1
|
Mo A, Walsh CA. Clinical and Neuropsychological Phenotyping of Individuals With Somatic Variants in Neurodevelopmental Disorders. Neurol Genet 2025; 11:e200254. [PMID: 40182320 PMCID: PMC11966520 DOI: 10.1212/nxg.0000000000200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/16/2025] [Indexed: 04/05/2025]
Abstract
Background and Objectives Somatic variants in brain-related genes can cause neurodevelopmental disorders, but detailed characterizations of their clinical phenotypes, neurobehavioral profiles, and comparisons with individuals with germline variants are limited. Methods Using data from the Simons Searchlight natural history cohort, which uses standardized parent-report data collection methods, we identified individuals with neurodevelopmental disorders caused by pathogenic somatic variants and examined their phenotypic data. We further used results from standardized measurements of adaptive functioning, social behavior, and emotional and behavioral problems to compare individuals with somatic variants with those with germline variants. Results We identified 15 probands with pathogenic or likely pathogenic somatic variants in the Simons Searchlight cohort. For 8 individuals with detailed phenotype information, symptoms included developmental delay or language delay (n = 8), hypotonia (n = 5), autism spectrum disorder (n = 4), and epilepsy (n = 3). Individuals with mosaic variants showed a range of severity in their scores on standardized measurements of adaptive functioning, social behavior, and emotional and behavioral problems. In particular, some individuals with mosaic variants showed impairments that were similar in severity or more severe compared with individuals with germline variants in the same gene. Discussion This study improves our understanding of the clinical phenotypes and neuropsychological profiles of individuals with mosaic pathogenic variants in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alisa Mo
- Neurology, Boston Children's Hospital, MA
| | - Christopher A Walsh
- Genetics and Genomics, Boston Children's Hospital, MA
- Pediatrics, Harvard Medical School, Boston, MA; and
- Howard Hughes Medical Institute, Boston Children's Hospital, MA
| |
Collapse
|
2
|
Borghi R, Petrini S, Apollonio V, Trivisano M, Specchio N, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Altered cytoskeleton dynamics in patient-derived iPSC-based model of PCDH19 clustering epilepsy. Front Cell Dev Biol 2025; 12:1518533. [PMID: 39834389 PMCID: PMC11743388 DOI: 10.3389/fcell.2024.1518533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation. Here, we evaluate the consequences of altered PCDH19 function on microfilaments and microtubules organization, using a disease model obtained from patient-derived induced pluripotent stem cells. We show that iPSC-derived cortical neurons are characterized by altered cytoskeletal dynamics, suggesting that this protocadherin has a role in modulating stability of MFs and MTs. Consistently, the levels of acetylated-tubulin, which is related with stable MTs, are significantly increased in cortical neurons derived from the patient's iPSCs compared to control cells, supporting the idea that the altered dynamics of the MTs depends on their increased stability. Finally, performing live-imaging experiments using fluorescence recovery after photobleaching and by monitoring GFP-tagged end binding protein 3 (EB3) "comets," we observe an impairment of the plus-end polymerization speed in PCDH19-mutated cortical neurons, therefore confirming the impaired MT dynamics. In addition to altering the mitotic spindle formation, the present data unveil that PCDH19 dysfunction leads to altered cytoskeletal rearrangement, providing therapeutic targets and pharmacological options to treat this disorder.
Collapse
Affiliation(s)
- Rossella Borghi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Valentina Apollonio
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Liu Q, Li F, Ruan Q, Wang N, Fan Z. RHOBTB2 Variant p.Arg511Gln Causes Developmental and Epileptic Encephalopathy Type 64 in an Infant: A Case Report and Hotspot Variant Analysis. Mol Genet Genomic Med 2025; 13:e70059. [PMID: 39831600 PMCID: PMC11744465 DOI: 10.1002/mgg3.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored. METHODS We performed whole-exome and Sanger sequencing on the patient and his parents. We collected recurrent variant information from the literature on RHOBTB2 variants. We used Discovery Studio software to analyze the folding free energy of variant proteins, and the AlphaFold database to analyze structural alterations in mutant proteins. RESULTS The patient presented with early-onset epilepsy, developmental delay, and brain structural abnormalities. Genetic analysis revealed a de novo variant in RHOBTB2, c.1532G>A, p.(Arg511Gln). To date, 60 cases of DEE patients with RHOBTB2 variants have been reported, with approximately 50% of variants located at Arg483 and Arg511. Among them, p.Arg511Gln, p.Arg483His, and p.Arg511Trp have an incidence rate exceeding 10%. The folding free energy of these high-frequency variants proteins is reduced, which may lead to increased structural stability. CONCLUSION This study highlights the importance of RHOBTB2 hotspot variants in DEE64 and provides insights into their potential mechanisms of action. We recommend RHOBTB2 gene testing for patients with relevant clinical manifestations to facilitate precise diagnosis and treatment of DEE.
Collapse
Affiliation(s)
- Qian Liu
- Department of PediatricsTaihe County People's HospitalFuyangAnhuiChina
| | - Feifei Li
- Department of PediatricsTaihe County People's HospitalFuyangAnhuiChina
| | - Qin Ruan
- Department of PediatricsTaihe County People's HospitalFuyangAnhuiChina
| | - Nana Wang
- Department of PediatricsTaihe County People's HospitalFuyangAnhuiChina
| | - Zhengjun Fan
- Department of PediatricsTaihe County People's HospitalFuyangAnhuiChina
| |
Collapse
|
4
|
Gabaldón-Albero A, Smeyers P, Hernández-Muela S, Roselló M, Orellana C, Monfort S, Oltra S, Martínez F. Triplication of the PCDH19 Gene as a Novel Disease Mechanism Leading to Epileptic Encephalopathy Resembling Loss-of-Function Pathogenic Variants. Genes (Basel) 2024; 15:1312. [PMID: 39457436 PMCID: PMC11506946 DOI: 10.3390/genes15101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Developmental and epileptic encephalopathy 9 (DEE9) (MIM #300088) affects heterozygous females and males with somatic pathogenic variants, while male carriers with hemizygous PCDH19 pathogenic variants are clinically unaffected. There are hundreds of pathogenic single nucleotide variants in the PCDH19 gene reported in the literature, which lead to the loss of function of the PCDH19 protein. To date, no phenotypes associated with overexpression or copy number gains have been described in this gene. METHODS AND RESULTS We present a female patient with a de novo triplication in the Xq21.3-q22.1 chromosomal region, which includes the PCDH19 gene, which implies an unbalanced dose gain. This patient displayed a phenotype of epileptic encephalopathy compatible with DEE9. By comparison, another male patient with a similar duplication showed mild developmental delay and autism but never developed epilepsy. CONCLUSIONS Here, we propose the dose gain of PCDH19 as a new pathogenic mechanism that results in a phenotype similar to that found in patients with loss-of-function variants in PCDH19, when present in a heterozygous state.
Collapse
Affiliation(s)
- Alba Gabaldón-Albero
- Translational Research Group in Genetics, La Fe Health Research Institute, 46026 Valencia, Spain; (A.G.-A.); (M.R.); (C.O.); (S.M.); (S.O.)
| | - Patricia Smeyers
- Pediatric Neurology Section, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain; (P.S.); (S.H.-M.)
| | - Sara Hernández-Muela
- Pediatric Neurology Section, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain; (P.S.); (S.H.-M.)
| | - Mónica Roselló
- Translational Research Group in Genetics, La Fe Health Research Institute, 46026 Valencia, Spain; (A.G.-A.); (M.R.); (C.O.); (S.M.); (S.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Carmen Orellana
- Translational Research Group in Genetics, La Fe Health Research Institute, 46026 Valencia, Spain; (A.G.-A.); (M.R.); (C.O.); (S.M.); (S.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Sandra Monfort
- Translational Research Group in Genetics, La Fe Health Research Institute, 46026 Valencia, Spain; (A.G.-A.); (M.R.); (C.O.); (S.M.); (S.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Silvestre Oltra
- Translational Research Group in Genetics, La Fe Health Research Institute, 46026 Valencia, Spain; (A.G.-A.); (M.R.); (C.O.); (S.M.); (S.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| | - Francisco Martínez
- Translational Research Group in Genetics, La Fe Health Research Institute, 46026 Valencia, Spain; (A.G.-A.); (M.R.); (C.O.); (S.M.); (S.O.)
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
5
|
Lukin J, Smith CM, De Rubeis S. Emerging X-linked genes associated with neurodevelopmental disorders in females. Curr Opin Neurobiol 2024; 88:102902. [PMID: 39167997 PMCID: PMC11392613 DOI: 10.1016/j.conb.2024.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
A significant source of risk for neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorder (ASD), lies in genes located on the X chromosome. Males can be particularly vulnerable to X-linked variation because of hemizygosity, and male-specific segregation in pedigrees has guided earlier gene discovery for X-linked recessive conditions. More recently, X-linked disorders disproportionally affecting females, with complex inheritance patterns and/or presenting with sex differences, have surfaced. Here, we discuss the genetics and neurobiology of X-linked genes that are paradigmatic to understand NDDs in females. Integrating genetic, clinical, and functional data will be key to understand how X-linked variation contributes to the risk architecture of NDDs.
