1
|
Roh JD, Bae M, Kim H, Yang Y, Lee Y, Cho Y, Lee S, Li Y, Yang E, Jang H, Kim H, Kim H, Kang H, Ellegood J, Lerch JP, Bae YC, Kim JY, Kim E. Lithium normalizes ASD-related neuronal, synaptic, and behavioral phenotypes in DYRK1A-knockin mice. Mol Psychiatry 2025; 30:2584-2596. [PMID: 39633007 DOI: 10.1038/s41380-024-02865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Dyrk1A deficiency is linked to various neurodevelopmental disorders, including developmental delays, intellectual disability (ID) and autism spectrum disorders (ASD). Haploinsufficiency of Dyrk1a in mice reportedly leads to ASD-related phenotypes. However, the key pathological mechanisms remain unclear and human DYRK1A mutations remain uncharacterized in mice. Here, we generated and studied Dyrk1a-knockin mice carrying a human ASD patient mutation (Ile48LysfsX2; Dyrk1a-I48K mice). These mice display severe microcephaly, social and cognitive deficits, dendritic shrinkage, excitatory synaptic deficits, and altered phospho-proteomic patterns enriched for multiple signaling pathways and synaptic proteins. Early chronic lithium treatment of newborn mutant mice rescues the brain volume, behavior, dendritic, synaptic, and signaling/synapse phospho-proteomic phenotypes at juvenile and adult stages. These results suggest that signaling/synaptic alterations contribute to the phenotypic alterations seen in Dyrk1a-I48K mice, and that early correction of these alterations by lithium treatment has long-lasting effects in preventing juvenile and adult-stage phenotypes.
Collapse
Affiliation(s)
- Junyeop Daniel Roh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mihyun Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Hyosang Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Yeunkeum Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
- Korea Institute of Drug Safety & Risk Management, Anyang, 14051, Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | | | | | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, 34141, Korea
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, M4G 1R8, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, 28119, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
2
|
Abdollahian P, Sui K, Li G, Berg RW, Meneghetti M, Markos C. Evaluating Safe Infrared Neural Stimulation Parameters: Calcium Dynamics and Excitotoxicity Thresholds in Dorsal Root Ganglia Neurons. J Neurosci Methods 2025:110484. [PMID: 40383236 DOI: 10.1016/j.jneumeth.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/29/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND As a promising neural stimulation technique, infrared neural stimulation (INS) has recently gained significant attention due to its ability to stimulate neuronal activities without needing exogenous agents. NIR light is absorbed by water of the tissue producing local thermal effects. Therefore, INS is a suitable candidate for localized and targeted neural stimulation. However, despite the wide variety of research studies on INS applications, limited studies have focused on identifying and optimizing the stimulation parameters to avoid potential excitotoxicity. This study evaluates the dorsal root ganglia (DRG) neurons' response under INS with varying intensities and illumination time. NEW METHOD Here, DRG neurons are cultured and labeled by the CamkII-GCaMP6s virus. The neurons were exposed to infrared laser pulses (2.01µm wavelength, different powers of 2.5mW, 5mW, 7.5mW, and 10mW) for durations of 300seconds and 400seconds. The light was delivered through a silica optical fiber aligned and stabilized within a free-space optical setup. Simultaneous with INS, neuronal activity was evaluated by calcium imaging through a fluorescence microscope. This method allowed real-time monitoring of neuronal calcium dynamics under different stimulation conditions, preparing an overview of the safe thresholds for INS. RESULTS It was found that calcium saturation has happened for the neurons in exposure to light intensities (7.5mW and 10mW) for 300seconds, representing potential excitotoxicity. In contrast, with the same exposure time, lower light intensities (2.5mW and 5mW) did not show significant signs of calcium saturation or neuronal damage. Moreover, in some neuronal networks, the peripheral neurons of the illuminated area revealed indirect activation, indicating inter-neuronal communication effects. COMPARISON WITH EXISTING METHODS Compared to previous studies that have explored the use of INS on DRG neurons, our work introduces a systematic approach to evaluate the light intensity-dependent INS, while addressing the critical issue of potential thermal injury. While earlier research has demonstrated the ability of INS to modulate neuronal activity and reduce electrical artifacts in electrophysiological recordings, concerns regarding excitotoxicity and neuronal damage remain insufficiently investigated. We examined a range of laser intensities (2.5mW to 10mW) to determine the safe exposure thresholds and optimize the photothermal impact. Furthermore, by utilizing CamKII-GCaMP6s virus-modified neurons, we enhance sensitivity in detecting calcium influx, providing a more precise evaluation of neuronal responses to INS. Therefore, here, we provide the knowledge for safe INS. CONCLUSIONS This work identifies the required laser stimulation parameters, particularly intensity and illumination time of the tissue for efficient and safe INS. We concluded that higher intensities (7.5mW and 10mW) can cause calcium saturation and potential neuronal injury, while lower intensities (2.5mW and 5mW) are safe for prolonged exposure. Moreover, the observed peripheral neuronal activation suggests indirect stimulation through inter-neuronal connections, offering further insights into the effects of INS on neural networks. These findings contribute valuable information towards safe neuromodulation methods with potential use in clinical settings.
Collapse
Affiliation(s)
- Parinaz Abdollahian
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Lyngby, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kunyang Sui
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Lyngby, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Guanghui Li
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Rune W Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marcello Meneghetti
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Lyngby, Denmark; Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christos Markos
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Landisman CE, Coulon P. A mixed electrical and chemical synapse in the thalamic reticular nucleus. J Neurophysiol 2024; 132:1955-1963. [PMID: 39475494 DOI: 10.1152/jn.00339.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 12/17/2024] Open
Abstract
The thalamic reticular nucleus (TRN) plays a major role in modulating the transfer of information from the thalamus to the cortex. GABAergic inhibition by the TRN is potentially synchronized by electrical synapses between TRN neurons, and TRN neurons are also sparsely connected to each other via chemical synapses. Paired recordings have shown that electrical coupling is abundant between TRN neurons, especially among those within close proximity, but combined electrical and chemical coupling has not yet been directly demonstrated in rats. Here, we report on a single pair of TRN neurons that were coupled both electrically and chemically. This is the only such example that we have found in hundreds of paired recordings of closely apposed neurons within the TRN.NEW & NOTEWORTHY Combined electrical and chemical coupling is demonstrated in a single couple of thalamic reticular nucleus (TRN) neurons. Single action potentials in one neuron resulted in a spikelet [electrical postsynaptic potential (ePSP)] followed by a longer lasting hyperpolarization [from an inhibitory postsynaptic potential (IPSP)] in the target neuron. The IPSPs were most prominent at depolarized potentials and all but disappeared when approaching the chloride equilibrium potential. This is the only such example that we have found in hundreds of paired recordings within the TRN.
