1
|
Israely S, Ninou H, Rajchert O, Elmaleh L, Harel R, Mawase F, Kadmon J, Prut Y. Cerebellar output shapes cortical preparatory activity during motor adaptation. Nat Commun 2025; 16:2574. [PMID: 40089504 PMCID: PMC11910607 DOI: 10.1038/s41467-025-57832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.
Collapse
Affiliation(s)
- Sharon Israely
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Hugo Ninou
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
- Département D'Etudes Cognitives, Ecole Normale Supérieure, Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, PSL University, Paris, France
- Laboratoire de Physique de l'Ecole Normale Superieure, Ecole Normale Supérieure, PSL University, Paris, France
| | - Ori Rajchert
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lee Elmaleh
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, Tel Aviv, Israel
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Kadmon
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | - Yifat Prut
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
2
|
Israely S, Ninou H, Rajchert O, Elmaleh L, Harel R, Mawase F, Kadmon J, Prut Y. Cerebellar output shapes cortical preparatory activity during motor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.12.603354. [PMID: 40060411 PMCID: PMC11888169 DOI: 10.1101/2024.07.12.603354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.
Collapse
Affiliation(s)
- Sharon Israely
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Hugo Ninou
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Département D’Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France
- Laboratoire de Physique de l’Ecole Normale Superieure, Ecole Normale Supérieure, PSL University, Paris, France
| | - Ori Rajchert
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lee Elmaleh
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, 5262000 Tel Aviv, Israel
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Kadmon
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Yifat Prut
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| |
Collapse
|
3
|
Feulner B, Perich MG, Miller LE, Clopath C, Gallego JA. A neural implementation model of feedback-based motor learning. Nat Commun 2025; 16:1805. [PMID: 39979257 PMCID: PMC11842561 DOI: 10.1038/s41467-024-54738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/18/2024] [Indexed: 02/22/2025] Open
Abstract
Animals use feedback to rapidly correct ongoing movements in the presence of a perturbation. Repeated exposure to a predictable perturbation leads to behavioural adaptation that compensates for its effects. Here, we tested the hypothesis that all the processes necessary for motor adaptation may emerge as properties of a controller that adaptively updates its policy. We trained a recurrent neural network to control its own output through an error-based feedback signal, which allowed it to rapidly counteract external perturbations. Implementing a biologically plausible plasticity rule based on this same feedback signal enabled the network to learn to compensate for persistent perturbations through a trial-by-trial process. The network activity changes during learning matched those from populations of neurons from monkey primary motor cortex - known to mediate both movement correction and motor adaptation - during the same task. Furthermore, our model natively reproduced several key aspects of behavioural studies in humans and monkeys. Thus, key features of trial-by-trial motor adaptation can arise from the internal properties of a recurrent neural circuit that adaptively controls its output based on ongoing feedback.
Collapse
Affiliation(s)
- Barbara Feulner
- Department of Bioengineering, Imperial College London, London, UK
| | - Matthew G Perich
- Département de neurosciences, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Mila (Quebec Artificial Intelligence Institute), Montréal, QC, Canada
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK.
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
4
|
Guo H, Kuang S, Gail A. Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex. Nat Commun 2025; 16:1116. [PMID: 39900579 PMCID: PMC11791165 DOI: 10.1038/s41467-025-56360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Primates excel at mapping sensory inputs flexibly onto motor outcomes. We asked if the neural dynamics to support context-sensitive sensorimotor mapping generalizes or differs between different behavioral contexts that demand such flexibility. We compared reaching under mirror-reversed vision, a case of adaptation to a modified sensorimotor environment (SE), with anti reaching, a case of applying an abstract task rule (TR). While neural dynamics in monkey posterior parietal cortex show shifted initial states and non-aligned low-dimensional neural subspaces in the SE task, remapping is achieved in overlapping subspaces in the TR task. A recurrent neural network model demonstrates how output constraints mimicking SE and TR tasks are sufficient to generate the two fundamentally different neural computational dynamics. We conclude that sensorimotor remapping to implement an abstract task rule happens within the existing repertoire of neural dynamics, while compensation of perturbed sensory feedback requires exploration of independent neural dynamics in parietal cortex.