Collapse
Affiliation(s)
- Jeronimo Lukin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Corinne M Smith
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
de Nys R, Gardner A, van Eyk C, Mincheva-Tasheva S, Thomas P, Bhattacharjee R, Jolly L, Martinez-Garay I, Fox IWJ, Kamath KS, Kumar R, Gecz J. Proteomic analysis of the developing mammalian brain links PCDH19 to the Wnt/β-catenin signalling pathway. Mol Psychiatry 2024; 29:2199-2210. [PMID: 38454084 PMCID: PMC11408250 DOI: 10.1038/s41380-024-02482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, αN-catenin and, importantly, β-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of β-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alison Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Clare van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Stefka Mincheva-Tasheva
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Paul Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Jolly
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ian W J Fox
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
7
|
Giansante G, Mazzoleni S, Zippo AG, Ponzoni L, Ghilardi A, Maiellano G, Lewerissa E, van Hugte E, Nadif Kasri N, Francolini M, Sala M, Murru L, Bassani S, Passafaro M. Neuronal network activity and connectivity are impaired in a conditional knockout mouse model with PCDH19 mosaic expression. Mol Psychiatry 2024; 29:1710-1725. [PMID: 36997609 PMCID: PMC11371655 DOI: 10.1038/s41380-023-02022-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.
Collapse
Affiliation(s)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Antonio G Zippo
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Luisa Ponzoni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
| | - Anna Ghilardi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Greta Maiellano
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Elly Lewerissa
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Eline van Hugte
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | | | - Luca Murru
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| |
Collapse
|
8
|
Aerts T, Boonen A, Geenen L, Stulens A, Masin L, Pancho A, Francis A, Pepermans E, Baggerman G, Van Roy F, Wöhr M, Seuntjens E. Altered socio-affective communication and amygdala development in mice with protocadherin10-deficient interneurons. Open Biol 2024; 14:240113. [PMID: 38889770 DOI: 10.1098/rsob.240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions associated with deficits in social interaction and communication, together with repetitive behaviours. The cell adhesion molecule protocadherin10 (PCDH10) is linked to ASD in humans. Pcdh10 is expressed in the nervous system during embryonic and early postnatal development and is important for neural circuit formation. In mice, strong expression of Pcdh10 in the ganglionic eminences and in the basolateral complex (BLC) of the amygdala was observed at mid and late embryonic stages, respectively. Both inhibitory and excitatory neurons expressed Pcdh10 in the BLC at perinatal stages and vocalization-related genes were enriched in Pcdh10-expressing neurons in adult mice. An epitope-tagged Pcdh10-HAV5 mouse line revealed endogenous interactions of PCDH10 with synaptic proteins in the young postnatal telencephalon. Nuanced socio-affective communication changes in call emission rates, acoustic features and call subtype clustering were primarily observed in heterozygous pups of a conditional knockout (cKO) with selective deletion of Pcdh10 in Gsh2-lineage interneurons. These changes were less prominent in heterozygous ubiquitous Pcdh10 KO pups, suggesting that altered anxiety levels associated with Gsh2-lineage interneuron functioning might drive the behavioural effects. Together, loss of Pcdh10 specifically in interneurons contributes to behavioural alterations in socio-affective communication with relevance to ASD.
Collapse
Affiliation(s)
- Tania Aerts
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Anneleen Boonen
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Lieve Geenen
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Anne Stulens
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Luca Masin
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Neural Circuit Development and Regeneration, KU Leuven , Leuven 3000, Belgium
| | - Anna Pancho
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
- Developmental Genetics, Department of Biomedicine, University of Basel , Basel 4058, Switzerland
| | - Annick Francis
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
| | - Elise Pepermans
- Centre for Proteomics, University of Antwerp , Antwerp, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp , Antwerp, Belgium
- Department of Computer Science, University of Antwerp , Antwerp, Belgium
| | - Frans Van Roy
- Faculty of Science, Department of Biomedical Molecular Biology; Inflammation Research Center, VIB, Ghent University , Cancer Research Institute Ghent (CRIG) 9000, Belgium
| | - Markus Wöhr
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven , Leuven 3000, Belgium
- KU Leuven, Leuven Brain Institute , Leuven 3000, Belgium
- Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg , Marburg 35032, Germany
- Center for Mind, Brain and Behavior, Philipps-University of Marburg , Marburg 35032, Germany
| | - Eve Seuntjens
- Faculty of Science, Department of Biology, Division of Animal Physiology and Neurobiology, Lab of Developmental Neurobiology, KU Leuven , Leuven 3000, Belgium
- KU Leuven, Leuven Brain Institute , Leuven 3000, Belgium
- KU Leuven, Leuven Institute for Single Cell Omics , Leuven 3000, Belgium
| |
Collapse
|
9
|
Chen Y, Liu A, Zhang X, Ma X, Sun D, Tian X, Wu W, Zeng Q, Jiang Y, Zhang Y. Seizure course of PCDH19 clustering epilepsy in female children: A multicentre cohort study in China. Dev Med Child Neurol 2024; 66:804-815. [PMID: 37960945 DOI: 10.1111/dmcn.15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
AIM To investigate the seizure course of PCDH19 clustering epilepsy (PCDH19-CE) in a cohort of female children in China. METHOD This ambidirectional cohort study examined 113 female patients with PCDH19-CE through multicentre collaboration. Prognostic factors for seizure freedom were evaluated by multivariate Cox regression analysis. RESULTS The median seizure course period from seizure onset was 6 years 6 months. Of 113 patients, 78% and 56% experienced seizure freedom for at least 1 year and at least 2 years respectively. In patients younger than 5 years (n = 30), 5 to 10 years (n = 52), and older than 10 years (n = 31), 57%, 81%, and 94% experienced at least 1 year of seizure freedom, and 32%, 52%, and 84% experienced at least 2 years of seizure freedom, respectively. However, 58% (65 out of 113) relapsed at least once after more than 1 year of seizure freedom without trigger exposure (40%) or because of common triggers, including fever (43%) and antiseizure medication (ASM) reduction (29%). There was an 84% risk of seizure relapse after ASM reduction attempts. The likelihood of seizure freedom decreased with early age at seizure onset and developmental delay. INTERPRETATION Patients with PCDH19-CE exhibit increasing seizure freedom with age, but there is a risk of relapse. ASM reduction in children younger than 10 years old requires caution. Patients with early seizure onset and developmental delay have a reduced chance of seizure freedom. WHAT THIS PAPER ADDS The seizure freedom rate in PCDH19 clustering epilepsy gradually increases with age. The disease course is characterized by relapsing-remitting seizures. Antiseizure medication reduction requires caution for patients younger than 10 years of age. Patients with early seizure onset and developmental delay are less likely to achieve seizure freedom.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Aijie Liu
- Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoli Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Xiuwei Ma
- Department of Neurology, Bayi Children's Hospital, General Military Hospital of Beijing, Beijing, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Wuhan, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjuan Wu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Qi Zeng
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
10
|
Park J, Lee E, Kim CH, Ohk J, Jung H. Mosaicism-independent mechanisms contribute to Pcdh19-related epilepsy and repetitive behaviors in Xenopus. Proc Natl Acad Sci U S A 2024; 121:e2321388121. [PMID: 38748583 PMCID: PMC11126968 DOI: 10.1073/pnas.2321388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 05/27/2024] Open
Abstract
Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.
Collapse
Affiliation(s)
- Jugeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Eunee Lee
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| |
Collapse
|
11
|
Kowkabi S, Yavarian M, Kaboodkhani R, Mohammadi M, Shervin Badv R. PCDH19-clustering epilepsy, pathophysiology and clinical significance. Epilepsy Behav 2024; 154:109730. [PMID: 38521028 DOI: 10.1016/j.yebeh.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is an X-linked epilepsy disorder associated with intellectual disability (ID) and behavioral disturbances, which is caused by PCDH19 gene variants. PCDH19 pathogenic variant leads to epilepsy in heterozygous females, not in hemizygous males and the inheritance pattern is unusual. The hypothesis of cellular interference was described as a key pathogenic mechanism. According to that, males do not develop the disease because of the uniform expression of PCDH19 (variant or wild type) unless they have a somatic variation. We conducted a literature review on PCDH19-CE pathophysiology and concluded that other significant mechanisms could contribute to pathogenesis including: asymmetric cell division and heterochrony, female-related allopregnanolone deficiency, altered steroid gene expression, decreased Gamma-aminobutyric acid receptor A (GABAA) function, and blood-brain barrier (BBB) dysfunction. Being aware of these mechanisms helps us when we should decide which therapeutic option is more suitable for which patient.