Collapse
Affiliation(s)
- Carole E Landisman
- Center For Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
| | - Philippe Coulon
- Center For Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Faculty of Biology, Institute of Biology III, Group: Cellular Neurophysiology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Institute of Biology III, Optophysiology, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools//Intelligent Machine Brain Interfacing Technology (IMBIT), University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Li S, Wang C, Wu S. Spindle oscillations emerge at the critical state of electrically coupled networks in the thalamic reticular nucleus. Cell Rep 2024; 43:114790. [PMID: 39356636 DOI: 10.1016/j.celrep.2024.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
Spindle oscillation is a waxing-and-waning neural oscillation observed in the brain, initiated at the thalamic reticular nucleus (TRN) and typically occurring at 7-15 Hz. Experiments have shown that in the adult brain, electrical synapses, rather than chemical synapses, dominate between TRN neurons, suggesting that the traditional view of spindle generation via chemical synapses may need reconsideration. Based on known experimental data, we develop a computational model of the TRN network, where heterogeneous neurons are connected by electrical synapses. The model shows that the interplay between synchronizing electrical synapses and desynchronizing heterogeneity leads to multiple synchronized clusters with slightly different oscillation frequencies whose summed-up activity produces spindle oscillation as seen in local field potentials. Our results suggest that during spindle oscillation, the network operates at the critical state, which is known for facilitating efficient information processing. This study provides insights into the underlying mechanism of spindle oscillation and its functional significance.
Collapse
Affiliation(s)
- Shangyang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Chaoming Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China
| | - Si Wu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong 519031, China.
| |
Collapse
|
5
|
Jun S, Park H, Kim M, Kang S, Kim T, Kim D, Yamamoto Y, Tanaka-Yamamoto K. Increased understanding of complex neuronal circuits in the cerebellar cortex. Front Cell Neurosci 2024; 18:1487362. [PMID: 39497921 PMCID: PMC11532081 DOI: 10.3389/fncel.2024.1487362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
The prevailing belief has been that the fundamental structures of cerebellar neuronal circuits, consisting of a few major neuron types, are simple and well understood. Given that the cerebellum has long been known to be crucial for motor behaviors, these simple yet organized circuit structures seemed beneficial for theoretical studies proposing neural mechanisms underlying cerebellar motor functions and learning. On the other hand, experimental studies using advanced techniques have revealed numerous structural properties that were not traditionally defined. These include subdivided neuronal types and their circuit structures, feedback pathways from output Purkinje cells, and the multidimensional organization of neuronal interactions. With the recent recognition of the cerebellar involvement in non-motor functions, it is possible that these newly identified structural properties, which are potentially capable of generating greater complexity than previously recognized, are associated with increased information capacity. This, in turn, could contribute to the wide range of cerebellar functions. However, it remains largely unknown how such structural properties contribute to cerebellar neural computations through the regulation of neuronal activity or synaptic transmissions. To promote further research into cerebellar circuit structures and their functional significance, we aim to summarize the newly identified structural properties of the cerebellar cortex and discuss future research directions concerning cerebellar circuit structures and their potential functions.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Taehyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, Republic of Korea
| | - Daun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Science, Korea University, Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
6
|
Fekete Z, Weisz F, Karlócai MR, Veres JM, Andrási T, Hájos N. Synaptic communication within the microcircuits of pyramidal neurons and basket cells in the mouse prefrontal cortex. J Physiol 2024. [PMID: 39418315 DOI: 10.1113/jp286284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Basket cells are inhibitory interneurons in cortical structures with the potential to efficiently control the activity of their postsynaptic partners. Although their contribution to higher order cognitive functions associated with the medial prefrontal cortex (mPFC) relies on the characteristics of their synaptic connections, the way that they are embedded into local circuits is still not fully uncovered. Here, we determined the synaptic properties of excitatory and inhibitory connections between pyramidal neurons (PNs), cholecystokinin-containing basket cells (CCKBCs) and parvalbumin-containing basket cells (PVBCs) in the mouse mPFC. By performing paired recordings, we revealed that PVBCs receive larger unitary excitatory postsynaptic currents from PNs with shorter latency and faster kinetic properties compared to events evoked in CCKBCs. Also, unitary inhibitory postsynaptic currents in PNs were more reliably evoked by PVBCs than by CCKBCs, yet the former connections showed profound short-term depression. Moreover, we demonstrated that CCKBCs and PVBCs in the mPFC are connected with each other. Because alterations in PVBC function have been linked to neurological and psychiatric conditions such as Alzheimer's disease and schizophrenia and CCKBC vulnerability might play a role in mood disorders, a deeper understanding of the general features of basket cell synapses could serve as a reference point for future investigations with therapeutic objectives. KEY POINTS: Cholecystokinin- (CCKBCs) and parvalbumin-expressing basket cells (PVBCs) have distinct passive and active membrane properties. Pyramidal neurons give rise to larger unitary excitatory postsynaptic currents in PVBCs compared to events in CCKBCs. Unitary inhibitory postsynaptic currents in pyramidal neurons are more reliably evoked by PVBCs than by CCKBCs. Basket cells form chemical synapses and gap junctions with their own cell type. The two basket cell types are connected with each other.
Collapse
Affiliation(s)
- Zsuzsanna Fekete
- Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Filippo Weisz
- Institute of Experimental Medicine, Budapest, Hungary
| | | | - Judit M Veres
- Institute of Experimental Medicine, Budapest, Hungary
| | - Tibor Andrási
- Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Indiana, USA
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Indiana, USA
| |
Collapse
|
7
|
Dere E. Insights into conscious cognitive information processing. Front Behav Neurosci 2024; 18:1443161. [PMID: 39135748 PMCID: PMC11318070 DOI: 10.3389/fnbeh.2024.1443161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
For over a century, the neuro- and pathophysiological, behavioral, and cognitive correlates of consciousness have been an active field of theoretical considerations and empirical research in a wide range of modern disciplines. Conscious cognitive processing of information cannot be observed directly, but might be inferred from step-like discontinuities in learning performance or sudden insight-based improvements in problem solving behavior. It is assumed that a sudden step of knowledge associated with insight requires a creative reorganization of mental representations of task- or problem-relevant information and the restructuration of the task, respectively problem to overcome an cognitive dead-end or impasse. Discontinuities in learning performance or problem solving after an insight event can be used as time-tags to capture the time window in which conscious cognitive information processing must have taken place. According to the platform theory of conscious cognitive information processing, the reorganization and restructuration processes, require the maintenance of task- or problem-relevant information in working memory for the operation of executive functions on these mental representations. Electrophysiological evidence suggests that the reorganization and restructuration processes in working memory, that precede insight-based problem solutions are accompanied by an increase in the power of gamma oscillations in cortical areas including the prefrontal cortex. Empirical evidence and theoretical assumptions argue for an involvement of gap junction channels and connexin hemichannels in cortical gamma-oscillations and working memory processes. Discontinuities in learning or problem solving performance might be used as time-tags to investigate the implication of gap junction channels and hemichannels in conscious cognitive processing.
