link to LTD expression. Antagonizing ELMO1/Dock Rac1GEF activity by the administration of 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) significantly reverses the knockout phenotype. Therefore, we propose that KIF21B-mediated Rac1 inactivation is a key molecular event in NMDAR-dependent LTD expression underlying cognitive flexibility in fear extinction.
Collapse
Affiliation(s)
- Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hyun-Soo Cho
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaharu Yoshihara
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
41
|
Wang L, Tanaka Y, Wang D, Morikawa M, Zhou R, Homma N, Miyamoto Y, Hirokawa N. The Atypical Kinesin KIF26A Facilitates Termination of Nociceptive Responses by Sequestering Focal Adhesion Kinase. Cell Rep 2019; 24:2894-2907. [PMID: 30208315 DOI: 10.1016/j.celrep.2018.05.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
Kinesin superfamily proteins (KIFs) are molecular motors that typically alter the subcellular localization of their cargos. However, the atypical kinesin KIF26A does not serve as a motor but can bind microtubules and affect cellular signaling cascades. Here, we show that KIF26A maintains intracellular calcium homeostasis and negatively regulates nociceptive sensation. Kif26a-/- mice exhibit intense and prolonged nociceptive responses. In their primary sensory neurons, excessive inhibitory phosphorylation of plasma membrane Ca2+ ATPase (PMCA) mediated by focal adhesion kinase (FAK) rendered the Ca transients resistant to termination, and the peripheral axonal outgrowth was significantly enhanced. Upstream, KIF26A is directly associated with a FERM domain of FAK and antagonizes FAK function in integrin-Src family kinase (SFK)-FAK signaling, possibly through steric hindrance and localization to cytoplasmic microtubules.
Collapse
Affiliation(s)
- Li Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Doudou Wang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ruyun Zhou
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Homma
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Miyamoto
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
42
|
Yamashita N. Retrograde signaling via axonal transport through signaling endosomes. J Pharmacol Sci 2019; 141:91-96. [PMID: 31679963 DOI: 10.1016/j.jphs.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 11/28/2022] Open
Abstract
Neurons extend axons far from cell bodies, and retrograde communications from distal axons to cell bodies and/or dendrites play critical roles in the development and maintenance of neuronal circuits. In neurotrophin signaling, the retrograde axonal transport of endosomes containing active ligand-receptor complexes from distal axons to somatodendrite compartments mediates retrograde signaling. However, the generality and specificity of these endosome-based transportations called "signaling endosomes" remain to be elucidated. Here, I summarize the discovery of semaphorin3A signaling endosomes, the first example other than neurotrophins to regulate dendritic development via AMPA receptor GluA2 localization in dendrites. The molecular components of Sema3A and neurotrophin signaling endosomes are distinct, but partially overlap to regulate specific and common cellular events. Because receptors are transported back to the cell bodies, neurons must replenish receptors on the growth cone surface to ensure continued response to the target-derived ligands. Recent findings have demonstrated that retrograde signaling endosomes also induce anterograde delivery of nascent receptors in neurotrophin signaling. The coupling between anterograde and retrograde axonal transport via signaling endosomes therefore plays a critical role in regulating proper neuronal network formation.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
43
|
|
44
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
45
|
Atkins M, Gasmi L, Bercier V, Revenu C, Del Bene F, Hazan J, Fassier C. FIGNL1 associates with KIF1Bβ and BICD1 to restrict dynein transport velocity during axon navigation. J Cell Biol 2019; 218:3290-3306. [PMID: 31541015 PMCID: PMC6781435 DOI: 10.1083/jcb.201805128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Atkins et al. identify a new role for Fidgetin-like 1 in motor axon navigation via its regulation of bidirectional axonal transport. They show that Fidgetin-like 1 binds Kif1bβ and the opposed polarity-directed motor dynein/dynactin in a molecular complex and controls circuit wiring by reducing dynein velocity in developing motor axons. Neuronal connectivity relies on molecular motor-based axonal transport of diverse cargoes. Yet the precise players and regulatory mechanisms orchestrating such trafficking events remain largely unknown. We here report the ATPase Fignl1 as a novel regulator of bidirectional transport during axon navigation. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we showed that Fignl1 binds the kinesin Kif1bβ and the dynein/dynactin adaptor Bicaudal D-1 (Bicd1) in a molecular complex including the dynactin subunit dynactin 1. Fignl1 colocalized with Kif1bβ and showed bidirectional mobility in zebrafish axons. Notably, Kif1bβ and Fignl1 loss of function similarly altered zebrafish motor axon pathfinding and increased dynein-based transport velocity of Rab3 vesicles in these navigating axons, pinpointing Fignl1/Kif1bβ as a dynein speed limiter complex. Accordingly, disrupting dynein/dynactin activity or Bicd1/Fignl1 interaction induced motor axon pathfinding defects characteristic of Fignl1 gain or loss of function, respectively. Finally, pharmacological inhibition of dynein activity partially rescued the axon pathfinding defects of Fignl1-depleted larvae. Together, our results identify Fignl1 as a key dynein regulator required for motor circuit wiring.