Collapse
Affiliation(s)
- Hao Guo
- German Primate Center, Göttingen, Germany
| | - Shenbing Kuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Alexander Gail
- German Primate Center, Göttingen, Germany.
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Menéndez JA, Hennig JA, Golub MD, Oby ER, Sadtler PT, Batista AP, Chase SM, Yu BM, Latham PE. A theory of brain-computer interface learning via low-dimensional control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.589952. [PMID: 38712193 PMCID: PMC11071278 DOI: 10.1101/2024.04.18.589952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A remarkable demonstration of the flexibility of mammalian motor systems is primates' ability to learn to control brain-computer interfaces (BCIs). This constitutes a completely novel motor behavior, yet primates are capable of learning to control BCIs under a wide range of conditions. BCIs with carefully calibrated decoders, for example, can be learned with only minutes to hours of practice. With a few weeks of practice, even BCIs with randomly constructed decoders can be learned. What are the biological substrates of this learning process? Here, we develop a theory based on a re-aiming strategy, whereby learning operates within a low-dimensional subspace of task-relevant inputs driving the local population of recorded neurons. Through comprehensive numerical and formal analysis, we demonstrate that this theory can provide a unifying explanation for disparate phenomena previously reported in three different BCI learning tasks, and we derive a novel experimental prediction that we verify with previously published data. By explicitly modeling the underlying neural circuitry, the theory reveals an interpretation of these phenomena in terms of biological constraints on neural activity.
Collapse
Affiliation(s)
- J. A. Menéndez
- Gatsby Computational Neuroscience Unit, University College London
| | | | | | | | | | | | | | | | - P. E. Latham
- Gatsby Computational Neuroscience Unit, University College London
| |
Collapse
|
6
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. Nature 2025; 637:663-672. [PMID: 39537930 PMCID: PMC11735397 DOI: 10.1038/s41586-024-08193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism that underlies stable memory storage remains poorly understood1-8. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of the lifespan of a mouse and show that learned actions are stably retained in combination with context, which protects existing memories from erasure during new motor learning. We established a continual learning paradigm in which mice learned to perform directional licking in different task contexts while we tracked motor cortex activity for up to six months using two-photon imaging. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories instead of modifying existing representations. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. Continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kayvon Daie
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Nuo Li
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Stan PL, Smith MA. Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance. J Neurosci 2024; 44:e1764232024. [PMID: 39187380 PMCID: PMC11466072 DOI: 10.1523/jneurosci.1764-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Recent visual experience heavily influences our visual perception, but how neuronal activity is reshaped to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while two male rhesus macaque monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in the mid-level visual cortex.
Collapse
Affiliation(s)
- Patricia L Stan
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Matthew A Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
8
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. Nat Commun 2024; 15:7309. [PMID: 39181866 PMCID: PMC11344817 DOI: 10.1038/s41467-024-51750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different conditions. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are sequenced by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics. This shift is minimally affected by cerebellar perturbation and significantly larger than the load response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A Kirk
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Keenan T Hope
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Britton A Sauerbrei
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
9
|
Sabatini DA, Kaufman MT. Reach-dependent reorientation of rotational dynamics in motor cortex. Nat Commun 2024; 15:7007. [PMID: 39143078 PMCID: PMC11325044 DOI: 10.1038/s41467-024-51308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
During reaching, neurons in motor cortex exhibit complex, time-varying activity patterns. Though single-neuron activity correlates with movement parameters, movement correlations explain neural activity only partially. Neural responses also reflect population-level dynamics thought to generate outputs. These dynamics have previously been described as "rotational," such that activity orbits in neural state space. Here, we reanalyze reaching datasets from male Rhesus macaques and find two essential features that cannot be accounted for with standard dynamics models. First, the planes in which rotations occur differ for different reaches. Second, this variation in planes reflects the overall location of activity in neural state space. Our "location-dependent rotations" model fits nearly all motor cortex activity during reaching, and high-quality decoding of reach kinematics reveals a quasilinear relationship with spiking. Varying rotational planes allows motor cortex to produce richer outputs than possible under previous models. Finally, our model links representational and dynamical ideas: representation is present in the state space location, which dynamics then convert into time-varying command signals.