Collapse
Affiliation(s)
- Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum, Bochum, Germany
- Unité de Formation et de Recherche des Sciences de la Vie (UFR 927), Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Sceniak MP, Sabo SL. Prefrontal cortical network dysfunction from acute neurotoxicant exposure. J Neurophysiol 2024; 132:277-289. [PMID: 38864824 DOI: 10.1152/jn.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Prefrontal cortical (PFC) dysfunction has been linked to disorders exhibiting deficits in cognitive performance, attention, motivation, and impulse control. Neurons of the PFC are susceptible to glutamatergic excitotoxicity, an effect associated with cortical degeneration in frontotemporal disorders (FTDs). PFC susceptibility to environmental toxicant exposure, one possible contributor to sporadic FTD, has not been systematically studied. Here, we tested the ability of a well-known environmental neurotoxicant, methylmercury (MeHg), to induce hyperexcitability in medial prefrontal cortex (mPFC) excitatory pyramidal neurons, using whole cell patch-clamp recording. Acute MeHg exposure (20 μM) produced significant mPFC dysfunction, with a shift in the excitatory to inhibitory (E-I) balance toward increased excitability. Both excitatory postsynaptic current (EPSC) and inhibitory postsynaptic current (IPSC) charges were significantly increased after MeHg exposure. MeHg increased EPSC frequency, but there was no observable effect on IPSC frequency, EPSC amplitude or IPSC amplitude. Neither evoked AMPA receptor- nor NMDA receptor-mediated EPSC amplitudes were affected by MeHg. However, excitatory synapses experienced a significant reduction in paired-pulse depression and probability of release. In addition, MeHg induced temporal synchrony in spontaneous IPSCs, reflecting mPFC inhibitory network dysfunction. MeHg exposure also produced increased intrinsic excitability in mPFC neurons, with an increase in action potential firing rate. The observed effects of MeHg on mPFC reflect key potential mechanisms for neuropsychological symptoms from MeHg poisoning. Therefore, MeHg has a significant effect on mPFC circuits known to contribute to cognitive and emotional function and might contribute to etiology of neurodegenerative diseases, such as FTD.NEW & NOTEWORTHY Prefrontal cortical neurons are highly susceptible to glutamatergic excitotoxicity associated with neuronal degeneration in frontal dementia and to environmental toxicant exposure, one potential contributor to FTD. However, this has not been systematically studied. Our results demonstrate that methylmercury exposure leads to hyperexcitability of prefrontal cortical neurons by shifting excitatory to inhibitory (E-I) balance and raising sensitivity for spiking. Our results provide a mechanism by which environmental neurotoxicants may contribute to pathogenesis of diseases such as FTD.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States
| |
Collapse
|
9
|
Pali E, D’Angelo E, Prestori F. Understanding Cerebellar Input Stage through Computational and Plasticity Rules. BIOLOGY 2024; 13:403. [PMID: 38927283 PMCID: PMC11200477 DOI: 10.3390/biology13060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
A central hypothesis concerning brain functioning is that plasticity regulates the signal transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, the granular layer has been shown to control the gain of signals transmitted through the mossy fiber pathway. Until now, the impact of plasticity on incoming activity patterns has been analyzed by combining electrophysiological recordings in acute cerebellar slices and computational modeling, unraveling a broad spectrum of different forms of synaptic plasticity in the granular layer, often accompanied by forms of intrinsic excitability changes. Here, we attempt to provide a brief overview of the most prominent forms of plasticity at the excitatory synapses formed by mossy fibers onto primary neuronal components (granule cells, Golgi cells and unipolar brush cells) in the granular layer. Specifically, we highlight the current understanding of the mechanisms and their functional implications for synaptic and intrinsic plasticity, providing valuable insights into how inputs are processed and reconfigured at the cerebellar input stage.
Collapse
Affiliation(s)
- Eleonora Pali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
- Digital Neuroscience Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| |
Collapse
|
10
|
Qin C, Qi Z, Pan S, Xia P, Kong W, Sun B, Du H, Zhang R, Zhu L, Zhou D, Yang X. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. Int J Nanomedicine 2023; 18:7305-7333. [PMID: 38084124 PMCID: PMC10710813 DOI: 10.2147/ijn.s436111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Bin Sun
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Haorui Du
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Renfeng Zhang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Longchuan Zhu
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Dinghai Zhou
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
11
|
Gutierrez GJ, Wang S. Gap junctions: The missing piece of the connectome. Curr Biol 2023; 33:R819-R822. [PMID: 37552951 DOI: 10.1016/j.cub.2023.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The central pattern generator that controls flying power in Drosophila requires desynchronized firing to drive a steady wingbeat frequency. A new study reveals how gap junctions are the key to desynchronizing the motor neurons.
Collapse
Affiliation(s)
- Gabrielle J Gutierrez
- Department of Neuroscience and Behavior, Barnard College, 3009 Broadway, New York, NY 10027, USA.
| | - Siwei Wang
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Lee YH, Kothmann WW, Lin YP, Chuang AZ, Diamond JS, O'Brien J. Sources of Calcium at Connexin 36 Gap Junctions in the Retina. eNeuro 2023; 10:ENEURO.0493-22.2023. [PMID: 37527925 PMCID: PMC10450809 DOI: 10.1523/eneuro.0493-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Synaptic plasticity is a fundamental feature of the CNS that controls the magnitude of signal transmission between communicating cells. Many electrical synapses exhibit substantial plasticity that modulates the degree of coupling within groups of neurons, alters the fidelity of signal transmission, or even reconfigures functional circuits. In several known examples, such plasticity depends on calcium and is associated with neuronal activity. Calcium-driven signaling is known to promote potentiation of electrical synapses in fish Mauthner cells, mammalian retinal AII amacrine cells, and inferior olive neurons, and to promote depression in thalamic reticular neurons. To measure local calcium dynamics in situ, we developed a transgenic mouse expressing a GCaMP calcium biosensor fused to Connexin 36 (Cx36) at electrical synapses. We examined the sources of calcium for activity-dependent plasticity in retina slices using confocal or Super-Resolution Radial Fluctuations imaging. More than half of Cx36-GCaMP gap junctions responded to puffs of glutamate with transient increases in fluorescence. The responses were strongly dependent on NMDA receptors, in keeping with known activity-dependent signaling in some amacrine cells. We also found that some responses depended on the activity of voltage-gated calcium channels, representing a previously unrecognized source of calcium to control retinal electrical synaptic plasticity. The high prevalence of calcium signals at electrical synapses in response to glutamate application indicates that a large fraction of electrical synapses has the potential to be regulated by neuronal activity. This provides a means to tune circuit connectivity dynamically based on local activity.