Collapse
Affiliation(s)
- Safoura Kowkabi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran; Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Majid Yavarian
- Hematology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahmood Mohammadi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Niu W, Deng L, Mojica-Perez SP, Tidball AM, Sudyk R, Stokes K, Parent JM. Abnormal cell sorting and altered early neurogenesis in a human cortical organoid model of Protocadherin-19 clustering epilepsy. Front Cell Neurosci 2024; 18:1339345. [PMID: 38638299 PMCID: PMC11024992 DOI: 10.3389/fncel.2024.1339345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Protocadherin-19 (PCDH19)-Clustering Epilepsy (PCE) is a developmental and epileptic encephalopathy caused by loss-of-function variants of the PCDH19 gene on the X-chromosome. PCE affects females and mosaic males while male carriers are largely spared. Mosaic expression of the cell adhesion molecule PCDH19 due to random X-chromosome inactivation is thought to impair cell-cell interactions between mutant and wild type PCDH19-expressing cells to produce the disease. Progress has been made in understanding PCE using rodent models or patient induced pluripotent stem cells (iPSCs). However, rodents do not faithfully model key aspects of human brain development, and patient iPSC models are limited by issues with random X-chromosome inactivation. Methods To overcome these challenges and model mosaic PCDH19 expression in vitro, we generated isogenic female human embryonic stem cells with either HA-FLAG-tagged PCDH19 (WT) or homozygous PCDH19 knockout (KO) using genome editing. We then mixed GFP-labeled WT and RFP-labeled KO cells and generated human cortical organoids (hCOs). Results We found that PCDH19 is highly expressed in early (days 20-35) WT neural rosettes where it co-localizes with N-Cadherin in ventricular zone (VZ)-like regions. Mosaic PCE hCOs displayed abnormal cell sorting in the VZ with KO and WT cells completely segregated. This segregation remained robust when WT:KO cells were mixed at 2:1 or 1:2 ratios. PCE hCOs also exhibited altered expression of PCDH19 (in WT cells) and N-Cadherin, and abnormal deep layer neurogenesis. None of these abnormalities were observed in hCOs generated by mixing only WT or only KO (modeling male carrier) cells. Discussion Our results using the mosaic PCE hCO model suggest that PCDH19 plays a critical role in human VZ radial glial organization and early cortical development. This model should offer a key platform for exploring mechanisms underlying PCE-related cortical hyperexcitability and testing of potential precision therapies.
Collapse
Affiliation(s)
- Wei Niu
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Lu Deng
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Andrew M. Tidball
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Roksolana Sudyk
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Kyle Stokes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jack M. Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Mincheva-Tasheva S, Pfitzner C, Kumar R, Kurtsdotter I, Scherer M, Ritchie T, Muhr J, Gecz J, Thomas PQ. Mapping combinatorial expression of non-clustered protocadherins in the developing brain identifies novel PCDH19-mediated cell adhesion properties. Open Biol 2024; 14:230383. [PMID: 38629124 PMCID: PMC11037505 DOI: 10.1098/rsob.230383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Chandran Pfitzner
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Idha Kurtsdotter
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Michaela Scherer
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Tarin Ritchie
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
- South Australian Health and Medical Research
Institute, Adelaide, 5000 ,
Australia
| | - Paul Q. Thomas
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| |
Collapse
|
14
|
Motosugi N, Sugiyama A, Otomo A, Sakata Y, Araki T, Hadano S, Kumasaka N, Fukuda A. Effect of PCDH19 missense mutations on cell-to-cell proximity and neuronal development under heterotypic conditions. PNAS NEXUS 2024; 3:pgae060. [PMID: 38516276 PMCID: PMC10957236 DOI: 10.1093/pnasnexus/pgae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
The mutation of the X-linked protocadherin (PCDH) 19 gene in heterozygous females causes epilepsy. However, because of the erosion of X-chromosome inactivation (XCI) in female human pluripotent stem cells, precise disease modeling often leads to failure. In this study, using a mathematical approach and induced pluripotent stem cells retaining XCI derived from patients with PCDH19 missense mutations, we found that heterotypic conditions, which are composed of wild-type and missense PCDH19, led to significant cell-to-cell proximity and impaired neuronal differentiation, accompanied by the aberrant accumulation of doublecortin, a microtubule-associated protein. Our findings suggest that ease of adhesion between cells expressing either wild-type or missense PCDH19 might lead to aberrant cell aggregation in early embryonic phases, causing poor neuronal development.
Collapse
Affiliation(s)
- Nami Motosugi
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Akiko Sugiyama
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Asako Otomo
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
| | - Yuka Sakata
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Takuma Araki
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Shinji Hadano
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
| | - Natsuhiko Kumasaka
- Genetics Division, Medical Support Center of the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Atsushi Fukuda
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo 157-0074, Japan
| |
Collapse
|
15
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
O'Connor M, Qiao H, Odamah K, Cerdeira PC, Man HY. Heterozygous Nexmif female mice demonstrate mosaic NEXMIF expression, autism-like behaviors, and abnormalities in dendritic arborization and synaptogenesis. Heliyon 2024; 10:e24703. [PMID: 38322873 PMCID: PMC10844029 DOI: 10.1016/j.heliyon.2024.e24703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic basis. ASDs are commonly characterized by impairments in language, restrictive and repetitive behaviors, and deficits in social interactions. Although ASD is a highly heterogeneous disease with many different genes implicated in its etiology, many ASD-associated genes converge on common cellular defects, such as aberrant neuronal morphology and synapse dysregulation. Our previous work revealed that, in mice, complete loss of the ASD-associated X-linked gene NEXMIF results in a reduction in dendritic complexity, a decrease in spine and synapse density, altered synaptic transmission, and ASD-like behaviors. Interestingly, human females of NEXMIF haploinsufficiency have recently been reported to demonstrate autistic features; however, the cellular and molecular basis for this haploinsufficiency-caused ASD remains unclear. Here we report that in the brains of Nexmif± female mice, NEXMIF shows a mosaic pattern in its expression in neurons. Heterozygous female mice demonstrate behavioral impairments similar to those of knockout male mice. In the mosaic mixture of neurons from Nexmif± mice, cells that lack NEXMIF have impairments in dendritic arborization and spine development. Remarkably, the NEXMIF-expressing neurons from Nexmif± mice also demonstrate similar defects in dendritic growth and spine formation. These findings establish a novel mouse model of NEXMIF haploinsufficiency and provide new insights into the pathogenesis of NEXMIF-dependent ASD.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | | | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
17
|
Ediae GU, Chisholm C, Lemire G, Campbell F, Boycott KM. Pathogenic variant in the X-linked ARR3 gene associated with variable early-onset myopia. Am J Med Genet A 2024; 194:397-399. [PMID: 37795829 DOI: 10.1002/ajmg.a.63435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Grace Uwaila Ediae
- Regional Genetics Program, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Caitlin Chisholm
- Regional Genetics Program, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Gabrielle Lemire
- Regional Genetics Program, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Kym M Boycott
- Regional Genetics Program, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
de Nys R, van Eyk CL, Ritchie T, Møller RS, Scheffer IE, Marini C, Bhattacharjee R, Kumar R, Gecz J. Multiomic analysis implicates nuclear hormone receptor signalling in clustering epilepsy. Transl Psychiatry 2024; 14:65. [PMID: 38280856 PMCID: PMC10821879 DOI: 10.1038/s41398-024-02783-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clare L van Eyk
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ingrid E Scheffer
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Carla Marini
- Child Neurology and Psychiatry Unit Children's Hospital "G. Salesi" Azienda Ospedaliero-Universitaria delle Marche Ancona, Ancona, Italy
| | - Rudrarup Bhattacharjee
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
19
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Tidball AM, Niu W, Ma Q, Takla TN, Walker JC, Margolis JL, Mojica-Perez SP, Sudyk R, Deng L, Moore SJ, Chopra R, Shakkottai VG, Murphy GG, Yuan Y, Isom LL, Li JZ, Parent JM. Deriving early single-rosette brain organoids from human pluripotent stem cells. Stem Cell Reports 2023; 18:2498-2514. [PMID: 37995702 PMCID: PMC10724074 DOI: 10.1016/j.stemcr.2023.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Brain organoid methods are complicated by multiple rosette structures and morphological variability. We have developed a human brain organoid technique that generates self-organizing, single-rosette cortical organoids (SOSR-COs) with reproducible size and structure at early timepoints. Rather than patterning a 3-dimensional embryoid body, we initiate brain organoid formation from a 2-dimensional monolayer of human pluripotent stem cells patterned with small molecules into neuroepithelium and differentiated to cells of the developing dorsal cerebral cortex. This approach recapitulates the 2D to 3D developmental transition from neural plate to neural tube. Most monolayer fragments form spheres with a single central lumen. Over time, the SOSR-COs develop appropriate progenitor and cortical laminar cell types as shown by immunocytochemistry and single-cell RNA sequencing. At early time points, this method demonstrates robust structural phenotypes after chemical teratogen exposure or when modeling a genetic neurodevelopmental disorder, and should prove useful for studies of human brain development and disease modeling.
Collapse
Affiliation(s)
- Andrew M Tidball
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wei Niu
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Taylor N Takla
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J Clayton Walker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua L Margolis
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Roksolana Sudyk
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lu Deng
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shannon J Moore
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ravi Chopra
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yukun Yuan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lori L Isom
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Simmons R, Singhal N, Sullivan J, Shih T, Tihan T, Poduri A, Smith L, Yang E. Epilepsy surgery as a treatment option for select patients with PCDH19-related epilepsy. Epilepsy Behav 2023; 149:109517. [PMID: 37956604 DOI: 10.1016/j.yebeh.2023.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
PCDH19 is a common epilepsy gene causing medication resistant epilepsy with fever-related seizures. Traditionally, patients with PCDH19-related epilepsy have not been considered surgical candidates. This retrospective review evaluated three patients with pathogenic variants in PCDH19 who presented with seizures in childhood, had one seizure semiology, became medication resistant, and had concordant imaging, seizure semiology and electrographic findings. All three patients ultimately underwent temporal lobectomy, resulting in seizure freedom. These findings suggest epilepsy surgery can be an effective treatment option for select patients with PCDH19-related epilepsy and a single seizure semiology.