Collapse
Affiliation(s)
- David A Sabatini
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Matthew T Kaufman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Stan PL, Smith MA. Recent visual experience reshapes V4 neuronal activity and improves perceptual performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.27.555026. [PMID: 37693510 PMCID: PMC10491105 DOI: 10.1101/2023.08.27.555026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recent visual experience heavily influences our visual perception, but how this is mediated by the reshaping of neuronal activity to alter and improve perceptual discrimination remains unknown. We recorded from populations of neurons in visual cortical area V4 while monkeys performed a natural image change detection task under different experience conditions. We found that maximizing the recent experience with a particular image led to an improvement in the ability to detect a change in that image. This improvement was associated with decreased neural responses to the image, consistent with neuronal changes previously seen in studies of adaptation and expectation. We found that the magnitude of behavioral improvement was correlated with the magnitude of response suppression. Furthermore, this suppression of activity led to an increase in signal separation, providing evidence that a reduction in activity can improve stimulus encoding. Within populations of neurons, greater recent experience was associated with decreased trial-to-trial shared variability, indicating that a reduction in variability is a key means by which experience influences perception. Taken together, the results of our study contribute to an understanding of how recent visual experience can shape our perception and behavior through modulating activity patterns in mid-level visual cortex.
Collapse
|
11
|
Tostado-Marcos P, Arneodo EM, Ostrowski L, Brown DE, Perez XA, Kadwory A, Stanwicks LL, Alothman A, Gentner TQ, Gilja V. Neural population dynamics in songbird RA and HVC during learned motor-vocal behavior. ARXIV 2024:arXiv:2407.06244v1. [PMID: 39040642 PMCID: PMC11261980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Complex, learned motor behaviors involve the coordination of large-scale neural activity across multiple brain regions, but our understanding of the population-level dynamics within different regions tied to the same behavior remains limited. Here, we investigate the neural population dynamics underlying learned vocal production in awake-singing songbirds. We use Neuropixels probes to record the simultaneous extracellular activity of populations of neurons in two regions of the vocal motor pathway. In line with observations made in non-human primates during limb-based motor tasks, we show that the population-level activity in both the premotor nucleus HVC and the motor nucleus RA is organized on low-dimensional neural manifolds upon which coordinated neural activity is well described by temporally structured trajectories during singing behavior. Both the HVC and RA latent trajectories provide relevant information to predict vocal sequence transitions between song syllables. However, the dynamics of these latent trajectories differ between regions. Our state-space models suggest a unique and continuous-over-time correspondence between the latent space of RA and vocal output, whereas the corresponding relationship for HVC exhibits a higher degree of neural variability. We then demonstrate that comparable high-fidelity reconstruction of continuous vocal outputs can be achieved from HVC and RA neural latents and spiking activity. Unlike those that use spiking activity, however, decoding models using neural latents generalize to novel sub-populations in each region, consistent with the existence of preserved manifolds that confine vocal-motor activity in HVC and RA.