Collapse
Affiliation(s)
- Yuan-Hao Lee
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - W Wade Kothmann
- Synaptic Physiology Section, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland 20892
| | - Ya-Ping Lin
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Alice Z Chuang
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland 20892
| | - John O'Brien
- Richard S. Ruiz, Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
13
|
Singhal P, Senecal JMM, Senecal JEM, Silwal P, Lynn BD, Nagy JI. Characteristics of Electrical Synapses, C-terminals and Small-conductance Ca 2+ activated Potassium Channels in the Sexually Dimorphic Cremaster Motor Nucleus in Spinal Cord of Mouse and Rat. Neuroscience 2023; 521:58-76. [PMID: 37100373 DOI: 10.1016/j.neuroscience.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Sexually dimorphic motoneurons (MNs) located in lower lumbar spinal cord are involved in mating and reproductive behaviours and are known to be coupled by electrical synapses. The cremaster motor nucleus in upper lumbar spinal cord has also been suggested to support physiological processes associated with sexual behaviours in addition to its thermoregulatory and protective role in maintaining testes integrity. Using immunofluorescence approaches, we investigated whether cremaster MNs also exhibit features reflecting their potential for electrical synaptic communication and examined some of their other synaptic characteristics. Both mice and rats displayed punctate immunolabelling of Cx36 associated with cremaster MNs, indicative of gap junction formation. Transgenic mice with enhanced green fluorescent protein (eGFP) reporter for connexin36 expression showed that subpopulations of cremaster MNs in both male and female mice express eGFP, with greater proportions of those in male mice. The eGFP+ MNs within the cremaster nucleus vs. eGFP- MNs inside and outside this nucleus displayed a 5-fold greater density of serotonergic innervation and exhibited a paucity of innervation by C-terminals arising from cholinergic V0c interneurons. All MNs within the cremaster motor nucleus displayed prominent patches of immunolabelling for SK3 (K+) channels around their periphery, suggestive of their identity as slow MNs, many though not all of which were in apposition to C-terminals. The results provide evidence for electrical coupling of a large proportion of cremaster MNs and suggest the existence of two populations of these MNs with possibly differential innervation of their peripheral target muscles serving different functions.
Collapse
Affiliation(s)
- P Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - P Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada.
| |
Collapse
|
14
|
Li X, Itani O, Bucher DM, Rotstein HG, Nadim F. Distinct Mechanisms Underlie Electrical Coupling Resonance and Its Interaction with Membrane Potential Resonance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523652. [PMID: 36712051 PMCID: PMC9882057 DOI: 10.1101/2023.01.11.523652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neurons in oscillatory networks often exhibit membrane potential resonance, a peak impedance at a non-zero input frequency. In electrically coupled oscillatory networks, the coupling coefficient (the ratio of post- and prejunctional voltage responses) could also show resonance. Such coupling resonance may emerge from the interaction between the coupling current and resonance properties of the coupled neurons, but this relationship has not been clearly described. Additionally, it is unknown if the gap-junction mediated electrical coupling conductance may have frequency dependence. We examined these questions by recording a pair of electrically coupled neurons in the oscillatory pyloric network of the crab Cancer borealis. We performed dual current- and voltage-clamp recordings and quantified the frequency preference of the coupled neurons, the coupling coefficient, the electrical conductance, and the postjunctional neuronal response. We found that all components exhibit frequency selectivity, but with distinct preferred frequencies. Mathematical and computational analysis showed that membrane potential resonance of the postjunctional neuron was sufficient to give rise to resonance properties of the coupling coefficient, but not the coupling conductance. A distinct coupling conductance resonance frequency therefore emerges either from other circuit components or from the gating properties of the gap junctions. Finally, to explore the functional effect of the resonance of the coupling conductance, we examined its role in synchronizing neuronal the activities of electrically coupled bursting model neurons. Together, our findings elucidate factors that produce electrical coupling resonance and the function of this resonance in oscillatory networks.
Collapse
Affiliation(s)
- Xinping Li
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Omar Itani
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Dirk M Bucher
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Horacio G Rotstein
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Farzan Nadim
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
15
|
Herberholz J. The giant escape neurons of crayfish: Past discoveries and present opportunities. Front Physiol 2022; 13:1052354. [PMID: 36605900 PMCID: PMC9808059 DOI: 10.3389/fphys.2022.1052354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Crayfish are equipped with two prominent neural circuits that control rapid, stereotyped escape behaviors. Central to these circuits are bilateral pairs of giant neurons that transverse the nervous system and generate escape tail-flips in opposite directions away from threatening stimuli.
Collapse
|
16
|
Fadjukov J, Wienbar S, Hakanen S, Aho V, Vihinen-Ranta M, Ihalainen TO, Schwartz GW, Nymark S. Gap junctions and connexin hemichannels both contribute to the electrical properties of retinal pigment epithelium. J Gen Physiol 2022; 154:213064. [PMID: 35275193 PMCID: PMC8922333 DOI: 10.1085/jgp.202112916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Gap junctions are intercellular channels that permit the transfer of ions and small molecules between adjacent cells. These cellular junctions are particularly dense in the retinal pigment epithelium (RPE), and their contribution to many retinal diseases has been recognized. While gap junctions have been implicated in several aspects of RPE physiology, their role in shaping the electrical properties of these cells has not been characterized in mammals. The role of gap junctions in the electrical properties of the RPE is particularly important considering the growing appreciation of RPE as excitable cells containing various voltage-gated channels. We used a whole-cell patch clamp to measure the electrical characteristics and connectivity between RPE cells, both in cultures derived from human embryonic stem cells and in the intact RPE monolayers from mouse eyes. We found that the pharmacological blockade of gap junctions eliminated electrical coupling between RPE cells, and that the blockade of gap junctions or Cx43 hemichannels significantly increased their input resistance. These results demonstrate that gap junctions function in the RPE not only as a means of molecular transport but also as a regulator of electrical excitability.
Collapse
Affiliation(s)
- Julia Fadjukov
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sophia Wienbar
- Department of Ophthalmology, Northwestern University, Chicago, IL.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gregory W Schwartz
- Department of Ophthalmology, Northwestern University, Chicago, IL.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL
| | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
17
|
Wang C, Li S, Wu S. Analysis of the Neuron Dynamics in Thalamic Reticular Nucleus by a Reduced Model. Front Comput Neurosci 2021; 15:764153. [PMID: 34867253 PMCID: PMC8635031 DOI: 10.3389/fncom.2021.764153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Strategically located between the thalamus and the cortex, the inhibitory thalamic reticular nucleus (TRN) is a hub to regulate selective attention during wakefulness and control the thalamic and cortical oscillations during sleep. A salient feature of TRN neurons contributing to these functions is their characteristic firing patterns, ranging in a continuum from tonic spiking to bursting spiking. However, the dynamical mechanism under these firing behaviors is not well understood. In this study, by applying a reduction method to a full conductance-based neuron model, we construct a reduced three-variable model to investigate the dynamics of TRN neurons. We show that the reduced model can effectively reproduce the spiking patterns of TRN neurons as observed in vivo and in vitro experiments, and meanwhile allow us to perform bifurcation analysis of the spiking dynamics. Specifically, we demonstrate that the rebound bursting of a TRN neuron is a type of “fold/homo-clinic” bifurcation, and the tonic spiking is the fold cycle bifurcation. Further one-parameter bifurcation analysis reveals that the transition between these discharge patterns can be controlled by the external current. We expect that this reduced neuron model will help us to further study the complicated dynamics and functions of the TRN network.
