1
|
Horjus J, van Mourik-Banda T, Heerings MAP, Hakobjan M, De Witte W, Heersema DJ, Jansen AJ, Strijbis EMM, de Jong BA, Slettenaar AEJ, Zeinstra EMPE, Hoogervorst ELJ, Franke B, Kruijer W, Jongen PJ, Visser LJ, Poelmans G. Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231911461. [PMID: 36232761 PMCID: PMC9570223 DOI: 10.3390/ijms231911461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a degenerative disease of the central nervous system in which auto-immunity-induced demyelination occurs. MS is thought to be caused by a complex interplay of environmental and genetic risk factors. While most genetic studies have focused on identifying common genetic variants for MS through genome-wide association studies, the objective of the present study was to identify rare genetic variants contributing to MS susceptibility. We used whole exome sequencing (WES) followed by co-segregation analyses in nine multi-incident families with two to four affected individuals. WES was performed in 31 family members with and without MS. After applying a suite of selection criteria, co-segregation analyses for a number of rare variants selected from the WES results were performed, adding 24 family members. This approach resulted in 12 exonic rare variants that showed acceptable co-segregation with MS within the nine families, implicating the genes MBP, PLK1, MECP2, MTMR7, TOX3, CPT1A, SORCS1, TRIM66, ITPR3, TTC28, CACNA1F, and PRAM1. Of these, three genes (MBP, MECP2, and CPT1A) have been previously reported as carrying MS-related rare variants. Six additional genes (MTMR7, TOX3, SORCS1, ITPR3, TTC28, and PRAM1) have also been implicated in MS through common genetic variants. The proteins encoded by all twelve genes containing rare variants interact in a molecular framework that points to biological processes involved in (de-/re-)myelination and auto-immunity. Our approach provides clues to possible molecular mechanisms underlying MS that should be studied further in cellular and/or animal models.
Collapse
Affiliation(s)
- Julia Horjus
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tineke van Mourik-Banda
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marco A. P. Heerings
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marina Hakobjan
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dorothea J. Heersema
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne J. Jansen
- Department of Neurology, Bravis Hospital, 4708 AE Bergen op Zoom, The Netherlands
| | - Eva M. M. Strijbis
- Department of Neurology, Amsterdam UMC, location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Brigit A. de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wiebe Kruijer
- Independent Life Science Consultant, 3831 CE Leusden, The Netherlands
| | - Peter J. Jongen
- MS4 Research Institute, 6522 KJ Nijmegen, The Netherlands
- Department of Community & Occupational Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Leo J. Visser
- Department of Neurology, St. Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
- Department of Care Ethics, University of Humanistic Studies, 3512 HD Utrecht, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
2
|
Hone L, Giovannoni G, Dobson R, Jacobs BM. Predicting Multiple Sclerosis: Challenges and Opportunities. Front Neurol 2022; 12:761973. [PMID: 35211072 PMCID: PMC8860835 DOI: 10.3389/fneur.2021.761973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Determining effective means of preventing Multiple Sclerosis (MS) relies on testing preventive strategies in trial populations. However, because of the low incidence of MS, demonstrating that a preventive measure has benefit requires either very large trial populations or an enriched population with a higher disease incidence. Risk scores which incorporate genetic and environmental data could be used, in principle, to identify high-risk individuals for enrolment in preventive trials. Here we discuss the concepts of developing predictive scores for identifying individuals at high risk of MS. We discuss the empirical efforts to do so using real cohorts, and some of the challenges-both theoretical and practical-limiting this work. We argue that such scores could offer a means of risk stratification for preventive trial design, but are unlikely to ever constitute a clinically-helpful approach to predicting MS for an individual.