Collapse
Affiliation(s)
- Pablo Tostado-Marcos
- Department of Bioengineering
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Lauren Ostrowski
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Daril E Brown
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Adam Kadwory
- Department of Electrical and Computer Engineering
| | - Lauren L Stanwicks
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Timothy Q Gentner
- Department of Psychology
- Department of Neurobiology
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Wang Z, Chen S, Li M, Wang Y. Tracking Dynamic Conditional Neural Correlation during Task Learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039327 DOI: 10.1109/embc53108.2024.10782327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Single neuron modulates the external stimuli, and neural population coordinates to encode information. An alternate method for examining the coordinated populational activity in neural encoding is conditional neural correlation (CNC). However, such correlations are not static during a new task learning process as neurons adapt their tunings over time for better performance. To investigate how neurons adjust their firing patterns during learning, it's essential to track the time-variant correlation. In this paper, we propose to mathematically model the dynamical CNC by implementing the integrated point process filter which incorporates neural correlation and single neural tuning into decoding. Specifically, we generate synthetic M1 neurons' firing data to simulate the dynamic change of the conditional neural correlation over days, while a rat learns a two-lever discrimination task. By comparing the tracked CNC with the designed CNC, our results show that the CNC can be better tracked over time by CIPPF than that of decoder assuming conditional independence among neurons, which indicates the possibility to better understand the brain dynamics during task learning.
Collapse
|
13
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597627. [PMID: 38895416 PMCID: PMC11185691 DOI: 10.1101/2024.06.05.597627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism underlying stable memory storage remains poorly understood. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of a mouse's lifespan, and we show that learned actions are stably retained in motor memory in combination with context, which protects existing memories from erasure during new motor learning. We used automated home-cage training to establish a continual learning paradigm in which mice learned to perform directional licking in different task contexts. We combined this paradigm with chronic two-photon imaging of motor cortex activity for up to 6 months. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories while retaining the previous memories. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. At the same time, continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning. Learning in new contexts produces parallel new representations instead of modifying existing representations, thus protecting existing motor repertoire from erasure.
Collapse
|
14
|
Chang JC, Perich MG, Miller LE, Gallego JA, Clopath C. De novo motor learning creates structure in neural activity that shapes adaptation. Nat Commun 2024; 15:4084. [PMID: 38744847 PMCID: PMC11094149 DOI: 10.1038/s41467-024-48008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.
Collapse
Affiliation(s)
- Joanna C Chang
- Department of Bioengineering, Imperial College London, London, UK
| | - Matthew G Perich
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Mila, Québec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Lee E Miller
- Departments of Physiology, Biomedical Engineering and Physical Medicine and Rehabilitation, Northwestern University and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
15
|
Sadeghi M, Sharif Razavian R, Bazzi S, Chowdhury RH, Batista AP, Loughlin PJ, Sternad D. Inferring control objectives in a virtual balancing task in humans and monkeys. eLife 2024; 12:RP88514. [PMID: 38738986 PMCID: PMC11090506 DOI: 10.7554/elife.88514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Biology, Northeastern UniversityBostonUnited States
| | - Reza Sharif Razavian
- Department of Biology, Northeastern UniversityBostonUnited States
- Department of Electrical and Computer Engineering, Northeastern UniversityBostonUnited States
- Department of Mechanical Engineering, Northern Arizona UniversityFlagstaffUnited States
| | - Salah Bazzi
- Department of Biology, Northeastern UniversityBostonUnited States
- Department of Electrical and Computer Engineering, Northeastern UniversityBostonUnited States
- Institute for Experiential Robotics, Northeastern UniversityBostonUnited States
| | - Raeed H Chowdhury
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Aaron P Batista
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Patrick J Loughlin
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Dagmar Sternad
- Department of Biology, Northeastern UniversityBostonUnited States
- Department of Electrical and Computer Engineering, Northeastern UniversityBostonUnited States
- Institute for Experiential Robotics, Northeastern UniversityBostonUnited States
- Department of Physics, Northeastern UniversityBostonUnited States
| |
Collapse
|
16
|
Fortunato C, Bennasar-Vázquez J, Park J, Chang JC, Miller LE, Dudman JT, Perich MG, Gallego JA. Nonlinear manifolds underlie neural population activity during behaviour. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549575. [PMID: 37503015 PMCID: PMC10370078 DOI: 10.1101/2023.07.18.549575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey, mouse, and human motor cortex, and mouse striatum, we show that: 1) neural manifolds are intrinsically nonlinear; 2) their nonlinearity becomes more evident during complex tasks that require more varied activity patterns; and 3) manifold nonlinearity varies across architecturally distinct brain regions. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.