Collapse
Affiliation(s)
- Chaoming Wang
- School of Psychology and Cognitive Sciences, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.,Chinese Institute for BrainResearch, Beijing, China
| | - Shangyang Li
- School of Psychology and Cognitive Sciences, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Si Wu
- School of Psychology and Cognitive Sciences, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
18
|
Eriksson D, Heiland M, Schneider A, Diester I. Distinct dynamics of neuronal activity during concurrent motor planning and execution. Nat Commun 2021; 12:5390. [PMID: 34508073 PMCID: PMC8433382 DOI: 10.1038/s41467-021-25558-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
The smooth conduct of movements requires simultaneous motor planning and execution according to internal goals. So far it remains unknown how such movement plans are modified without interfering with ongoing movements. Previous studies have isolated planning and execution-related neuronal activity by separating behavioral planning and movement periods in time by sensory cues. Here, we separate continuous self-paced motor planning from motor execution statistically, by experimentally minimizing the repetitiveness of the movements. This approach shows that, in the rat sensorimotor cortex, neuronal motor planning processes evolve with slower dynamics than movement-related responses. Fast-evolving neuronal activity precees skilled forelimb movements and is nested within slower dynamics. We capture this effect via high-pass filtering and confirm the results with optogenetic stimulations. The various dynamics combined with adaptation-based high-pass filtering provide a simple principle for separating concurrent motor planning and execution.
Collapse
Affiliation(s)
- David Eriksson
- Optophysiology, University of Freiburg, Faculty of Biology, Freiburg, Germany.
| | - Mona Heiland
- Optophysiology, University of Freiburg, Faculty of Biology, Freiburg, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland
- RCSI, Dublin 2, Ireland
| | - Artur Schneider
- Optophysiology, University of Freiburg, Faculty of Biology, Freiburg, Germany.,BrainLinks-BrainTools, Intelligent Machine-Brain Interfacing Technology (IMBIT), University of Freiburg, Freiburg, Germany
| | - Ilka Diester
- Optophysiology, University of Freiburg, Faculty of Biology, Freiburg, Germany. .,BrainLinks-BrainTools, Intelligent Machine-Brain Interfacing Technology (IMBIT), University of Freiburg, Freiburg, Germany. .,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Fricker B, Heckman E, Cunningham PC, Wang H, Haas JS. Activity-dependent long-term potentiation of electrical synapses in the mammalian thalamus. J Neurophysiol 2020; 125:476-488. [PMID: 33146066 DOI: 10.1152/jn.00471.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Activity-dependent changes of synapse strength have been extensively characterized at chemical synapses, but the relationship between physiological forms of activity and strength at electrical synapses remains poorly characterized and understood. For mammalian electrical synapses comprising hexamers of connexin36, physiological forms of neuronal activity in coupled pairs have thus far only been linked to long-term depression; activity that results in strengthening of electrical synapses has not yet been identified. Here, we performed dual whole-cell current-clamp recordings in acute slices of P11-P15 Sprague-Dawley rats of electrically coupled neurons of the thalamic reticular nucleus (TRN), a central brain area that regulates cortical input from and attention to the sensory surround. Using TTA-A2 to limit bursting, we show that tonic spiking in one neuron of a pair results in long-term potentiation of electrical synapses. We use experiments and computational modeling to show that the magnitude of plasticity expressed alters the functionality of the synapse. Potentiation is expressed asymmetrically, indicating that regulation of connectivity depends on the direction of use. Furthermore, calcium pharmacology and imaging indicate that potentiation depends on calcium flux. We thus propose a calcium-based activity rule for bidirectional plasticity of electrical synapse strength. Because electrical synapses dominate intra-TRN connectivity, these synapses and their activity-dependent modifications are key dynamic regulators of thalamic attention circuitry. More broadly, we speculate that bidirectional modifications of electrical synapses may be a widespread and powerful principle for ongoing, dynamic reorganization of neuronal circuitry across the brain.NEW & NOTEWORTHY This work reveals a physiologically relevant form of activity pairing in coupled neurons that results in long-term potentiation of mammalian electrical synapses. These findings, in combination with previous work, allow the authors to propose a bidirectional calcium-based rule for plasticity of electrical synapses, similar to those demonstrated for chemical synapses. These new insights inform the field on how electrical synapse plasticity may modify the neural circuits that incorporate them.
Collapse
Affiliation(s)
- Brandon Fricker
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Heckman
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | | | - Huaixing Wang
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
20
|
Zhang Z, Yao W, Yuan D, Huang F, Liu Y, Luo G, Hei Z. Effects of Connexin 32-Mediated Lung Inflammation Resolution During Liver Ischemia Reperfusion. Dig Dis Sci 2020; 65:2914-2924. [PMID: 31900713 DOI: 10.1007/s10620-019-06020-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia reperfusion (HIR) leads to a lung inflammatory response and subsequent pulmonary barrier dysfunction. The gap junction communication protein connexin 32 (Cx32), which is widely expressed in the lungs, participates in intercellular signaling. This study determined whether the communication protein Cx32 could affect pulmonary inflammation caused by HIR. METHODS Mice were randomly allocated into four groups (n = 8/group): (i) Cx32+/+ sham group; (ii) Cx32+/+ HIR model group; (iii) Cx32-/- sham group; and (iv) Cx32-/- HIR model group. Twenty-four hours after surgery, lung tissues were collected for bright field microscopy, western blot (Cx32, JAK2, p-JAK2, STAT3, p-STAT3), and immunofluorescence (ZO-1, 8-OHDG) analyses. The collected bronchoalveolar fluid was tested for levels of interleukin-6 (IL-6), matrix metalloproteinase 12 (MMP-12), and antitrypsin (α1-AT). Lung mmu-miR-26a/b expression was detected using a PCR assay. RESULTS Increased expression of Cx32 mRNA and protein was noted in the lungs after HIR. Cx32 deletion significantly aggravated pulmonary function from acute lung injury induced by HIR. In addition, Cx32 deletion decreased the protein level of ZO-1 (pulmonary function) and increased the level of the oxidative stress marker 8-OHDG in the lungs. Moreover, in the Cx32-/- HIR model group, the levels of IL-6 and MMP-12 in bronchoalveolar lavage fluid were significantly increased leading to activation of the JAK2/STAT3 pathway, and decreased α1-AT levels. Furthermore, we found mmu-miR-26a/b was significantly downregulated in the Cx32-/- HIR model group. CONCLUSION HIR leads to acute lung inflammatory injury. Cx32 deletion aggravates hepatic-derived lung inflammation, partly through blocking the transferring of mmu-miR-26a/b and leading to IL-6-related JAK2/STAT3 pathway activation.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yue Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
21
|
Ixmatlahua DJ, Vizcarra B, Gómez-Lira G, Romero-Maldonado I, Ortiz F, Rojas-Piloni G, Gutiérrez R. Neuronal Glutamatergic Network Electrically Wired with Silent But Activatable Gap Junctions. J Neurosci 2020; 40:4661-4672. [PMID: 32393538 PMCID: PMC7294797 DOI: 10.1523/jneurosci.2590-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022] Open
Abstract
It is widely assumed that electrical synapses in the mammalian brain, especially between interneurons, underlie neuronal synchrony. In the hippocampus, principal cells also establish electrical synapses with each other and have also been implicated in network oscillations, whereby the origin of fast electrical activity has been attributed to ectopic spikelets and dendro-dendritic or axo-axonal gap junctions. However, if electrical synapses were in axo-dendritic connections, where chemical synapses occur, the synaptic events would be mixed, having an electrical component preceding the chemical one. This type of communication is less well studied, mainly because it is not easily detected. Moreover, a possible scenario could be that an electrical synapse coexisted with a chemical one, but in a nonconductive state; hence, it would be considered inexistent. Could chemical synapses have a quiescent electrical component? If so, can silent electrical synapses be activated to be detected? We addressed this possibility, and we here report that, indeed, the connexin-36-containing glutamatergic mossy fiber synapses of the rat hippocampus express previously unrecognized electrical synapses, which are normally silent. We reveal that these synapses are pH sensitive, actuate in vitro and in vivo, and that the electrical signaling is bidirectional. With the simultaneous recording of hundreds of cells, we could reveal the existence of an electrical circuit in the hippocampus of adult rats of either sex consisting of principal cells where the nodes are interregional glutamatergic synapses containing silent but ready-to-use gap junctions.SIGNIFICANCE STATEMENT In this work, we present a series of experiments, both in vitro and in vivo, that reveal previously unrecognized silent pH-sensitive electrical synapses coexisting in one of the best studied glutamatergic synapses of the brain, the mossy fiber synapse of the hippocampus. This type of connectivity underlies an "electrical circuit" between two substructures of the adult rat hippocampus consisting of principal cells where the nodes are glutamatergic synapses containing silent but ready-to-use gap junctions. Its identification will allow us to explore the participation of such a circuit in physiological and pathophysiological functions and will provide valuable conceptual tools to understanding computational and regulatory mechanisms that may underlie network activity.