Collapse
Affiliation(s)
- Luke Hone
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom
| | - Gavin Giovannoni
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom.,Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Ruth Dobson
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom.,Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Benjamin Meir Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and Queen Mary University of London, London, United Kingdom.,Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Zrzavy T, Leutmezer F, Kristoferitsch W, Kornek B, Schneider C, Rommer P, Berger T, Zimprich A. Exome-Sequence Analyses of Four Multi-Incident Multiple Sclerosis Families. Genes (Basel) 2020; 11:E988. [PMID: 32854198 PMCID: PMC7563748 DOI: 10.3390/genes11090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the Central Nervous System (CNS). Currently, it is estimated that 30-40% of the phenotypic variability of MS can be explained by genetic factors. However, low susceptibility variants identified through Genome Wide Association Study (GWAS) were calculated to explain about 50% of the heritability. Whether familial high-risk variants also contribute to heritability is a subject of controversy. In the last few years, several familial variants have been nominated, but none of them have been unequivocally confirmed. One reason for this may be that genetic heterogeneity and reduced penetrance are hindering detection. Sequencing a large number of MS families is needed to answer this question. In this study, we performed whole exome sequencing in four multi-case families, of which at least three affected individuals per family were analyzed. We identified a total of 138 rare variants segregating with disease in each of the families. Although no single variant showed convincing evidence for disease causation, some genes seemed particularly interesting based on their biological function. The main aim of this study was to provide a complete list of all rare segregating variants to provide the possibility for other researchers to cross-check familial candidate genes in an unbiased manner.
Collapse
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.Z.); (F.L.); (B.K.); (P.R.); (T.B.)
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.Z.); (F.L.); (B.K.); (P.R.); (T.B.)
| | - Wolfgang Kristoferitsch
- Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, 1090 Vienna, Austria;
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.Z.); (F.L.); (B.K.); (P.R.); (T.B.)
| | - Christine Schneider
- Department of Neurology, University Medical Center Augsburg, 86156 Augsburg, Germany;
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.Z.); (F.L.); (B.K.); (P.R.); (T.B.)
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.Z.); (F.L.); (B.K.); (P.R.); (T.B.)
| | - Alexander Zimprich
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria; (T.Z.); (F.L.); (B.K.); (P.R.); (T.B.)
| |
Collapse
|
4
|
Abstract
Multiple sclerosis (MS) exhibits a well-documented increased incidence in individuals with respective family history, that is, is a heritable disease. In the last decade, genome-wide association studies have enabled the agnostic interrogation of the whole genome at a large scale. To date, over 200 genetic associations have been described at the strict level of genome-wide significance. Our current understanding of MS genetics can explain up to half of the disease's heritability, raising the important question of whether this is enough information to leverage toward improving diagnosis in MS. Parallel advancements in technologies that allow the characterization of the full transcriptome down to the single-cell level have enabled the generation of an unprecedented wealth of information. Transcriptional changes of putative causal cells could be utilized to identify early signs of disease onset. These recent findings in genetics and genomics, coupled with new technologies and deeply phenotyped cohorts, have the potential to improve the diagnosis of MS.
Collapse
Affiliation(s)
- Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA/Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA/Harvard Medical School, Boston, MA, USA/Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip L De Jager
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA/Center for Translational and Computational Neuroimmunology, Multiple Sclerosis Center, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Shepard CJ, Cline SG, Hinds D, Jahanbakhsh S, Prokop JW. Breakdown of multiple sclerosis genetics to identify an integrated disease network and potential variant mechanisms. Physiol Genomics 2019; 51:562-577. [PMID: 31482761 DOI: 10.1152/physiolgenomics.00120.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetics of multiple sclerosis (MS) are highly polygenic with few insights into mechanistic associations with pathology. In this study, we assessed MS genetics through linkage disequilibrium and missense variant interpretation to yield a MS gene network. This network of 96 genes was taken through pathway analysis, tissue expression profiles, single cell expression segregation, expression quantitative trait loci (eQTLs), genome annotations, transcription factor (TF) binding profiles, structural genome looping, and overlap with additional associated genetic traits. This work revealed immune system dysfunction, nerve cell myelination, energetic control, transcriptional regulation, and variants that overlap multiple autoimmune disorders. Tissue-specific expression and eQTLs of MS genes implicate multiple immune cell types including macrophages, neutrophils, and T cells, while the genes in neural cell types enrich for oligodendrocyte and myelin sheath biology. There are eQTLs in linkage with lead MS variants in 25 genes including the multitissue eQTL, rs9271640, for HLA-DRB1/DRB5. Using multiple functional genomic databases, we identified noncoding variants that disrupt TF binding for GABPA, CTCF, EGR1, YY1, SPI1, CLOCK, ARNTL, BACH1, and GFI1. Overall, this paper suggests multiple genetic mechanisms for MS associated variants while highlighting the importance of a systems biology and network approach when elucidating intersections of the immune and nervous system.