Collapse
Affiliation(s)
- Roxanne Simmons
- Department of Neurology, Benioff Children's Hospital, University of California San Francisco, USA.
| | - Nilika Singhal
- Department of Neurology, Benioff Children's Hospital, University of California San Francisco, USA
| | - Joseph Sullivan
- Department of Neurology, Benioff Children's Hospital, University of California San Francisco, USA
| | - Tina Shih
- Department of Neurology, University of California San Francisco, USA
| | - Tarik Tihan
- Neuropathology Division, Department of Pathology, University of California San Francisco, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lacey Smith
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Martinez AP, Chung AC, Huang S, Bisogni AJ, Lin Y, Cao Y, Williams EO, Kim JY, Yang JY, Lin DM. Pcdh19 mediates olfactory sensory neuron coalescence during postnatal stages and regeneration. iScience 2023; 26:108220. [PMID: 37965156 PMCID: PMC10641745 DOI: 10.1016/j.isci.2023.108220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.
Collapse
Affiliation(s)
- Andrew P. Martinez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alexander C. Chung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam J. Bisogni
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yingxin Lin
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Yue Cao
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Eric O. Williams
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Jin Y. Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - David M. Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
23
|
Wang Y, Xiao X, Li X, Yi Z, Jiang Y, Zhang F, Zhou L, Li S, Jia X, Sun W, Wang P, Zhang Q. Genetic and clinical landscape of ARR3-associated MYP26: the most common cause of Mendelian early-onset high myopia with a unique inheritance. Br J Ophthalmol 2023; 107:1545-1553. [PMID: 36180177 PMCID: PMC10579186 DOI: 10.1136/bjo-2022-321511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
AIMS To elucidate genetic background of early-onset high myopia (eoHM) and characteristics of ARR3-associated MYP26. METHODS Variants in 14 genes reported to contribute to eoHM, including ARR3, were selected from exome sequencing data set and classified into different categories following American College of Medical Genetics and Genomics guidelines based on in silico prediction, associated phenotypes, confirmation and cosegregation analysis. The available clinical data of individuals were summarised. RESULTS Pathogenic and likely pathogenic variants in three of 14 genes were identified in 52 of 928 families with eoHM, including 29 in ARR3, 22 in OPN1LW and 1 in LRPAP1. For ARR3, 24 pathogenic variants (16 truncation and 8 missense) were identified in 66 women and 12 men, in whom 64 women and 4 men had eoHM by X-linked female-limited inheritance. Refraction ranged from -5.00 to -28.75 diopter (-12.58±4.83). Mild-to-moderately reduced cone responses were recorded in 76.9% (10/13) of patients with electroretinogram recordings. Most patients (75.9%, 41/54) had mild myopic fundus changes (C0 to C1). Genotype-phenotype analysis suggested that the myopic retinopathy degree was correlated with age and the variant's nature. Peripheral retinal degeneration was observed in 38.5% (5/13) patients using wide-field examinations. CONCLUSION This study reveals ARR3 as the most frequently implicated gene for Mendelian eoHM. Truncations and highly scored missense variants in ARR3 are pathogenic. Myopia due to ARR3 mutations is transmitted in X-linked female-limited inheritance, manifests with mild cone impairment and slowly progresses to pathologic myopia. Identification of the most common cause for Mendelian eoHM provides a valuable starting point into the molecular mechanism of myopia.
Collapse
Affiliation(s)
- Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Fengsheng Zhang
- Department of Ophthalmology, Chaoju Inner Mongolia Eye Hospital Co Ltd, Hohhot, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Alaverdian D, Corradi AM, Sterlini B, Benfenati F, Murru L, Passafaro M, Brunetti J, Meloni I, Mari F, Renieri A, Frullanti E. Modelling PCDH19 clustering epilepsy by Neurogenin 2 induction of patient-derived induced pluripotent stem cells. Epileptic Disord 2023. [PMID: 37186408 DOI: 10.1002/epd2.20065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of function mutations in PCDH19 gene cause an X-linked, infant-onset clustering epilepsy, associated with intellectual disability and autistic features. The unique pattern of inheritance includes random X-chromosome inactivation, which leads to pathological tissue mosaicism. Females carrying PCDH19 mutations are affected, while males have normal phenotype. No cure is presently available for this disease. METHODS Fibroblasts from a female patient carrying frameshift mutation were reprogrammed into human induced pluripotent stem cells (hiPSC). To create a cell model of PCDH19-clustering epilepsy (PCDH19-CE) where both cell populations co-exist, we created mosaic neurons by mixing wild-type (WT) and mutated (mut) human iPSC clones, and differentiated them into mature neurons with overexpression of the transcriptional factor Neurogenin 2. RESULTS We generated functional neurons from patient-derived iPSC using a rapid and efficient method of differentiation through overexpression of Neurogenin 2. Was revealed an accelerated maturation and higher arborisation in the mutated neurons, while the mosaic neurons showed the highest frequency of action potential firing and hyperexcitability features, compared to mutated and WT neurons. CONCLUSIONS Our findings provide evidence that PCDH19 c.2133delG mutation affects proper metaphases with increased numbers of centrosomes in stem cells and accelerates neuronal maturation in premature cells. PCDH19 mosaic neurons showed an elevated excitability, representing the situation in PCDH19-CE brain. We suggest an Ngn-2 hiPSC-derived PCDH19 neurons as an informative experimental tool for understanding the pathogenesis of PCDH19-CE and a suitable approach for use in targeted drug screening strategies.
Collapse
Affiliation(s)
- Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Margherita Corradi
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, Section of Physiology, University of Genoa, Viale Benedetto XV, 3, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Luca Murru
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, IN-CNR, 20129, Milan, Italy
- NeuroMI Milan Center for Neuroscience, Università Milano-Bicocca, 20126, Milan, Italy
| | - Jlenia Brunetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
25
|
PCDH19 in Males: Are Hemizygous Variants Linked to Autism? Genes (Basel) 2023; 14:genes14030598. [PMID: 36980870 PMCID: PMC10048232 DOI: 10.3390/genes14030598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex developmental disability that impairs the social communication and interaction of affected individuals and leads to restricted or repetitive behaviors or interests. ASD is genetically heterogeneous, with inheritable and de novo genetic variants in more than hundreds of genes contributing to the disease. However, these account for only around 20% of cases, while the molecular basis of the majority of cases remains unelucidated as of yet. Material and methods: Two unrelated Lebanese patients, a 7-year-old boy (patient A) and a 4-year-old boy (patient B), presenting with ASD were included in this study. Whole-exome sequencing (WES) was carried out for these patients to identify the molecular cause of their diseases. Results: WES analysis revealed hemizygous variants in PCDH19 (NM_001184880.1) as being the candidate causative variants: p.Arg787Leu was detected in patient A and p.Asp1024Asn in patient B. PCDH19, located on chromosome X, encodes a membrane glycoprotein belonging to the protocadherin family. Heterozygous PCDH19 variants have been linked to epilepsy in females with mental retardation (EFMR), while mosaic PCDH19 mutations in males are responsible for treatment-resistant epilepsy presenting similarly to EFMR, with some reported cases of comorbid intellectual disability and autism. Interestingly, a hemizygous PCDH19 variant affecting the same amino acid that is altered in patient A was previously reported in a male patient with ASD. Conclusion: Here, we report hemizygous PCDH19 variants in two males with autism without epilepsy. Reporting further PCDH19 variants in male patients with ASD is important to assess the possible involvement of this gene in autism.
Collapse
|
26
|
Zhou W, Ouyang Y, Ji Y, Xi Q, Zhao L. Genetic variants and phenotype analysis in a five-generation Chinese pedigree with PCDH19 female-limited epilepsy. Front Neurol 2023; 14:1107904. [PMID: 36970538 PMCID: PMC10034091 DOI: 10.3389/fneur.2023.1107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Objective Albeit the gene of PCDH19-FE was ascertained, the correlation of gene mutation, PCDH19 protein structure, and phenotype heterogeneity remained obscure. This study aimed to report a five-generation pedigree of seven female patients of PCDH19-FE and tried to explore whether two variants were correlated with PCDH19 protein structure and function alteration, and PCDH19-FE phenotype. Methods We analyzed the clinical data and genetic variants of a PCDH19-FE pedigree, to explore the phenotype heterogeneity of PCDH19-FE and underlying mechanisms. In addition to the clinical information of family members, next-generation sequencing was adopted to detect the variant sites of probands with validation by sanger sequencing. And the sanger sequencing was conducted in other patients in this pedigree. The biological conservation analysis and population polymorphism analysis of variants were also performed subsequently. The structure alteration of mutated PCDH19 protein was predicted by AlphaFold2. Results Based on a five-generation pedigree of PCDH19-FE, missense variants of c.695A>G and c.2760T>A in the PCDH19 gene were found in the heterozygous proband (V:1), which resulted in the change of amino acid 232 from Asn to Ser (p.Asn232Ser) and amino acid 920 from Asp to Glu (p.Asp920Glu) influencing PCDH19 function. The other six females in the pedigree (II:6, II:8, IV:3, IV:4, IV:5, IV:11) exhibited different clinical phenotypes but shared the same variant. Two males with the same variant have no clinical manifestations (III:3, III:10). The biological conservation analysis and population polymorphism analysis demonstrated the highly conservative characteristics of these two variants. AlphaFold2 predicted that the variant, p.Asp920Glu, led to the disappearance of the hydrogen bond between Asp at position 920 and His at position 919. Furthermore, the hydrogen bond between Asp920 and His919 also disappeared when the Asn amino acid mutated to Ser at position 232. Conclusion A strong genotype-phenotype heterogeneity was observed among female patients with the same genotype in our PCDH19-FE pedigree. And two missense variants, c.695A > G and c.2760T>A in the PCDH19 gene, have been identified in our pedigree. The c.2760T>A variant was a novel variant site probably related to the PCDH19-FE.