Collapse
Affiliation(s)
- Cátia Fortunato
- Department of Bioengineering, Imperial College London, London UK
| | | | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Joanna C. Chang
- Department of Bioengineering, Imperial College London, London UK
| | - Lee E. Miller
- Department of Neurosciences, Northwestern University, Chicago IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago IL, USA, and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Joshua T. Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA
| | - Matthew G. Perich
- Department of Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Québec Artificial Intelligence Institute (MILA), Montréal, Québec, Canada
| | - Juan A. Gallego
- Department of Bioengineering, Imperial College London, London UK
| |
Collapse
|
17
|
Losey DM, Hennig JA, Oby ER, Golub MD, Sadtler PT, Quick KM, Ryu SI, Tyler-Kabara EC, Batista AP, Yu BM, Chase SM. Learning leaves a memory trace in motor cortex. Curr Biol 2024; 34:1519-1531.e4. [PMID: 38531360 PMCID: PMC11097210 DOI: 10.1016/j.cub.2024.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 12/06/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
How are we able to learn new behaviors without disrupting previously learned ones? To understand how the brain achieves this, we used a brain-computer interface (BCI) learning paradigm, which enables us to detect the presence of a memory of one behavior while performing another. We found that learning to use a new BCI map altered the neural activity that monkeys produced when they returned to using a familiar BCI map in a way that was specific to the learning experience. That is, learning left a "memory trace" in the primary motor cortex. This memory trace coexisted with proficient performance under the familiar map, primarily by altering neural activity in dimensions that did not impact behavior. Forming memory traces might be how the brain is able to provide for the joint learning of multiple behaviors without interference.
Collapse
Affiliation(s)
- Darby M Losey
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jay A Hennig
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emily R Oby
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D Golub
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick T Sadtler
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kristin M Quick
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Elizabeth C Tyler-Kabara
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Byron M Yu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Steven M Chase
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
18
|
Dekleva BM, Chowdhury RH, Batista AP, Chase SM, Yu BM, Boninger ML, Collinger JL. Motor cortex retains and reorients neural dynamics during motor imagery. Nat Hum Behav 2024; 8:729-742. [PMID: 38287177 PMCID: PMC11089477 DOI: 10.1038/s41562-023-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 12/13/2023] [Indexed: 01/31/2024]
Abstract
The most prominent characteristic of motor cortex is its activation during movement execution, but it is also active when we simply imagine movements in the absence of actual motor output. Despite decades of behavioural and imaging studies, it is unknown how the specific activity patterns and temporal dynamics in motor cortex during covert motor imagery relate to those during motor execution. Here we recorded intracortical activity from the motor cortex of two people who retain some residual wrist function following incomplete spinal cord injury as they performed both actual and imagined isometric wrist extensions. We found that we could decompose the population activity into three orthogonal subspaces, where one was similarly active during both action and imagery, and the others were active only during a single task type-action or imagery. Although they inhabited orthogonal neural dimensions, the action-unique and imagery-unique subspaces contained a strikingly similar set of dynamic features. Our results suggest that during motor imagery, motor cortex maintains the same overall population dynamics as during execution by reorienting the components related to motor output and/or feedback into a unique, output-null imagery subspace.
Collapse
Affiliation(s)
- Brian M Dekleva
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Raeed H Chowdhury
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Byron M Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michael L Boninger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer L Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Churchland MM, Shenoy KV. Preparatory activity and the expansive null-space. Nat Rev Neurosci 2024; 25:213-236. [PMID: 38443626 DOI: 10.1038/s41583-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.