Collapse
Affiliation(s)
- C Joy Shepard
- Department of Biology, Athens State University, Athens, Alabama.,Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sara G Cline
- Department of Biology, Athens State University, Athens, Alabama
| | - David Hinds
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Seyedehameneh Jahanbakhsh
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
6
|
Mouzat K, Chudinova A, Polge A, Kantar J, Camu W, Raoul C, Lumbroso S. Regulation of Brain Cholesterol: What Role Do Liver X Receptors Play in Neurodegenerative Diseases? Int J Mol Sci 2019; 20:E3858. [PMID: 31398791 PMCID: PMC6720493 DOI: 10.3390/ijms20163858] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Liver X Receptors (LXR) alpha and beta are two members of nuclear receptor superfamily documented as endogenous cholesterol sensors. Following conversion of cholesterol in oxysterol, both LXR isoforms detect intracellular concentrations and act as transcription factors to promote expression of target genes. Among their numerous physiological roles, they act as central cholesterol-lowering factors. In the central nervous system (CNS), cholesterol has been shown to be an essential determinant of brain function, particularly as a major constituent of myelin and membranes. In the brain, LXRs act as cholesterol central regulators, and, beyond this metabolic function, LXRs have additional roles such as providing neuroprotective effects and lowering neuroinflammation. In many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and multiple sclerosis (MS), dysregulations of cholesterol and oxysterol have been reported. In this paper, we propose to focus on recent advances in the knowledge of the LXRs roles on brain cholesterol and oxysterol homeostasis, neuroinflammation, neuroprotection, and their putative involvement in neurodegenerative disorders. We will discuss their potential use as candidates for both molecular diagnosis and as promising pharmacological targets in the treatment of ALS, AD, or MS patients.
Collapse
Affiliation(s)
- Kevin Mouzat
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France.
| | - Aleksandra Chudinova
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - Anne Polge
- Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Jovana Kantar
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, Inserm UMR1051, University of Montpellier, 34091 Montpellier, France
| | - Serge Lumbroso
- Motoneuron Disease: Pathophysiology and Therapy, The Neuroscience Institute of Montpellier, University of Montpellier, Montpellier, Laboratoire de Biochimie et Biologie Moléculaire, Nimes University Hospital, 30029 Nîmes, France
| |
Collapse
|
7
|
Ziliotto N, Marchetti G, Scapoli C, Bovolenta M, Meneghetti S, Benazzo A, Lunghi B, Balestra D, Laino LA, Bozzini N, Guidi I, Salvi F, Straudi S, Gemmati D, Menegatti E, Zamboni P, Bernardi F. C6orf10 Low-Frequency and Rare Variants in Italian Multiple Sclerosis Patients. Front Genet 2019; 10:573. [PMID: 31297130 PMCID: PMC6607989 DOI: 10.3389/fgene.2019.00573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
In light of the complex nature of multiple sclerosis (MS) and the recently estimated contribution of low-frequency variants into disease, decoding its genetic risk components requires novel variant prioritization strategies. We selected, by reviewing MS Genome Wide Association Studies (GWAS), 107 candidate loci marked by intragenic single nucleotide polymorphisms (SNPs) with a remarkable association (p-value ≤ 5 × 10-6). A whole exome sequencing (WES)-based pilot study of SNPs with minor allele frequency (MAF) ≤ 0.04, conducted in three Italian families, revealed 15 exonic low-frequency SNPs with affected parent-child transmission. These variants were detected in 65/120 Italian unrelated MS patients, also in combination (22 patients). Compared with databases (controls gnomAD, dbSNP150, ExAC, Tuscany-1000 Genome), the allelic frequencies of C6orf10 rs16870005 and IL2RA rs12722600 were significantly higher (i.e., controls gnomAD, p = 9.89 × 10-7 and p < 1 × 10-20). TET2 rs61744960 and TRAF3 rs138943371 frequencies were also significantly higher, except in Tuscany-1000 Genome. Interestingly, the association of C6orf10 rs16870005 (Ala431Thr) with MS did not depend on its linkage disequilibrium with the HLA-DRB1 locus. Sequencing in the MS cohort of the C6orf10 3′ region revealed 14 rare mutations (10 not previously reported). Four variants were null, and significantly more frequent than in the databases. Further, the C6orf10 rare variants were observed in combinations, both intra-locus and with other low-frequency SNPs. The C6orf10 Ser389Xfr was found homozygous in a patient with early onset of the MS. Taking into account the potentially functional impact of the identified exonic variants, their expression in combination at the protein level could provide functional insights in the heterogeneous pathogenetic mechanisms contributing to MS.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Matteo Bovolenta