Collapse
Affiliation(s)
- Wenjuan Zhou
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wenjuan Zhou
| | - Yuzhen Ouyang
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuqiao Ji
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiong Xi
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingling Zhao
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Lingling Zhao
| |
Collapse
|
27
|
Pancho A, Mitsogiannis MD, Aerts T, Dalla Vecchia M, Ebert LK, Geenen L, Noterdaeme L, Vanlaer R, Stulens A, Hulpiau P, Staes K, Van Roy F, Dedecker P, Schermer B, Seuntjens E. Modifying PCDH19 levels affects cortical interneuron migration. Front Neurosci 2022; 16:887478. [PMID: 36389226 PMCID: PMC9642031 DOI: 10.3389/fnins.2022.887478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2023] Open
Abstract
PCDH19 is a transmembrane protein and member of the protocadherin family. It is encoded by the X-chromosome and more than 200 mutations have been linked to the neurodevelopmental PCDH-clustering epilepsy (PCDH19-CE) syndrome. A disturbed cell-cell contact that arises when random X-inactivation creates mosaic absence of PCDH19 has been proposed to cause the syndrome. Several studies have shown roles for PCDH19 in neuronal proliferation, migration, and synapse function, yet most of them have focused on cortical and hippocampal neurons. As epilepsy can also be caused by impaired interneuron migration, we studied the role of PCDH19 in cortical interneurons during embryogenesis. We show that cortical interneuron migration is affected by altering PCDH19 dosage by means of overexpression in brain slices and medial ganglionic eminence (MGE) explants. We also detect subtle defects when PCDH19 expression was reduced in MGE explants, suggesting that the dosage of PCDH19 is important for proper interneuron migration. We confirm this finding in vivo by showing a mild reduction in interneuron migration in heterozygote, but not in homozygote PCDH19 knockout animals. In addition, we provide evidence that subdomains of PCDH19 have a different impact on cell survival and interneuron migration. Intriguingly, we also observed domain-dependent differences in migration of the non-targeted cell population in explants, demonstrating a non-cell-autonomous effect of PCDH19 dosage changes. Overall, our findings suggest new roles for the extracellular and cytoplasmic domains of PCDH19 and support that cortical interneuron migration is dependent on balanced PCDH19 dosage.
Collapse
Affiliation(s)
- Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Marco Dalla Vecchia
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lena K. Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lieve Geenen
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anne Stulens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- BioInformatics Knowledge Center (BiKC), Howest University of Applied Sciences, Bruges, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Abstract
Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
29
|
Chen G, Zhou H, Lu Y, Wang Y, Li Y, Xue J, Cheng K, Huang R, Han J. Case report: A novel mosaic nonsense mutation of PCDH19 in a Chinese male with febrile epilepsy. Front Neurol 2022; 13:992781. [PMID: 36247776 PMCID: PMC9556843 DOI: 10.3389/fneur.2022.992781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical features of the PCDH19 gene mutation include febrile epilepsy ranging from mild to severe, with or without intellectual disability, cognitive impairment, and psych-behavioral disorders, but there has been little research on males with the mosaic mutation of PCDH19. This study reported a novel, de novo, and mosaic PCDH19 nonsense mutation (NM_001184880: c.840C > A, p. Tyr280*) from a Chinese male in early middle childhood by trio whole-exome sequence (Trio-WES) and confirmed by Sanger sequence. The proportion of the mosaic mutation (c.840C > A, p. Tyr280*) in PCDH19 was 27.9% in, buccal mucosal cells, 48.3% in exfoliated cells in the urine, and 50.6% in peripheral blood of proband. He had the first onset of seizures in toddlerhood with febrile epilepsy, mild impaired cognitive psychological, and behavioral abnormalities. The electroencephalography (EEG) exhibited sharp waves and sharp slow complex waves in the bilateral parietal, occipital, and posterior temporal regions during the interictal period. Pinpoint white matter lesions in the periventricular white matter and slightly bulging bilateral ventricles appeared on cranial magnetic resonance imaging (MRI). With Depakine and Keppra he gained good control over his epilepsy. This study might expand the genotypes and broaden the spectrums.
Collapse
Affiliation(s)
- Guilan Chen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hang Zhou
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Lu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - You Wang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yingsi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiaxin Xue
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ken Cheng
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jin Han
| |
Collapse
|
30
|
Kumar R, Kamath KS, Carroll L, Hoffmann P, Gecz J, Jolly LA. Endogenous protein interactomes resolved through immunoprecipitation-coupled quantitative proteomics in cell lines. STAR Protoc 2022; 3:101693. [PMID: 36121748 PMCID: PMC9489516 DOI: 10.1016/j.xpro.2022.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Immunoprecipitation (IP) of endogenously expressed proteins is one of the most biologically relevant techniques to identify protein-protein interactions. We describe an adaptable IP protocol reliant on a specific antibody to the target protein. We detail a quantitative proteomics workflow for the unbiased identification of co-immunoprecipitating proteins, known collectively as an interactome. This includes protocols for the tryptic digestion, Tandem Mass Tag labeling and fractionation of peptides, and their identification and quantification using liquid chromatography-mass spectrometry including computational and statistical analysis. For complete details on the use and execution of this protocol, please refer to Johnson et al. (2020).
Collapse
Affiliation(s)
- Raman Kumar
- Adelaide Medical School and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia,Corresponding author
| | - Karthik S. Kamath
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia,Corresponding author
| | - Luke Carroll
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jozef Gecz
- Adelaide Medical School and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia,South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Lachlan A. Jolly
- Adelaide Medical School and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia,Corresponding author
| |
Collapse
|
31
|
Dell'Isola GB, Mencaroni E, Fattorusso A, Tascini G, Prontera P, Imperatore V, Di Cara G, Striano P, Verrotti A. Expanding the genetic and clinical characteristics of Protocadherin 19 gene mutations. BMC Med Genomics 2022; 15:181. [PMID: 35978409 PMCID: PMC9386923 DOI: 10.1186/s12920-022-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background PCDH19-related epilepsy is a rare X-linked type of epilepsy caused by genomic variants of the Protocadherin 19 (PCDH19) gene. The clinical characteristics of PCDH19-related epilepsy are epileptic and non-epileptic symptoms with highly variable severity among patients. Case presentation We present a case of a 4-year old female with PCDH19-related epilepsycaused by new variants in the PCDH19 gene. Our patient was admitted for the first time at the age of 12 months for seizure clusters arising under condition of apyrexia. The electroencephalography (EEG) showed frontal paroxysmal activity. The genetic analysis identified the two variants c.1006G > A (p.Val336Met) and c.1014C > A (p.Asp338Glu) in the gene PCDH19. The patient was treated with Carbamazepine and Clonazepam achieving the disappearance of seizures. During the follow-up, the neurological examination was persistently normal with neither cognitive impairment nor behavior disturbances. From 2 years of age EEG controls were persistently normal. Conclusion This patient presents two novel variants of the PCDH19 gene associated with a mild form of epilepsy with normal cognitive development with an apparently better prognosis. According to our experience, the dual therapy with Carbamazepine and Clonazepam has led to a good control of seizures.
Collapse
Affiliation(s)
- Giovanni Battista Dell'Isola
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Piazzale Giorgio Menghini 1, Perugia, Italy.
| | - Elisabetta Mencaroni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Piazzale Giorgio Menghini 1, Perugia, Italy
| | - Antonella Fattorusso
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Piazzale Giorgio Menghini 1, Perugia, Italy
| | - Giorgia Tascini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Piazzale Giorgio Menghini 1, Perugia, Italy
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | | | - Giuseppe Di Cara
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Piazzale Giorgio Menghini 1, Perugia, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alberto Verrotti
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Piazzale Giorgio Menghini 1, Perugia, Italy
| |
Collapse
|
32
|
Lamers D, Landi S, Mezzena R, Baroncelli L, Pillai V, Cruciani F, Migliarini S, Mazzoleni S, Pasqualetti M, Passafaro M, Bassani S, Ratto GM. Perturbation of Cortical Excitability in a Conditional Model of PCDH19 Disorder. Cells 2022; 11:cells11121939. [PMID: 35741068 PMCID: PMC9222106 DOI: 10.3390/cells11121939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9–25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.