Collapse
Affiliation(s)
- Melody Atkins
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Valérie Bercier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Filippo Del Bene
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Jamilé Hazan
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Coralie Fassier
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
46
|
KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. Eur J Hum Genet 2019; 28:40-49. [PMID: 31488895 PMCID: PMC6906463 DOI: 10.1038/s41431-019-0497-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Variants in the KIF1A gene can cause autosomal recessive spastic paraplegia 30, autosomal recessive hereditary sensory neuropathy, or autosomal (de novo) dominant mental retardation type 9. More recently, variants in KIF1A have also been described in a few cases with autosomal dominant spastic paraplegia. Here, we describe 20 KIF1A variants in 24 patients from a clinical exome sequencing cohort of 347 individuals with a mostly ‘pure’ spastic paraplegia. In these patients, spastic paraplegia was slowly progressive and mostly pure, but with a highly variable disease onset (0–57 years). Segregation analyses showed a de novo occurrence in seven cases, and a dominant inheritance pattern in 11 families. The motor domain of KIF1A is a hotspot for disease causing variants in autosomal dominant spastic paraplegia, similar to mental retardation type 9 and recessive spastic paraplegia type 30. However, unlike these allelic disorders, dominant spastic paraplegia was also caused by loss-of-function variants outside this domain in six families. Finally, three missense variants were outside the motor domain and need further characterization. In conclusion, KIF1A variants are a frequent cause of autosomal dominant spastic paraplegia in our cohort (6–7%). The identification of KIF1A loss-of-function variants suggests haploinsufficiency as a possible mechanism in autosomal dominant spastic paraplegia.
Collapse
|
47
|
Giatti S, Diviccaro S, Melcangi RC. Neuroactive Steroids and Sex-Dimorphic Nervous Damage Induced by Diabetes Mellitus. Cell Mol Neurobiol 2019; 39:493-502. [PMID: 30109515 PMCID: PMC11469803 DOI: 10.1007/s10571-018-0613-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/09/2018] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disease where improper glycaemic control may induce severe complications in different organs. In this review, we will discuss alterations occurring in peripheral and central nervous system of patients with type 1 (i.e., insulin dependent diabetes mellitus,) or type 2 diabetes (i.e., non-insulin dependent diabetes mellitus), as well as related experimental models. A particular focus will be on the role exerted by neuroactive steroids (i.e., important regulators of nervous functions) in the nervous damage induced by diabetes. Indeed, the nervous levels of these molecules are affected by the pathology and, in agreement, their neuroprotective effects have been reported. Interestingly, the sex is another important variable. As discussed, nervous diabetic complications show sex dimorphic features in term of incidence, functional outcomes and neuroactive steroid levels. Therefore, these features represent an interesting background for possible sex-oriented therapies with neuroactive steroids aimed to counteract nervous damage observed in diabetic pathology.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
48
|
Lessard DV, Zinder OJ, Hotta T, Verhey KJ, Ohi R, Berger CL. Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A. J Biol Chem 2019; 294:6353-6363. [PMID: 30770469 DOI: 10.1074/jbc.ra118.005765] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