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Meneghetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Barbara Lunghi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Lorenza Anna Laino
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Nicolò Bozzini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Irene Guidi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabrizio Salvi
- IRCCS Institute of Neurological Sciences, Hospital Bellaria, Bologna, Italy
| | - Sofia Straudi
- Department of Neurosciences and Rehabilitation, S. Anna University Hospital, Ferrara, Italy
| | - Donato Gemmati
- Department of Biomedical & Specialty Surgical Sciences and Centre Haemostasis & Thrombosis, Section of Medical Biochemistry, Molecular Biology & Genetics, University of Ferrara, Ferrara, Italy
| | - Erica Menegatti
- Department of Morphology, Surgery and Experimental Medicine, Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Department of Morphology, Surgery and Experimental Medicine, Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Vilariño-Güell C, Zimprich A, Martinelli-Boneschi F, Herculano B, Wang Z, Matesanz F, Urcelay E, Vandenbroeck K, Leyva L, Gris D, Massaad C, Quandt JA, Traboulsee AL, Encarnacion M, Bernales CQ, Follett J, Yee IM, Criscuoli MG, Deutschländer A, Reinthaler EM, Zrzavy T, Mascia E, Zauli A, Esposito F, Alcina A, Izquierdo G, Espino-Paisán L, Mena J, Antigüedad A, Urbaneja-Romero P, Ortega-Pinazo J, Song W, Sadovnick AD. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 2019; 15:e1008180. [PMID: 31170158 PMCID: PMC6553700 DOI: 10.1371/journal.pgen.1008180] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.
Collapse
Affiliation(s)
| | | | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- MS Unit and Department of Neurology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of the Capital Medical University, Beijing, China
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Elena Urcelay
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Koen Vandenbroeck
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Leyva
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Denis Gris
- Division of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Charbel Massaad
- Toxicology, Pharmacology and Cell Signalisation—UMR-S 1124 Université Paris Descartes, Paris, France
| | - Jacqueline A. Quandt
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony L. Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Cecily Q. Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jordan Follett
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Irene M. Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Maria G. Criscuoli
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Angela Deutschländer
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States of America
| | - Eva M. Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Zauli
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | | | - Laura Espino-Paisán
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Jorge Mena
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Alfredo Antigüedad
- Neurology Department, Hospital Universitario de Cruces, S/N, Baracaldo, Spain
| | - Patricia Urbaneja-Romero
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Lassmann H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front Immunol 2019; 9:3116. [PMID: 30687321 PMCID: PMC6335289 DOI: 10.3389/fimmu.2018.03116] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023] Open
Abstract
In the majority of patients multiple sclerosis starts with a relapsing remitting course (RRMS), which may at later times transform into secondary progressive disease (SPMS). In a minority of patients the relapsing remitting disease is skipped and the patients show progression from the onset (primary progressive MS, PPMS). Evidence obtained so far indicate major differences between RRMS and progressive MS, but no essential differences between SPMS and PPMS, with the exception of a lower incidence in the global load of focal white matter lesions and in particular in the presence of classical active plaques in PPMS. We suggest that in MS patients two types of inflammation occur, which develop in parallel but partially independent from each other. The first is the focal bulk invasion of T- and B-lymphocytes with profound blood brain barrier leakage, which predominately affects the white matter, and which gives rise to classical active demyelinated plaques. The other type of inflammation is a slow accumulation of T-cells and B-cells in the absence of major blood brain barrier damage in the connective tissue spaces of the brain, such as the meninges and the large perivascular Virchow Robin spaces, where they may form aggregates or in most