Collapse
Affiliation(s)
- Diana J Ixmatlahua
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Bianca Vizcarra
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Gisela Gómez-Lira
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Isabel Romero-Maldonado
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Franco Ortiz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, 76230 Querétaro, Mexico
| | - Rafael Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14330 Mexico City, Mexico
| |
Collapse
|
22
|
Network Architecture of Gap Junctional Coupling among Parallel Processing Channels in the Mammalian Retina. J Neurosci 2020; 40:4483-4511. [PMID: 32332119 DOI: 10.1523/jneurosci.1810-19.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 01/04/2023] Open
Abstract
Gap junctions are ubiquitous throughout the nervous system, mediating critical signal transmission and integration, as well as emergent network properties. In mammalian retina, gap junctions within the Aii amacrine cell-ON cone bipolar cell (CBC) network are essential for night vision, modulation of day vision, and contribute to visual impairment in retinal degenerations, yet neither the extended network topology nor its conservation is well established. Here, we map the network contribution of gap junctions using a high-resolution connectomics dataset of an adult female rabbit retina. Gap junctions are prominent synaptic components of ON CBC classes, constituting 5%-25% of all axonal synaptic contacts. Many of these mediate canonical transfer of rod signals from Aii cells to ON CBCs for night vision, and we find that the uneven distribution of Aii signals to ON CBCs is conserved in rabbit, including one class entirely lacking direct Aii coupling. However, the majority of gap junctions formed by ON CBCs unexpectedly occur between ON CBCs, rather than with Aii cells. Such coupling is extensive, creating an interconnected network with numerous lateral paths both within, and particularly across, these parallel processing streams. Coupling patterns are precise with ON CBCs accepting and rejecting unique combinations of partnerships according to robust rulesets. Coupling specificity extends to both size and spatial topologies, thereby rivaling the synaptic specificity of chemical synapses. These ON CBC coupling motifs dramatically extend the coupled Aii-ON CBC network, with implications for signal flow in both scotopic and photopic retinal networks during visual processing and disease.SIGNIFICANCE STATEMENT Electrical synapses mediated by gap junctions are fundamental components of neural networks. In retina, coupling within the Aii-ON CBC network shapes visual processing in both the scotopic and photopic networks. In retinal degenerations, these same gap junctions mediate oscillatory activity that contributes to visual impairment. Here, we use high-resolution connectomics strategies to identify gap junctions and cellular partnerships. We describe novel, pervasive motifs both within and across classes of ON CBCs that dramatically extend the Aii-ON CBC network. These motifs are highly specific with implications for both signal processing within the retina and therapeutic interventions for blinding conditions. These findings highlight the underappreciated contribution of coupling motifs in retinal circuitry and the necessity of their detection in connectomics studies.
Collapse
|
23
|
Moore KB, Mitchell CK, Lin YP, Lee YH, Shihabeddin E, O'Brien J. Localized Calcium Signaling and the Control of Coupling at Cx36 Gap Junctions. eNeuro 2020; 7:ENEURO.0445-19.2020. [PMID: 32179580 PMCID: PMC7168262 DOI: 10.1523/eneuro.0445-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/29/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023] Open
Abstract
A variety of electrical synapses are capable of activity-dependent plasticity, including both activity-dependent potentiation and activity-dependent depression. In several types of neurons, activity-dependent electrical synapse plasticity depends on changes in the local Ca2+ environment. To enable study of local Ca2+ signaling that regulates plasticity, we developed a GCaMP Ca2+ biosensor fused to the electrical synapse protein Connexin 36 (Cx36). Cx36-GCaMP transfected into mammalian cell cultures formed gap junctions at cell-cell boundaries and supported Neurobiotin tracer coupling that was regulated by protein kinase A signaling in the same way as Cx36. Cx36-GCaMP gap junctions robustly reported local Ca2+ increases in response to addition of a Ca2+ ionophore with increases in fluorescence that recovered during washout. Recovery was strongly dependent on Na+-Ca2+ exchange activity. In cells transfected with NMDA receptor subunits, Cx36-GCaMP revealed transient and concentration-dependent increases in local Ca2+ on brief application of glutamate. In HeLa cells, glutamate application increased Cx36-GCaMP tracer coupling through a mechanism that depended in part on Ca2+, calmodulin-dependent protein kinase II (CaMKII) activity. This potentiation of coupling did not require exogenous expression of glutamate receptors, but could be accomplished by endogenously expressed glutamate receptors with pharmacological characteristics reminiscent of NMDA and kainate receptors. Analysis of RNA Sequencing data from HeLa cells confirmed expression of NMDA receptor subunits NR1, NR2C, and NR3B. In summary, Cx36-GCaMP is an effective tool to measure changes in the Ca2+ microenvironment around Cx36 gap junctions. Furthermore, HeLa cells can serve as a model system to study glutamate receptor-driven potentiation of electrical synapses.
Collapse
Affiliation(s)
- Keith B Moore
- Richard S. Ruiz, M.D. Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Cheryl K Mitchell
- Richard S. Ruiz, M.D. Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ya-Ping Lin
- Richard S. Ruiz, M.D. Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yuan-Hao Lee
- Richard S. Ruiz, M.D. Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Eyad Shihabeddin
- Richard S. Ruiz, M.D. Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
- The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| | - John O'Brien
- Richard S. Ruiz, M.D. Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
- The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
24
|
Lefler Y, Amsalem O, Vrieler N, Segev I, Yarom Y. Using subthreshold events to characterize the functional architecture of the electrically coupled inferior olive network. eLife 2020; 9:43560. [PMID: 32043972 PMCID: PMC7012604 DOI: 10.7554/elife.43560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/13/2020] [Indexed: 01/18/2023] Open
Abstract
The electrical connectivity in the inferior olive (IO) nucleus plays an important role in generating well-timed spiking activity. Here we combined electrophysiological and computational approaches to assess the functional organization of the IO nucleus in mice. Spontaneous fast and slow subthreshold events were commonly encountered during in vitro recordings. We show that whereas the fast events represent intrinsic regenerative activity, the slow events reflect the electrical connectivity between neurons (‘spikelets’). Recordings from cell pairs revealed the synchronized occurrence of distinct groups of spikelets; their rate and distribution enabled an accurate estimation of the number of connected cells and is suggestive of a clustered organization. This study thus provides a new perspective on the functional and structural organization of the olivary nucleus and a novel experimental and theoretical approach to study electrically coupled networks.