Collapse
Affiliation(s)
- Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Osuna-Orozco R, Zhao Y, Stealey HM, Lu HY, Contreras-Hernandez E, Santacruz SR. Adaptation and learning as strategies to maximize reward in neurofeedback tasks. Front Hum Neurosci 2024; 18:1368115. [PMID: 38590363 PMCID: PMC11000125 DOI: 10.3389/fnhum.2024.1368115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Adaptation and learning have been observed to contribute to the acquisition of new motor skills and are used as strategies to cope with changing environments. However, it is hard to determine the relative contribution of each when executing goal directed motor tasks. This study explores the dynamics of neural activity during a center-out reaching task with continuous visual feedback under the influence of rotational perturbations. Methods Results for a brain-computer interface (BCI) task performed by two non-human primate (NHP) subjects are compared to simulations from a reinforcement learning agent performing an analogous task. We characterized baseline activity and compared it to the activity after rotational perturbations of different magnitudes were introduced. We employed principal component analysis (PCA) to analyze the spiking activity driving the cursor in the NHP BCI task as well as the activation of the neural network of the reinforcement learning agent. Results and discussion Our analyses reveal that both for the NHPs and the reinforcement learning agent, the task-relevant neural manifold is isomorphic with the task. However, for the NHPs the manifold is largely preserved for all rotational perturbations explored and adaptation of neural activity occurs within this manifold as rotations are compensated by reassignment of regions of the neural space in an angular pattern that cancels said rotations. In contrast, retraining the reinforcement learning agent to reach the targets after rotation results in substantial modifications of the underlying neural manifold. Our findings demonstrate that NHPs adapt their existing neural dynamic repertoire in a quantitatively precise manner to account for perturbations of different magnitudes and they do so in a way that obviates the need for extensive learning.
Collapse
Affiliation(s)
- Rodrigo Osuna-Orozco
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Yi Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Hannah Marie Stealey
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Hung-Yun Lu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | | | - Samantha Rose Santacruz
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
21
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565869. [PMID: 37986810 PMCID: PMC10659339 DOI: 10.1101/2023.11.06.565869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different contexts. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are clocked by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics, which is minimally affected by cerebellar perturbation and significantly larger than the response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A. Kirk
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | - Keenan T. Hope
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | | | | |
Collapse
|
22
|
Safaie M, Chang JC, Park J, Miller LE, Dudman JT, Perich MG, Gallego JA. Preserved neural dynamics across animals performing similar behaviour. Nature 2023; 623:765-771. [PMID: 37938772 PMCID: PMC10665198 DOI: 10.1038/s41586-023-06714-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Animals of the same species exhibit similar behaviours that are advantageously adapted to their body and environment. These behaviours are shaped at the species level by selection pressures over evolutionary timescales. Yet, it remains unclear how these common behavioural adaptations emerge from the idiosyncratic neural circuitry of each individual. The overall organization of neural circuits is preserved across individuals1 because of their common evolutionarily specified developmental programme2-4. Such organization at the circuit level may constrain neural activity5-8, leading to low-dimensional latent dynamics across the neural population9-11. Accordingly, here we suggested that the shared circuit-level constraints within a species would lead to suitably preserved latent dynamics across individuals. We analysed recordings of neural populations from monkey and mouse motor cortex to demonstrate that neural dynamics in individuals from the same species are surprisingly preserved when they perform similar behaviour. Neural population dynamics were also preserved when animals consciously planned future movements without overt behaviour12 and enabled the decoding of planned and ongoing movement across different individuals. Furthermore, we found that preserved neural dynamics extend beyond cortical regions to the dorsal striatum, an evolutionarily older structure13,14. Finally, we used neural network models to demonstrate that behavioural similarity is necessary but not sufficient for this preservation. We posit that these emergent dynamics result from evolutionary constraints on brain development and thus reflect fundamental properties of the neural basis of behaviour.
Collapse
Affiliation(s)
- Mostafa Safaie
- Department of Bioengineering, Imperial College London, London, UK
| | - Joanna C Chang
- Department of Bioengineering, Imperial College London, London, UK
| | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, TX, USA
| | - Lee E Miller
- Departments of Physiology, Biomedical Engineering and Physical Medicine and Rehabilitation, Northwestern University and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, TX, USA
| | - Matthew G Perich
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.
- Mila, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
23
|
Zhang X, Chen S, Wang Y. Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4125-4134. [PMID: 37792657 DOI: 10.1109/tnsre.2023.3321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks.