severe cases structures in part resembling tertiary lymph follicles. This type of inflammation is associated with the formation of subpial demyelinated lesions in the cerebral and cerebellar cortex, with slow expansion of pre-existing lesions in the white matter and with diffuse neurodegeneration in the normal appearing white or gray matter. The first type of inflammation dominates in acute and relapsing MS. The second type of inflammation is already present in early stages of MS, but gradually increases with disease duration and patient age. It is suggested that CD8+ T-lymphocytes remain in the brain and spinal cord as tissue resident cells, which may focally propagate neuroinflammation, when they re-encounter their cognate antigen. B-lymphocytes may propagate demyelination and neurodegeneration, most likely by producing soluble neurotoxic factors. Whether lymphocytes within the brain tissue of MS lesions have also regulatory functions is presently unknown. Key open questions in MS research are the identification of the target antigen recognized by tissue resident CD8+ T-cells and B-cells and the molecular nature of the soluble inflammatory mediators, which may trigger tissue damage.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Radecki DZ, Johnson EL, Brown AK, Meshkin NT, Perrine SA, Gow A. Corticohippocampal Dysfunction In The OBiden Mouse Model Of Primary Oligodendrogliopathy. Sci Rep 2018; 8:16116. [PMID: 30382234 PMCID: PMC6208344 DOI: 10.1038/s41598-018-34414-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Despite concerted efforts over decades, the etiology of multiple sclerosis (MS) remains unclear. Autoimmunity, environmental-challenges, molecular mimicry and viral hypotheses have proven equivocal because early-stage disease is typically presymptomatic. Indeed, most animal models of MS also lack defined etiologies. We have developed a novel adult-onset oligodendrogliopathy using a delineated metabolic stress etiology in myelinating cells, and our central question is, “how much of the pathobiology of MS can be recapitulated in this model?” The analyses described herein demonstrate that innate immune activation, glial scarring, cortical and hippocampal damage with accompanying electrophysiological, behavioral and memory deficits naturally emerge from disease progression. Molecular analyses reveal neurofilament changes in normal-appearing gray matter that parallel those in cortical samples from MS patients with progressive disease. Finally, axon initial segments of deep layer pyramidal neurons are perturbed in entorhinal/frontal cortex and hippocampus from OBiden mice, and computational modeling provides insight into vulnerabilities of action potential generation during demyelination and early remyelination. We integrate these findings into a working model of corticohippocampal circuit dysfunction to predict how myelin damage might eventually lead to cognitive decline.
Collapse
Affiliation(s)
- Daniel Z Radecki
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Elizabeth L Johnson
- Institute of Gerontology, Wayne State University, Detroit, MI, 48202, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Ashley K Brown
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Nicholas T Meshkin
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA.,Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA. .,Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA. .,Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Zrzavy T, Kovacs-Nagy R, Reinthaler E, Deutschländer A, Schmied C, Kornek B, Leutmezer F, Zimprich A. A rare P2RX7 variant in a Hungarian family with multiple sclerosis. Mult Scler Relat Disord 2018; 27:340-341. [PMID: 30472412 DOI: 10.1016/j.msard.2018.10.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Austria
| | - Reka Kovacs-Nagy
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Eva Reinthaler
- Department of Neurology, Medical University of Vienna, Austria
| | - Angela Deutschländer
- Department of Neurology, Ludwig-Maximilians University of Munich, Germany; Department of Neurology and Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Austria
| | | |
Collapse
|
12
|
Abstract
The contribution of genetic inheritance in multiple sclerosis was established early on. Although multiple sclerosis is not a Mendelian disease, its incidence and prevalence is higher in family members of affected individuals compared with the general population. Throughout the last decade, several small studies failed to identify any robust genetic associations besides the classic associations in the major histocompatibility complex region. During the past few years, genome-wide association studies (GWAS) have revolutionized the genetics of multiple sclerosis, uncovering more than 200 implicated genetic loci. Here, we describe these main findings and discuss the new avenues that these discoveries lay open.