Collapse
Affiliation(s)
- Didi Lamers
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Silvia Landi
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Roberta Mezzena
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Laura Baroncelli
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Federica Cruciani
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Sara Migliarini
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Massimo Pasqualetti
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Correspondence:
| |
Collapse
|
33
|
Gerosa L, Mazzoleni S, Rusconi F, Longaretti A, Lewerissa E, Pelucchi S, Murru L, Giannelli SG, Broccoli V, Marcello E, Kasri NN, Battaglioli E, Passafaro M, Bassani S. The epilepsy-associated protein PCDH19 undergoes NMDA receptor-dependent proteolytic cleavage and regulates the expression of immediate-early genes. Cell Rep 2022; 39:110857. [PMID: 35613587 PMCID: PMC9152703 DOI: 10.1016/j.celrep.2022.110857] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 02/11/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
Protocadherin-19 (PCDH19) is a synaptic cell-adhesion molecule encoded by X-linked PCDH19, a gene linked with epilepsy. Here, we report a synapse-to-nucleus signaling pathway through which PCDH19 bridges neuronal activity with gene expression. In particular, we describe the NMDA receptor (NMDAR)-dependent proteolytic cleavage of PCDH19, which leads to the generation of a PCDH19 C-terminal fragment (CTF) able to enter the nucleus. We demonstrate that PCDH19 CTF associates with chromatin and with the chromatin remodeler lysine-specific demethylase 1 (LSD1) and regulates expression of immediate-early genes (IEGs). Our results are consistent with a model whereby PCDH19 favors maintenance of neuronal homeostasis via negative feedback regulation of IEG expression and provide a key to interpreting PCDH19-related hyperexcitability. PCDH19 undergoes NMDAR-dependent cleavage by ADAM10 and possibly gamma secretase In the nucleus, PCDH19 C-terminal fragment (CTF) associates with the chromatin remodeler LSD1 PCDH19 CTF favors immediate-early gene (IEG) repression PCDH19 downregulation affects LSD1 splicing by NOVA1 and increases IEG expression
Collapse
Affiliation(s)
- Laura Gerosa
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Alessandra Longaretti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Elly Lewerissa
- Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy
| | - Luca Murru
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Serena Gea Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Vania Broccoli
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy
| | - Nael Nadif Kasri
- Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Elena Battaglioli
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|
34
|
Sun H, Xu J, Hu B, Liu Y, Zhai Y, Sun Y, Sun H, Li F, Wang J, Feng A, Tang Y, Zhao J. Association of DNA Methylation Patterns in 7 Novel Genes With Ischemic Stroke in the Northern Chinese Population. Front Genet 2022; 13:844141. [PMID: 35480311 PMCID: PMC9035884 DOI: 10.3389/fgene.2022.844141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a highly complex disorder. This study aims to identify novel methylation changes in ischemic stroke.Methods: We carried out an epigenome-wide study of ischemic stroke using an Infinium HumanMethylation 850K array (cases:controls = 4:4). 10 CpG sites in 8 candidate genes from gene ontology analytics top-ranked pathway were selected to validate 850K BeadChip results (cases:controls = 20:20). We further qualified the methylation level of promoter regions in 8 candidate genes (cases:controls = 188:188). Besides, we performed subgroup analysis, dose-response relationship and diagnostic prediction polygenic model of candidate genes.Results: In the discovery stage, we found 462 functional DNA methylation positions to be associated with ischemic stroke. Gene ontology analysis highlighted the “calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules” item, including 8 candidate genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB6/PCDHB9). In the replication stage, we identified 5 differentially methylated loci in 20 paired samples and 7 differentially methylated genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB9) in 188 paired samples. Subgroup analysis showed that the methylation level of above 7 genes remained significantly different in the male subgroup, large-artery atherosclerosis subgroup and right hemisphere subgroup. The methylation level of each gene was grouped into quartiles, and Q4 groups of the 7 genes were associated with higher risk of ischemic stroke than Q1 groups (p < 0.05). Besides, the polygenic model showed high diagnostic specificity (0.8723), sensitivity (0.883), and accuracy (0.8777).Conclusion: Our results demonstrate that DNA methylation plays a crucial part in ischemic stroke. The methylation of these 7 genes may be potential diagnostic biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Xu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Bifeng Hu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun Zhai
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyan Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Anqi Feng
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| | - Jingbo Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| |
Collapse
|
35
|
Yang C, Shi Y, Li X, Guan L, Li H, Lin J. Cadherins and the pathogenesis of epilepsy. Cell Biochem Funct 2022; 40:336-348. [PMID: 35393670 DOI: 10.1002/cbf.3699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 12/13/2022]
Abstract
Epilepsy is a nervous system disease caused by abnormal discharge of brain neurons, which is characterized by recurrent seizures. The factors that induce epilepsy include genetic and environmental factors. Genetic factors are important pathogenic factors of epilepsy, such as epilepsy caused by protocadherin-19 (PCDH-19) mutation, which is an X-linked genetic disease. It is more common in female heterozygotes, which are caused by mutations in the PCDH-19 gene. Epilepsy caused by environmental factors is mainly caused by brain injury, which is commonly caused by brain tumors, brain surgery, or trauma to the brain. In addition, the pathogenesis of epilepsy is closely related to abnormalities in some signaling pathways. The Wnt/β-catenin signaling pathway is considered a new target for the treatment of epilepsy. This review summarizes these factors inducing epilepsy and the research hypotheses regarding the pathogenesis of epilepsy. The focus of this review centers on cadherins and the pathogenesis of epilepsy. We analyzed the pathogenesis of epilepsy induced by N-cadherin and PCDH-19 in the cadherin family members. Finally, we expect that in the future, new breakthroughs will be made in the study of the pathogenesis and mechanism of epilepsy at the cellular and molecular levels.
Collapse
Affiliation(s)
- Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Yaping Shi
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaoying Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| |
Collapse
|
36
|
Cwetsch AW, Ziogas I, Narducci R, Savardi A, Bolla M, Pinto B, Perlini LE, Bassani S, Passafaro M, Cancedda L. A rat model of a focal mosaic expression of PCDH19 replicates human brain developmental abnormalities and behaviors. Brain Commun 2022; 4:fcac091. [PMID: 35528232 PMCID: PMC9070467 DOI: 10.1093/braincomms/fcac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Protocadherin 19 gene-related epilepsy or protocadherin 19 clustering epilepsy is an infantile-onset epilepsy syndrome characterized by psychiatric (including autism-related), sensory, and cognitive impairment of varying degrees. Protocadherin 19 clustering epilepsy is caused by X-linked protocadherin 19 protein loss of function. Due to random X-chromosome inactivation, protocadherin 19 clustering epilepsy-affected females present a mosaic population of healthy and protocadherin 19-mutant cells. Unfortunately, to date, no current mouse model can fully recapitulate both the brain histological and behavioural deficits present in people with protocadherin 19 clustering epilepsy. Thus, the search for a proper understanding of the disease and possible future treatment is hampered. By inducing a focal mosaicism of protocadherin 19 expression using in utero electroporation in rats, we found here that protocadherin 19 signalling in specific brain areas is implicated in neuronal migration, heat-induced epileptic seizures, core/comorbid behaviours related to autism and cognitive function.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
- Instituto de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Ilias Ziogas
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Roberto Narducci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| | - Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura E Perlini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | | | | | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| |
Collapse
|
37
|
Borghi R, Magliocca V, Trivisano M, Specchio N, Tartaglia M, Bertini E, Compagnucci C. Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids. Int J Mol Sci 2022; 23:ijms23073506. [PMID: 35408865 PMCID: PMC8998847 DOI: 10.3390/ijms23073506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Marina Trivisano
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
- Correspondence:
| |
Collapse
|
38
|
Nagarajan L, Ghosh S, Dyke J, Lee S, Silberstein J, Azmanov D, Richard W. Epilepsy surgery in PCDH 19 related developmental and epileptic encephalopathy: A case report. Epilepsy Behav Rep 2022; 19:100560. [PMID: 35856042 PMCID: PMC9287778 DOI: 10.1016/j.ebr.2022.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/03/2022] Open
Abstract
PCDH19 pathogenic variants may be associated with DEE in females. Epilepsy Surgery may be an option for PCDH19 related drug-resistant epilepsy.
We report a female child with PCDH19 related developmental and epileptic encephalopathy with drug-resistant seizures, cognitive and language impairment, autism spectrum disorder and sleep dysfunction. Her seizures, which started at 10 months of age, were resistant to multiple anti-seizure medications. Developmental stagnation followed by regression occurred after the onset of recurrent seizures. Her ictal EEGS suggested left temporal lobe origin for her recorded seizures. MRI upon expert re-review showed a subtle abnormality in the left temporal lobe. In view of the severe nature and frequency of her seizures, a left temporal lobectomy was undertaken at the age of 2 years and 3 months. Though her seizure outcome was Engel class 3, her seizure frequency and severity were significantly reduced. She has been seizure-free for 10 months at her last outpatient assessment when she was 4 years and 8 months of age (2 years and 5 months after epilepsy surgery). However she recently had an admission for COVID19 infection, with a breakthrough cluster of seizures. Her developmental trajectory changed, though she is making good progress with her cognitive and language skills.