The kinesin-3 family member KIF1A plays a critical role in site-specific neuronal cargo delivery during axonal transport. KIF1A cargo is mislocalized in many neurodegenerative diseases, indicating that KIF1A's highly efficient, superprocessive motility along axonal microtubules needs to be tightly regulated. One potential regulatory mechanism may be through posttranslational modifications (PTMs) of axonal microtubules. These PTMs often occur on the C-terminal tails of the microtubule tracks, act as molecular "traffic signals" helping to direct kinesin motor cargo delivery, and include C-terminal tail polyglutamylation important for KIF1A cargo transport. KIF1A initially interacts with microtubule C-terminal tails through its K-loop, a positively charged surface loop of the KIF1A motor domain. However, the role of the K-loop in KIF1A motility and response to perturbations in C-terminal tail polyglutamylation is underexplored. Using single-molecule imaging, we present evidence that KIF1A pauses on different microtubule lattice structures, linking multiple processive segments together and contributing to KIF1A's characteristic superprocessive run length. Furthermore, modifications of the KIF1A K-loop or tubulin C-terminal tail polyglutamylation reduced KIF1A pausing and overall run length. These results suggest a new mechanism to regulate KIF1A motility via pauses mediated by K-loop/polyglutamylated C-terminal tail interactions, providing further insight into KIF1A's role in axonal transport.
Collapse
Affiliation(s)
- Dominique V Lessard
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Oraya J Zinder
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| | - Takashi Hotta
- the Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kristen J Verhey
- the Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ryoma Ohi
- the Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Christopher L Berger
- From the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405 and
| |
Collapse
|
49
|
Stratiievska A, Nelson S, Senning EN, Lautz JD, Smith SE, Gordon SE. Reciprocal regulation among TRPV1 channels and phosphoinositide 3-kinase in response to nerve growth factor. eLife 2018; 7:38869. [PMID: 30560783 PMCID: PMC6312403 DOI: 10.7554/elife.38869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Although it has been known for over a decade that the inflammatory mediator NGF sensitizes pain-receptor neurons through increased trafficking of TRPV1 channels to the plasma membrane, the mechanism by which this occurs remains mysterious. NGF activates phosphoinositide 3-kinase (PI3K), the enzyme that generates PI(3,4)P2 and PIP3, and PI3K activity is required for sensitization. One tantalizing hint came from the finding that the N-terminal region of TRPV1 interacts directly with PI3K. Using two-color total internal reflection fluorescence microscopy, we show that TRPV1 potentiates NGF-induced PI3K activity. A soluble TRPV1 fragment corresponding to the N-terminal Ankyrin repeats domain (ARD) was sufficient to produce this potentiation, indicating that allosteric regulation was involved. Further, other TRPV channels with conserved ARDs also potentiated NGF-induced PI3K activity. Our data demonstrate a novel reciprocal regulation of PI3K signaling by the ARD of TRPV channels.
Collapse
Affiliation(s)
| | - Sara Nelson
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Eric N Senning
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Stephen Ep Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pediatrics and Graduate Program in Neuroscience, University of Washington, Seattle, United States
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
50
|
Chiabrando D, Fiorito V, Petrillo S, Tolosano E. Unraveling the Role of Heme in Neurodegeneration. Front Neurosci 2018; 12:712. [PMID: 30356807 PMCID: PMC6189481 DOI: 10.3389/fnins.2018.00712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential co-factor involved in several biological processes, including neuronal survival and differentiation. Nevertheless, an excess of free-heme promotes oxidative stress and lipid peroxidation, thus leading to cell death. The toxic properties of heme in the brain have been extensively studied during intracerebral or subarachnoid hemorrhages. Recently, a growing number of neurodegenerative disorders have been associated to alterations of heme metabolism. Hence, the etiology of such diseases remains undefined. The aim of this review is to highlight the neuropathological role of heme and to discuss the major heme-regulated pathways that might be crucial for the survival of neuronal cells. The understanding of the molecular mechanisms linking heme to neurodegeneration will be important for therapeutic purposes.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Veronica Fiorito
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Sara Petrillo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|