Collapse
Affiliation(s)
- Nikolaos A Patsopoulos
- Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142
| |
Collapse
|
13
|
Mescheriakova JY, Verkerk AJ, Amin N, Uitterlinden AG, van Duijn CM, Hintzen RQ. Linkage analysis and whole exome sequencing identify a novel candidate gene in a Dutch multiple sclerosis family. Mult Scler 2018; 25:909-917. [PMID: 29873607 PMCID: PMC6545620 DOI: 10.1177/1352458518777202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex disease resulting from the joint effect of many genes. It has been speculated that rare variants might explain part of the missing heritability of MS. OBJECTIVE To identify rare coding genetic variants by analyzing a large MS pedigree with 11 affected individuals in several generations. METHODS Genome-wide linkage screen and whole exome sequencing (WES) were performed to identify novel coding variants in the shared region(s) and in the known 110 MS risk loci. The candidate variants were then assessed in 591 MS patients and 3169 controls. RESULTS Suggestive evidence for linkage was obtained to 7q11.22-q11.23. In WES data, a rare missense variant p.R183C in FKBP6 was identified that segregated with the disease in this family. The minor allele frequency was higher in an independent cohort of MS patients than in healthy controls (1.27% vs 0.95%), but not significant (odds ratio (OR) = 1.33 (95% confidence interval (CI): 0.8-2.4), p = 0.31). CONCLUSION The rare missense variant in FKBP6 was identified in a large Dutch MS family segregating with the disease. This association to MS was not found in an independent MS cohort. Overall, genome-wide studies in larger cohorts are needed to adequately investigate the role of rare variants in MS risk.
Collapse
Affiliation(s)
- Julia Y Mescheriakova
- Department of Neurology, MS Center ErasMS, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Rogier Q Hintzen
- Department of Neurology, MS Center ErasMS, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Zhang Y, Wang L, Jia H, Liao M, Chen X, Xu J, Bao Y, Liu G. Genetic variants regulate NR1H3 expression and contribute to multiple sclerosis risk. J Neurol Sci 2018; 390:162-165. [PMID: 29801879 DOI: 10.1016/j.jns.2018.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/30/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
Abstract
A recent study analyzed 2053 multiple sclerosis (MS) cases and 799 healthy controls to investigate whether five genetic variants (rs11039149, rs12221497, rs2279238, rs7120118 and rs7114704) in NR1H3 are associated with MS risk. However this study reported negative results. It is very important that the appropriate samples and approach should be used in replication studies, which may provide the correct interpretation of the results. Here, we evaluated the above findings using large-scale MS genome-wide association studies with a total of 27,148 samples including 9772 MS cases and 17,376 controls, and multiple expression quantitative trait loci datasets. The results suggest that rs7120118 and rs2279238 variants are significantly associated with MS risk, and could significantly regulate NR1H3 expression in kinds of human tissues and cells. In summary, these findings provide important supplementary information about the association between NR1H3 variants and MS risk.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang 261053, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang 261053, China
| | - Haiyang Jia
- College of Computer Science and Technology, Jilin University, China; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Jianyong Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Yunjuan Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Guiyou Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
15
|
Wang Z, Sadovnick AD, Traboulsee AL, Ross JP, Bernales CQ, Encarnacion M, Yee IM, de Lemos M, Greenwood T, Lee JD, Wright G, Ross CJ, Zhang S, Song W, Vilariño-Güell C. Case-Control Studies Are Not Familial Studies. Neuron 2017; 92:339-341. [PMID: 27764669 DOI: 10.1016/j.neuron.2016.09.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 09/25/2016] [Indexed: 01/22/2023]
Abstract
Identifying rare genetic variants that drive the onset of disease is challenging, even before considering the additional genetic and environmental influences that likely exist in complex diseases. We recently published a study proposing a rare variant in the NR1H3 gene (p.R415Q, rs61731956) as responsible for the onset of multiple sclerosis (MS) in two multi-incident families (Wang et al., 2016). This publication has generated much discussion, and fortunately the possibility to validate a finding or prove it spurious can occur rapidly in genetic studies. All novel discoveries must be replicated, and best efforts should be made to ensure that these replications use the appropriate samples and approach, and provide the correct interpretation of the results. This Matters Arising Response paper addresses the Minikel and MacArthur (2016) and The International Multiple Sclerosis Genetics Consortium (2016) Matters Arising papers, published concurrently in Neuron.