Collapse
|
24
|
Zippi EL, Shvartsman GF, Vendrell-Llopis N, Wallis JD, Carmena JM. Distinct neural representations during a brain-machine interface and manual reaching task in motor cortex, prefrontal cortex, and striatum. Sci Rep 2023; 13:17810. [PMID: 37857827 PMCID: PMC10587077 DOI: 10.1038/s41598-023-44405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Although brain-machine interfaces (BMIs) are directly controlled by the modulation of a select local population of neurons, distributed networks consisting of cortical and subcortical areas have been implicated in learning and maintaining control. Previous work in rodents has demonstrated the involvement of the striatum in BMI learning. However, the prefrontal cortex has been largely ignored when studying motor BMI control despite its role in action planning, action selection, and learning abstract tasks. Here, we compare local field potentials simultaneously recorded from primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), and the caudate nucleus of the striatum (Cd) while nonhuman primates perform a two-dimensional, self-initiated, center-out task under BMI control and manual control. Our results demonstrate the presence of distinct neural representations for BMI and manual control in M1, DLPFC, and Cd. We find that neural activity from DLPFC and M1 best distinguishes control types at the go cue and target acquisition, respectively, while M1 best predicts target-direction at both task events. We also find effective connectivity from DLPFC → M1 throughout both control types and Cd → M1 during BMI control. These results suggest distributed network activity between M1, DLPFC, and Cd during BMI control that is similar yet distinct from manual control.
Collapse
Affiliation(s)
- Ellen L Zippi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gabrielle F Shvartsman
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
| | - Nuria Vendrell-Llopis
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
| | - Joni D Wallis
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Jose M Carmena
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
25
|
Verhein JR, Vyas S, Shenoy KV. Methylphenidate modulates motor cortical dynamics and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562405. [PMID: 37905157 PMCID: PMC10614820 DOI: 10.1101/2023.10.15.562405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Methylphenidate (MPH, brand: Ritalin) is a common stimulant used both medically and non-medically. Though typically prescribed for its cognitive effects, MPH also affects movement. While it is known that MPH noncompetitively blocks the reuptake of catecholamines through inhibition of dopamine and norepinephrine transporters, a critical step in exploring how it affects behavior is to understand how MPH directly affects neural activity. This would establish an electrophysiological mechanism of action for MPH. Since we now have biologically-grounded network-level hypotheses regarding how populations of motor cortical neurons plan and execute movements, there is a unique opportunity to make testable predictions regarding how systemic MPH administration - a pharmacological perturbation - might affect neural activity in motor cortex. To that end, we administered clinically-relevant doses of MPH to Rhesus monkeys as they performed an instructed-delay reaching task. Concomitantly, we measured neural activity from dorsal premotor and primary motor cortex. Consistent with our predictions, we found dose-dependent and significant effects on reaction time, trial-by-trial variability, and movement speed. We confirmed our hypotheses that changes in reaction time and variability were accompanied by previously established population-level changes in motor cortical preparatory activity and the condition-independent signal that precedes movements. We expected changes in speed to be a result of changes in the amplitude of motor cortical dynamics and/or a translation of those dynamics in activity space. Instead, our data are consistent with a mechanism whereby the neuromodulatory effect of MPH is to increase the gain and/or the signal-to-noise of motor cortical dynamics during reaching. Continued work in this domain to better understand the brain-wide electrophysiological mechanism of action of MPH and other psychoactive drugs could facilitate more targeted treatments for a host of cognitive-motor disorders.