Collapse
Affiliation(s)
- Lakshmi Nagarajan
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Medicine, University of Western Australia, WA 6009, Australia
- Corresponding author at: Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia.
| | - Soumya Ghosh
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, University of Western Australia. WA 6009, Australia
| | - Jason Dyke
- School of Medicine, University of Western Australia, WA 6009, Australia
- PathWest Neuropathology, Royal Perth Hospital, Victoria Street, Perth, WA 6000, Australia
| | - Sharon Lee
- School of Medicine, University of Western Australia, WA 6009, Australia
- Dept of Neurosurgery, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Jonathan Silberstein
- Children’s Neuroscience Service, Dept of Neurology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Dimitar Azmanov
- Dept of Neurosurgery, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | - Warne Richard
- WA State Wide Neurosurgery Service, WA 6009, Australia
| |
Collapse
|
39
|
Yuan D, Yan T, Luo S, Huang J, Tan J, Zhang J, Zhang VW, Lan Y, Hu T, Guo J, Huang M, Zeng D. Identification and Functional Characterization of a Novel Nonsense Variant in ARR3 in a Southern Chinese Family With High Myopia. Front Genet 2021; 12:765503. [PMID: 34966409 PMCID: PMC8710690 DOI: 10.3389/fgene.2021.765503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023] Open
Abstract
ARR3 has been associated with X-linked, female-limited, high myopia. However, using exome sequencing (ES), we identified the first high myopia case with hemizygous ARR3-related mutation in a male patient in a Southern Chinese family. This novel truncated mutation (ARR3: c.569C>G, p.S190*) co-segregated with the disease phenotype in affected family members and demonstrated that high myopia caused by ARR3 is not X-linked, female-limited, where a complicated X-linked inheritance pattern may exist. Thus, our case expanded the variant spectrum in ARR3 and provided additional information for genetic counseling, prenatal testing, and diagnosis. Moreover, we characterized the nonsense-mediated decay of the ARR3 mutant mRNA and discussed the possible underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Dejian Yuan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Tizhen Yan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Shiqiang Luo
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jun Huang
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jianqiang Tan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China.,Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Jianping Zhang
- Department of Ophthalmology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Victor Wei Zhang
- AmCare Genomics Laboratory, Guangzhou, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Yueyuan Lan
- Department of Ophthalmology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Taobo Hu
- Center of Breast Diseases, Peking University People's Hospital, Beijing, China
| | - Jing Guo
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingwei Huang
- Aegicare (Sheznzhen) Technology Co., Ltd., Shenzhen, China
| | - Dingyuan Zeng
- Department of Gynecology, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| |
Collapse
|
40
|
Inherited Developmental and Epileptic Encephalopathies. Neurol Int 2021; 13:555-568. [PMID: 34842787 PMCID: PMC8628919 DOI: 10.3390/neurolint13040055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Epileptic encephalopathies often have a genetic etiology. The epileptic activity itself exerts a direct detrimental effect on neurodevelopment, which may add to the cognitive impairment induced by the underlying mutation (“developmental and epileptic encephalopathy”). The focus of this review is on inherited syndromes. The phenotypes of genetic disorders affecting ion channels, metabolic signalling, membrane trafficking and exocytosis, cell adhesion, cell growth and proliferation are discussed. Red flags suggesting family of genes or even specific genes are highlighted. The knowledge of the phenotypical spectrum can indeed prompt the clinician to suspect specific etiologies, expediting the diagnosis.
Collapse
|
41
|
Hudson JD, Tamilselvan E, Sotomayor M, Cooper SR. A complete Protocadherin-19 ectodomain model for evaluating epilepsy-causing mutations and potential protein interaction sites. Structure 2021; 29:1128-1143.e4. [PMID: 34520737 DOI: 10.1016/j.str.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/22/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022]
Abstract
Cadherin superfamily members play a critical role in differential adhesion during neurodevelopment, and their disruption has been linked to several neurodevelopmental disorders. Mutations in protocadherin-19 (PCDH19), a member of the δ-protocadherin subfamily of cadherins, cause a unique form of epilepsy called PCDH19 clustering epilepsy. While PCDH19 and other non-clustered δ-protocadherins form multimers with other members of the cadherin superfamily to alter adhesiveness, the specific protein surfaces responsible for these interactions are unknown. Only portions of the PCDH19 extracellular domain structure had been solved previously. Here, we present a structure of the missing segment from zebrafish Protocadherin-19 (Pcdh19) and create a complete ectodomain model. This model shows the structural environment for 97% of disease-causing missense mutations and reveals two potential surfaces for intermolecular interactions that could modify Pcdh19's adhesive strength and specificity.
Collapse
Affiliation(s)
- Jonathan D Hudson
- Department of Science and Mathematics, Cedarville University, 251 N. Main Street, Cedarville, OH 45314, USA
| | - Elakkiya Tamilselvan
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA; Biophysics Graduate Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | - Sharon R Cooper
- Department of Science and Mathematics, Cedarville University, 251 N. Main Street, Cedarville, OH 45314, USA.
| |
Collapse
|
42
|
Ye Z, Bennett MF, Bahlo M, Scheffer IE, Berkovic SF, Perucca P, Hildebrand MS. Cutting edge approaches to detecting brain mosaicism associated with common focal epilepsies: implications for diagnosis and potential therapies. Expert Rev Neurother 2021; 21:1309-1316. [PMID: 34519595 DOI: 10.1080/14737175.2021.1981288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mosaic variants arising in brain tissue are increasingly being recognized as a hidden cause of focal epilepsy. This knowledge gain has been driven by new, highly sensitive genetic technologies and genome-wide analysis of brain tissue from surgical resection or autopsy in a small proportion of patients with focal epilepsy. Recently reported novel strategies to detect mosaic variants limited to brain have exploited trace brain DNA obtained from cerebrospinal fluid liquid biopsies or stereo-electroencephalography electrodes. AREAS COVERED The authors review the data on these innovative approaches published in PubMed before 12 June 2021, discuss the challenges associated with their application, and describe how they are likely to improve detection of mosaic variants to provide new molecular diagnoses and therapeutic targets for focal epilepsy, with potential utility in other nonmalignant neurological disorders. EXPERT OPINION These cutting-edge approaches may reveal the hidden genetic etiology of focal epilepsies and provide guidance for precision medicine.
Collapse
Affiliation(s)
- Zimeng Ye
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia
| | - Mark F Bennett
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ingrid E Scheffer
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Samuel F Berkovic
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Department of Neurology, Comprehensive Epilepsy Program, Austin Health, Heidelberg, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.,Department of Neurology, Alfred Health, Melbourne, Australia.,Department of Neurology, The Royal Melbourne Hospital, Parkville, Australia
| | - Michael S Hildebrand
- Department of Medicine (Austin Health), Epilepsy Research Centre, University of Melbourne, Heidelberg, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Australia
| |
Collapse
|
43
|
de Nys R, Kumar R, Gecz J. Protocadherin 19 Clustering Epilepsy and Neurosteroids: Opportunities for Intervention. Int J Mol Sci 2021; 22:9769. [PMID: 34575929 PMCID: PMC8469663 DOI: 10.3390/ijms22189769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Steroids yield great influence on neurological development through nuclear hormone receptor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin 19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene expression. PCDH19 variants cause early-onset developmental epileptic encephalopathy clustering epilepsy (CE), with altered steroidogenesis and NHR-related gene expression being identified in these individuals. The implication of hormonal pathways in CE pathogenesis has led to the investigation of various steroid-based antiepileptic drugs in the treatment of this disorder, with mixed results so far. Therefore, there are many unmet challenges in assessing the antiseizure targets and efficiency of steroid-based therapeutics for CE. We review and assess the evidence for and against the implication of neurosteroids in the pathogenesis of CE and in view of their possible clinical benefit.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
44
|
Cellular and Behavioral Characterization of Pcdh19 Mutant Mice: subtle Molecular Changes, Increased Exploratory Behavior and an Impact of Social Environment. eNeuro 2021; 8:ENEURO.0510-20.2021. [PMID: 34272258 PMCID: PMC8362684 DOI: 10.1523/eneuro.0510-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Mutations in the X-linked cell adhesion protein PCDH19 lead to seizures, cognitive impairment, and other behavioral comorbidities when present in a mosaic pattern. Neither the molecular mechanisms underpinning this disorder nor the function of PCDH19 itself are well understood. By combining RNA in situ hybridization with immunohistochemistry and analyzing single-cell RNA sequencing datasets, we reveal Pcdh19 expression in cortical interneurons and provide a first account of the subtypes of neurons expressing Pcdh19/PCDH19, both in the mouse and the human cortex. Our quantitative analysis of the Pcdh19 mutant mouse exposes subtle changes in cortical layer composition, with no major alterations of the main axonal tracts. In addition, Pcdh19 mutant animals, particularly females, display preweaning behavioral changes, including reduced anxiety and increased exploratory behavior. Importantly, our experiments also reveal an effect of the social environment on the behavior of wild-type littermates of Pcdh19 mutant mice, which show alterations when compared with wild-type animals not housed with mutants.