Collapse
Affiliation(s)
- Yaara Lefler
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Amsalem
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nora Vrieler
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Zhang H, Ju X, Yew KS, Ang DS. Implementation of Simple but Powerful Trilayer Oxide-Based Artificial Synapses with a Tailored Bio-Synapse-Like Structure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1036-1045. [PMID: 31815426 DOI: 10.1021/acsami.9b17026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultimate aim of artificial synaptic devices is to mimic the features of biological synapses as closely as possible, in particular, its ability of self-adjusting the synaptic weight responding to the external stimulus. In this work, memristors, based on trilayer oxides with a stack structure of TiN/TiON/HfOy/HfOx/TiN, are designed to function as the artificial synapses where intrinsically designed oxygen-deficient HfOx layer, less oxygen-deficient HfOy layer, and TiON layer, imitating the corresponding biological functionality of the pre-synapse, synaptic cleft, and post-synapse, respectively, resemble the features of bio-synapses most closely. Thus, diverse bio-synaptic functions and plasticity, including long-term potentiation and depression, spike-rate-dependent plasticity, spike-timing-dependent plasticity, and metaplasticity, are fulfilled in these devices. Moreover, they exhibit analogue plasticity in both potentiating and depressing, fully emulating the learning protocols of excitation and inhibition in the bio-synapses. The structure and Hf/O distribution of these devices, mimicking the structure and Ca2+ deployment of bio-synapses, are consolidated by the high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy, respectively. Powerful bio-realistic behavior, implemented in these simple artificial synaptic devices, make them tailored for neuromorphic hardware applications.
Collapse
Affiliation(s)
- Haizhong Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Xin Ju
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Kwang Sing Yew
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Diing Shenp Ang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
26
|
Traub RD, Whittington MA, Maier N, Schmitz D, Nagy JI. Could electrical coupling contribute to the formation of cell assemblies? Rev Neurosci 2019; 31:121-141. [DOI: 10.1515/revneuro-2019-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Abstract
Cell assemblies and central pattern generators (CPGs) are related types of neuronal networks: both consist of interacting groups of neurons whose collective activities lead to defined functional outputs. In the case of a cell assembly, the functional output may be interpreted as a representation of something in the world, external or internal; for a CPG, the output ‘drives’ an observable (i.e. motor) behavior. Electrical coupling, via gap junctions, is critical for the development of CPGs, as well as for their actual operation in the adult animal. Electrical coupling is also known to be important in the development of hippocampal and neocortical principal cell networks. We here argue that electrical coupling – in addition to chemical synapses – may therefore contribute to the formation of at least some cell assemblies in adult animals.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center , Yorktown Heights, NY 10598 , USA
| | | | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin , Neuroscience Research Center , Charitéplatz 1 , D-10117 Berlin , Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin , Neuroscience Research Center , Charitéplatz 1 , D-10117 Berlin , Germany
| | - James I. Nagy
- Department of Physiology and Pathophysiology , University of Manitoba , Winnipeg R3E OJ9, MB , Canada
| |
Collapse
|
27
|
Shamir M. Theories of rhythmogenesis. Curr Opin Neurobiol 2019; 58:70-77. [PMID: 31408837 DOI: 10.1016/j.conb.2019.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022]
Abstract
Rhythmogenesis is the process that develops the capacity for rhythmic activity in a non-rhythmic system. Theoretical works suggested a wide array of possible mechanisms for rhythmogenesis ranging from the regulation of cellular properties to top-down control. Here we discuss theories of rhythmogenesis with an emphasis on spike timing-dependent plasticity. We argue that even though the specifics of different mechanisms vary greatly they all share certain key features. Namely, rhythmogenesis can be described as a flow on the phase diagram leading the system into a rhythmic region and stabilizing it on a specific manifold characterized by the desired rhythmic activity. Functionality is retained despite biological diversity by forcing the system into a specific manifold, but allowing fluctuations within that manifold.
Collapse
Affiliation(s)
- Maoz Shamir
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Department of Physics, Faculty of Natural Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The Kavli Institute for Theoretical Physics, University of California, Santa Barbara, USA.
| |
Collapse
|
28
|
Shyu WH, Lee WP, Chiang MH, Chang CC, Fu TF, Chiang HC, Wu T, Wu CL. Electrical synapses between mushroom body neurons are critical for consolidated memory retrieval in Drosophila. PLoS Genet 2019; 15:e1008153. [PMID: 31071084 PMCID: PMC6529013 DOI: 10.1371/journal.pgen.1008153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022] Open
Abstract
Electrical synapses between neurons, also known as gap junctions, are direct cell membrane channels between adjacent neurons. Gap junctions play a role in the synchronization of neuronal network activity; however, their involvement in cognition has not been well characterized. Three-hour olfactory associative memory in Drosophila has two components: consolidated anesthesia-resistant memory (ARM) and labile anesthesia-sensitive memory (ASM). Here, we show that knockdown of the gap junction gene innexin5 (inx5) in mushroom body (MB) neurons disrupted ARM, while leaving ASM intact. Whole-mount brain immunohistochemistry indicated that INX5 protein was preferentially expressed in the somas, calyxes, and lobes regions of the MB neurons. Adult-stage-specific knockdown of inx5 in αβ neurons disrupted ARM, suggesting a specific requirement of INX5 in αβ neurons for ARM formation. Hyperpolarization of αβ neurons during memory retrieval by expressing an engineered halorhodopsin (eNpHR) also disrupted ARM. Administration of the gap junction blocker carbenoxolone (CBX) reduced the proportion of odor responsive αβ neurons to the training odor 3 hours after training. Finally, the α-branch-specific 3-hour ARM-specific memory trace was also diminished with CBX treatment and in inx5 knockdown flies. Altogether, our results suggest INX5 gap junction channels in αβ neurons for ARM retrieval and also provide a more detailed neuronal mechanism for consolidated memory in Drosophila.