Collapse
Affiliation(s)
- Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - A Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony L Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jay P Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cecily Q Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Irene M Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Madonna de Lemos
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Talitha Greenwood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joshua D Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Galen Wright
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Colin J Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Si Zhang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carles Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
16
|
Minikel EV, MacArthur DG. Publicly Available Data Provide Evidence against NR1H3 R415Q Causing Multiple Sclerosis. Neuron 2017; 92:336-338. [PMID: 27764668 DOI: 10.1016/j.neuron.2016.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
It has recently been reported that an NR1H3 missense variant, R415Q, causes a novel familial form of multiple sclerosis (Wang et al., 2016a). This claim is at odds with publicly available data from the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org). The allele frequency of R415Q is not significantly higher in cases (0.024%-0.049%) than in ExAC population controls (0.031%), whereas if R415Q conferred even 50% lifetime risk of developing MS, it would be hundreds of times more common in cases than in controls. The upper bound of the 95% confidence interval of penetrance for R415Q can be estimated at 2.2% for women and 1.2% for men, indicating that even if this variant is disease associated, individuals harboring the variant would have a lifetime risk of developing MS no higher than a few percent. ExAC data should be considered when evaluating claims of variant pathogenicity. This Matters Arising paper is in response to Wang et al. (2016a), published in Neuron. See also the related Matters Arising paper by The International Multiple Sclerosis Genetics Consortium (2016) and the response by Wang et al. (2016b), published in this issue.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA.
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
17
|
Wang Z, Sadovnick AD, Traboulsee AL, Ross JP, Bernales CQ, Encarnacion M, Yee IM, de Lemos M, Greenwood T, Lee JD, Wright G, Ross CJ, Zhang S, Song W, Vilariño-Güell C. Editorial Note to:Nuclear Receptor NR1H3 in Familial Multiple Sclerosis. Neuron 2016; 92:331-332. [PMID: 27764666 DOI: 10.1016/j.neuron.2016.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, Pedergnana V, Moens L, Picard C, Cobat A, Bossuyt X, Abel L, Casanova JL. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol 2016; 138:957-969. [PMID: 27720020 PMCID: PMC5074686 DOI: 10.1016/j.jaci.2016.08.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/03/2023]
Abstract
The advent of next-generation sequencing (NGS) in 2010 has transformed medicine, particularly the growing field of inborn errors of immunity. NGS has facilitated the discovery of novel disease-causing genes and the genetic diagnosis of patients with monogenic inborn errors of immunity. Whole-exome sequencing (WES) is presently the most cost-effective approach for research and diagnostics, although whole-genome sequencing offers several advantages. The scientific or diagnostic challenge consists in selecting 1 or 2 candidate variants among thousands of NGS calls. Variant- and gene-level computational methods, as well as immunologic hypotheses, can help narrow down this genome-wide search. The key to success is a well-informed genetic hypothesis on 3 key aspects: mode of inheritance, clinical penetrance, and genetic heterogeneity of the condition. This determines the search strategy and selection criteria for candidate alleles. Subsequent functional validation of the disease-causing effect of the candidate variant is critical. Even the most up-to-date dry lab cannot clinch this validation without a seasoned wet lab. The multifariousness of variations entails an experimental rigor even greater than traditional Sanger sequencing-based approaches in order not to assign a condition to an irrelevant variant. Finding the needle in the haystack takes patience, prudence, and discernment.
Collapse
Affiliation(s)
- Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium.
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Alexandre Bolze
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Helix, San Carlos, Calif
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Yuval Itan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Vincent Pedergnana
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Leen Moens
- Laboratory Medicine, Experimental Laboratory Immunology, Department of Laboratory Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Paris Descartes University-Sorbonne Paris Cité, Paris, France; Study Center for Immunodeficiency, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Xavier Bossuyt
- Laboratory Medicine, Experimental Laboratory Immunology, Department of Laboratory Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY; Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|