Collapse
|
45
|
Wu H, Liu Y, Liu L, Meng Q, Du C, Li K, Dong S, Zhang Y, Li H, Zhang H. Decreased expression of the clock gene Bmal1 is involved in the pathogenesis of temporal lobe epilepsy. Mol Brain 2021; 14:113. [PMID: 34261484 PMCID: PMC8281660 DOI: 10.1186/s13041-021-00824-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
Clock genes not only regulate the circadian rhythm of physiological activities but also participate in the pathogenesis of many diseases. Previous studies have documented the abnormal expression of clock genes in epilepsy. However, the molecular mechanism of brain and muscle Arnt-like protein 1 (Bmal1), one of the core clock genes, in the epileptogenesis and seizures of temporal lobe epilepsy (TLE) remain unclear. We first investigated the levels of Bmal1 and other clock proteins in the hippocampus of subjects with epilepsy to define the function of Bmal1. The levels of Bmal1 were decreased during the latent and chronic phases in the experimental group compared with those in the control group. Knockout of Bmal1 in hippocampal dentate gyrus (DG) neurons of Bmal1flox/flox mice by Synapsin 1 (Syn1) promoter AAV (adeno-associated virus) lowered the threshold of seizures induced by pilocarpine administration. High-throughput sequencing analysis showed that PCDH19 (protocadherin 19), a gene associated with epilepsy, was regulated by Bmal1. PCDH19 expression was also decreased in the hippocampus of epileptic mice. Furthermore, the higher levels of Bmal1 and PCDH19 were detected in patients with no hippocampal sclerosis (no HS) than in patients with HS International League Against Epilepsy (ILAE) type I and III. Altogether, these data suggest that decreased expression of clock gene Bmal1 may participate in epileptogenesis and seizures via PCDH19 in TLE.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yong Liu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Lishuo Liu
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qiang Meng
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Changwang Du
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Kuo Li
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Shan Dong
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yong Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huanfa Li
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Hua Zhang
- Department of Neurosurgery, Clinical Research Center for Refractory Epilepsy of Shannxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
- Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
46
|
Carpenter JC, Lignani G. Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies? Neurotherapeutics 2021; 18:1515-1523. [PMID: 34235638 PMCID: PMC8608979 DOI: 10.1007/s13311-021-01081-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Epilepsy is a complex neurological disorder for which there are a large number of monogenic subtypes. Monogenic epilepsies are often severe and disabling, featuring drug-resistant seizures and significant developmental comorbidities. These disorders are potentially amenable to a precision medicine approach, of which genome editing using CRISPR/Cas represents the holy grail. Here we consider mutations in some of the most 'common' rare epilepsy genes and discuss the different CRISPR/Cas approaches that could be taken to cure these disorders. We consider scenarios where CRISPR-mediated gene modulation could serve as an effective therapeutic strategy and discuss whether a single gene corrective approach could hold therapeutic potential in the context of homeostatic compensation in the developing, highly dynamic brain. Despite an incomplete understanding of the mechanisms of the genetic epilepsies and current limitations of gene editing tools, CRISPR-mediated approaches have game-changing potential in the treatment of genetic epilepsy over the next decade.
Collapse
Affiliation(s)
- Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
47
|
Feng J, Hsu WH, Patterson D, Tseng CS, Hsing HW, Zhuang ZH, Huang YT, Faedo A, Rubenstein JL, Touboul J, Chou SJ. COUP-TFI specifies the medial entorhinal cortex identity and induces differential cell adhesion to determine the integrity of its boundary with neocortex. SCIENCE ADVANCES 2021; 7:eabf6808. [PMID: 34215582 PMCID: PMC11057786 DOI: 10.1126/sciadv.abf6808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Development of cortical regions with precise, sharp, and regular boundaries is essential for physiological function. However, little is known of the mechanisms ensuring these features. Here, we show that determination of the boundary between neocortex and medial entorhinal cortex (MEC), two abutting cortical regions generated from the same progenitor lineage, relies on COUP-TFI (chicken ovalbumin upstream promoter-transcription factor I), a patterning transcription factor with graded expression in cortical progenitors. In contrast with the classical paradigm, we found that increased COUP-TFI expression expands MEC, creating protrusions and disconnected ectopic tissue. We further developed a mathematical model that predicts that neuronal specification and differential cell affinity contribute to the emergence of an instability region and boundary sharpness. Correspondingly, we demonstrated that high expression of COUP-TFI induces MEC cell fate and protocadherin 19 expression. Thus, we conclude that a sharp boundary requires a subtle interplay between patterning transcription factors and differential cell affinity.
Collapse
Affiliation(s)
- Jia Feng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsin Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Denis Patterson
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Ching-San Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Andrea Faedo
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John L Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
48
|
Borghi R, Magliocca V, Petrini S, Conti LA, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis. J Clin Med 2021; 10:jcm10132754. [PMID: 34201522 PMCID: PMC8268119 DOI: 10.3390/jcm10132754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Sandra Moreno
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Correspondence:
| |
Collapse
|
49
|
Pham DH, Pitman MR, Kumar R, Jolly LA, Schulz R, Gardner AE, de Nys R, Heron SE, Corbett MA, Kothur K, Gill D, Rajagopalan S, Kolc KL, Halliday BJ, Robertson SP, Regan BM, Kirsch HE, Berkovic SF, Scheffer IE, Pitson SM, Petrovski S, Gecz J. Integrated in silico and experimental assessment of disease relevance of PCDH19 missense variants. Hum Mutat 2021; 42:1030-1041. [PMID: 34082468 DOI: 10.1002/humu.24237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/27/2021] [Accepted: 05/31/2021] [Indexed: 11/09/2022]
Abstract
PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance. We aimed to determine the best approaches for assessing the disease relevance of missense variants in PCDH19. The application of the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) guidelines was only 50% accurate. Using a training set of 322 known benign or pathogenic missense variants, we identified MutPred2, MutationAssessor, and GPP as the best performing in silico tools. We generated a protein structural model of the extracellular domain and assessed 24 missense variants. We also assessed 24 variants using an in vitro reporter assay. A combination of these tools was 93% accurate in assessing known pathogenic and benign PCDH19 variants. We increased the accuracy of the ACMG-AMP classification of 45 PCDH19 variants from 50% to 94%, using these tools. In summary, we have developed a robust toolbox for the assessment of PCDH19 variant pathogenicity to improve the accuracy of PCDH19-CE variant classification.
Collapse
Affiliation(s)
- Duyen H Pham
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Molecular Therapeutics, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Raman Kumar
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan A Jolly
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Renee Schulz
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alison E Gardner
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rebekah de Nys
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah E Heron
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mark A Corbett
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kavitha Kothur
- Department of Paediatrics and Child Health, Kids Neuroscience Centre, The University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Deepak Gill
- Department of Paediatrics and Child Health, Kids Neuroscience Centre, The University of Sydney, Sydney, New South Wales, Australia.,TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Kristy L Kolc
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Benjamin J Halliday
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Brigid M Regan
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Heidi E Kirsch
- Department of Neurology, University of California, San Francisco, California, USA
| | - Samuel F Berkovic
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia.,Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Flemington, Victoria, Australia.,Epilepsy Research Centre, Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Stuart M Pitson
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Molecular Therapeutics, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Slave Petrovski
- Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Jozef Gecz
- Neurogenetics, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Paediatrics and Reproductive Health, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Ghosh S, Sinha JK, Khan T, Devaraju KS, Singh P, Vaibhav K, Gaur P. Pharmacological and Therapeutic Approaches in the Treatment of Epilepsy. Biomedicines 2021; 9:470. [PMID: 33923061 PMCID: PMC8146518 DOI: 10.3390/biomedicines9050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epilepsy affects around 50 million people across the globe and is the third most common chronic brain disorder. It is a non-communicable disease of the brain that affects people of all ages. It is accompanied by depression, anxiety, and substantially increased morbidity and mortality. A large number of third-generation anti-epileptic drugs are available, but they have multiple side-effects causing a decline in the quality of life. The inheritance and etiology of epilepsy are complex with multiple underlying genetic and epigenetic mechanisms. Different neurotransmitters play intricate functions to maintain the normal physiology of various neurons. If there is any dysregulation of neurotransmission due to aberrant transmitter levels or their receptor biology, it can result in seizures. In this review, we have discussed the roles played by various neurotransmitters and their receptors in the pathophysiology of epilepsy. Drug-resistant epilepsy (DRE) has remained one of the forefront areas of epilepsy research for a long time. Understanding the mechanisms underlying DRE is of utmost importance because of its high incidence rate among epilepsy patients and increased risks of psychosocial problems and premature death. Here we have enumerated various hypotheses of DRE. Further, we have discussed different non-conventional therapeutic strategies, including combination therapy and non-drug treatment. The recent studies supporting the modern approaches for the treatment of epilepsy have been deliberated with particular reference to the mTOR pathway, breakdown of the blood-brain barrier, and inflammatory pathways.
Collapse
Affiliation(s)
- Shampa Ghosh
- ICMR-National Institute of Nutrition (NIN), Tarnaka, Hyderabad 500007, India;
| | - Jitendra Kumar Sinha
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Noida 201303, India;
| | - Tarab Khan
- Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Noida 201303, India;
| | | | - Prabhakar Singh
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India;
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Pankaj Gaur
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|