Collapse
Affiliation(s)
- Wei-Huan Shyu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wang-Pao Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ching Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tony Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, Uygun DS, Strecker RE, Brown RE, McNally JM, Basheer R. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 2019; 9:3607. [PMID: 30837664 PMCID: PMC6401113 DOI: 10.1038/s41598-019-40398-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
The thalamic reticular nucleus (TRN) is implicated in schizophrenia pathology. However, it remains unclear whether alterations of TRN activity can account for abnormal electroencephalographic activity observed in patients, namely reduced spindles (10-15 Hz) during sleep and increased delta (0.5-4 Hz) and gamma-band activity (30-80 Hz) during wakefulness. Here, we utilized optogenetic and reverse-microdialysis approaches to modulate activity of the major subpopulation of TRN GABAergic neurons, which express the calcium-binding protein parvalbumin (PV), and are implicated in schizophrenia dysfunction. An automated algorithm with enhanced efficiency and reproducibility compared to manual detection was used for sleep spindle assessment. A novel, low power, waxing-and-waning optogenetic stimulation paradigm preferentially induced spindles that were indistinguishable from spontaneously occurring sleep spindles without altering the behavioral state, when compared to a single pulse laser stimulation used by us and others. Direct optogenetic inhibition of TRN-PV neurons was ineffective in blocking spindles but increased both wakefulness and cortical delta/gamma activity, as well as impaired the 40 Hz auditory steady-state response. For the first time we demonstrate that spindle density is markedly reduced by (i) optogenetic stimulation of a major GABA/PV inhibitory input to TRN arising from basal forebrain parvalbumin neurons (BF-PV) and; (ii) localized pharmacological inhibition of low-threshold calcium channels, implicated as a genetic risk factor for schizophrenia. Together with clinical findings, our results support impaired TRN-PV neuron activity as a potential cause of schizophrenia-linked abnormalities in cortical delta, gamma, and spindle activity. Modulation of the BF-PV input to TRN may improve these neural abnormalities.
Collapse
Affiliation(s)
- Stephen Thankachan
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - James T McKenna
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Chun Yang
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Charu Shukla
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Karl Deisseroth
- Stanford University, Psychiatry and Behavioral Sciences/Bioengineering, Stanford, CA, USA
| | - David S Uygun
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Robert E Strecker
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA
| | - James M McNally
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA.
| | - Radhika Basheer
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA, USA.
| |
Collapse
|
30
|
Murata Y, Colonnese MT. Thalamic inhibitory circuits and network activity development. Brain Res 2019; 1706:13-23. [PMID: 30366019 PMCID: PMC6363901 DOI: 10.1016/j.brainres.2018.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Inhibitory circuits in thalamus and cortex shape the major activity patterns observed by electroencephalogram (EEG) in the adult brain. Their delayed maturation and circuit integration, relative to excitatory neurons, suggest inhibitory neuronal development could be responsible for the onset of mature thalamocortical activity. Indeed, the immature brain lacks many inhibition-dependent activity patterns, such as slow-waves, delta oscillations and sleep-spindles, and instead expresses other unique oscillatory activities in multiple species including humans. Thalamus contributes significantly to the generation of these early oscillations. Compared to the abundance of studies on the development of inhibition in cortex, however, the maturation of thalamic inhibition is poorly understood. Here we review developmental changes in the neuronal and circuit properties of the thalamic relay and its interconnected inhibitory thalamic reticular nucleus (TRN) both in vitro and in vivo, and discuss their potential contribution to early network activity and its maturation. While much is unknown, we argue that weak inhibitory function in the developing thalamus allows for amplification of thalamocortical activity that supports the generation of early oscillations. The available evidence suggests that the developmental acquisition of critical thalamic oscillations such as slow-waves and sleep-spindles is driven by maturation of the TRN. Further studies to elucidate thalamic GABAergic circuit formation in relation to thalamocortical network function would help us better understand normal as well as pathological brain development.
Collapse
Affiliation(s)
- Yasunobu Murata
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, and Institute for Neuroscience, George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA.
| |
Collapse
|
31
|
Blitz DM, Christie AE, Cook AP, Dickinson PS, Nusbaum MP. Similarities and differences in circuit responses to applied Gly 1-SIFamide and peptidergic (Gly 1-SIFamide) neuron stimulation. J Neurophysiol 2019; 121:950-972. [PMID: 30649961 PMCID: PMC6520624 DOI: 10.1152/jn.00567.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Biology, Miami University , Oxford, Ohio
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean & Earth Science & Technology, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Hoshi M. Tracking down a missing trigger for Alzheimer's disease by mass spectrometric imaging based on brain network analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:25-55. [DOI: 10.1016/bs.pmbts.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Troup M, Yap MH, Rohrscheib C, Grabowska MJ, Ertekin D, Randeniya R, Kottler B, Larkin A, Munro K, Shaw PJ, van Swinderen B. Acute control of the sleep switch in Drosophila reveals a role for gap junctions in regulating behavioral responsiveness. eLife 2018; 7:37105. [PMID: 30109983 PMCID: PMC6117154 DOI: 10.7554/elife.37105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
Sleep is a dynamic process in most animals, involving distinct stages that probably perform multiple functions for the brain. Before sleep functions can be initiated, it is likely that behavioral responsiveness to the outside world needs to be reduced, even while the animal is still awake. Recent work in Drosophila has uncovered a sleep switch in the dorsal fan-shaped body (dFB) of the fly’s central brain, but it is not known whether these sleep-promoting neurons also govern the acute need to ignore salient stimuli in the environment during sleep transitions. We found that optogenetic activation of the sleep switch suppressed behavioral responsiveness to mechanical stimuli, even in awake flies, indicating a broader role for these neurons in regulating arousal. The dFB-mediated suppression mechanism and its associated neural correlates requires innexin6 expression, suggesting that the acute need to reduce sensory perception when flies fall asleep is mediated in part by electrical synapses.
Collapse
Affiliation(s)
- Michael Troup
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Melvyn Hw Yap
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Chelsie Rohrscheib
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Martyna J Grabowska
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Deniz Ertekin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Roshini Randeniya
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Benjamin Kottler
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,King's College London, London, United Kingdom
| | - Aoife Larkin
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,University of Cambridge, Cambridge, United Kingdom
| | - Kelly Munro
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Paul J Shaw
- Washington University School of Medicine, St Louis, United States
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Abstract
Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex.
Collapse
Affiliation(s)
- Guillaume Pernelle
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Wilten Nicola
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Baertsch NA, Baertsch HC, Ramirez JM. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms. Nat Commun 2018; 9:843. [PMID: 29483589 PMCID: PMC5827754 DOI: 10.1038/s41467-018-03223-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.
Collapse
Affiliation(s)
- Nathan Andrew Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Hans Christopher Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA.
- Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
| |
Collapse
|
36
|
Abstract
Cortical circuits are known to be plastic and adaptable, as shown by an impressive body of evidence demonstrating the ability of cortical circuits to adapt to changes in environmental stimuli, development, learning, and insults. In this review, we will discuss some of the features of cortical circuits that are thought to facilitate cortical circuit versatility and flexibility. Throughout life, cortical circuits can be extensively shaped and refined by experience while preserving their overall organization, suggesting that mechanisms are in place to favor change but also to stabilize some aspects of the circuit. First, we will describe the basic organization and some of the common features of cortical circuits. We will then discuss how this underlying cortical structure provides a substrate for the experience- and learning-dependent processes that contribute to cortical flexibility.
Collapse
Affiliation(s)
- Melissa S. Haley
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
37
|
O'Brien J. Design principles of electrical synaptic plasticity. Neurosci Lett 2017; 695:4-11. [PMID: 28893590 DOI: 10.1016/j.neulet.2017.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 01/19/2023]
Abstract
Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks.
Collapse
Affiliation(s)
- John O'Brien
- McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA.
| |
Collapse
|