Collapse
Affiliation(s)
- Jessica R Verhein
- Medical Scientist Training Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Current affiliations: Psychiatry Research Residency Training Program, University of California, San Francisco, San Francisco, CA
| | - Saurabh Vyas
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford School of Medicine, Stanford University, Stanford, CA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Electrical Engineering, Stanford University, Stanford, CA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA
- Department of Neurobiology, Stanford University, Stanford, CA
- Bio-X Program, Stanford University, Stanford, CA
| |
Collapse
|
26
|
Ye J, Collinger JL, Wehbe L, Gaunt R. Neural Data Transformer 2: Multi-context Pretraining for Neural Spiking Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558113. [PMID: 37781630 PMCID: PMC10541112 DOI: 10.1101/2023.09.18.558113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The neural population spiking activity recorded by intracortical brain-computer interfaces (iBCIs) contain rich structure. Current models of such spiking activity are largely prepared for individual experimental contexts, restricting data volume to that collectable within a single session and limiting the effectiveness of deep neural networks (DNNs). The purported challenge in aggregating neural spiking data is the pervasiveness of context-dependent shifts in the neural data distributions. However, large scale unsupervised pretraining by nature spans heterogeneous data, and has proven to be a fundamental recipe for successful representation learning across deep learning. We thus develop Neural Data Transformer 2 (NDT2), a spatiotemporal Transformer for neural spiking activity, and demonstrate that pretraining can leverage motor BCI datasets that span sessions, subjects, and experimental tasks. NDT2 enables rapid adaptation to novel contexts in downstream decoding tasks and opens the path to deployment of pretrained DNNs for iBCI control. Code: https://github.com/joel99/context_general_bci.
Collapse
Affiliation(s)
- Joel Ye
- Rehab Neural Engineering Labs, University of Pittsburgh
- Neuroscience Institute, Carnegie Mellon University
- Center for the Neural Basis of Cognition, Pittsburgh
| | - Jennifer L. Collinger
- Rehab Neural Engineering Labs, University of Pittsburgh
- Center for the Neural Basis of Cognition, Pittsburgh
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
- Department of Bioengineering, University of Pittsburgh
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Leila Wehbe
- Neuroscience Institute, Carnegie Mellon University
- Center for the Neural Basis of Cognition, Pittsburgh
- Machine Learning Department, Carnegie Mellon University
| | - Robert Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh
- Center for the Neural Basis of Cognition, Pittsburgh
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
- Department of Bioengineering, University of Pittsburgh
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
27
|
Athalye VR, Khanna P, Gowda S, Orsborn AL, Costa RM, Carmena JM. Invariant neural dynamics drive commands to control different movements. Curr Biol 2023; 33:2962-2976.e15. [PMID: 37402376 PMCID: PMC10527529 DOI: 10.1016/j.cub.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023]
Abstract
It has been proposed that the nervous system has the capacity to generate a wide variety of movements because it reuses some invariant code. Previous work has identified that dynamics of neural population activity are similar during different movements, where dynamics refer to how the instantaneous spatial pattern of population activity changes in time. Here, we test whether invariant dynamics of neural populations are actually used to issue the commands that direct movement. Using a brain-machine interface (BMI) that transforms rhesus macaques' motor-cortex activity into commands for a neuroprosthetic cursor, we discovered that the same command is issued with different neural-activity patterns in different movements. However, these different patterns were predictable, as we found that the transitions between activity patterns are governed by the same dynamics across movements. These invariant dynamics are low dimensional, and critically, they align with the BMI, so that they predict the specific component of neural activity that actually issues the next command. We introduce a model of optimal feedback control (OFC) that shows that invariant dynamics can help transform movement feedback into commands, reducing the input that the neural population needs to control movement. Altogether our results demonstrate that invariant dynamics drive commands to control a variety of movements and show how feedback can be integrated with invariant dynamics to issue generalizable commands.
Collapse
Affiliation(s)
- Vivek R Athalye
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY 10027, USA.
| | - Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Suraj Gowda
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amy L Orsborn
- Departments of Bioengineering, Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA 98195, USA
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY 10027, USA.
| | - Jose M Carmena
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Wang ZA, Chen S, Liu Y, Liu D, Svoboda K, Li N, Druckmann S. Not everything, not everywhere, not all at once: a study of brain-wide encoding of movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544257. [PMID: 37333216 PMCID: PMC10274914 DOI: 10.1101/2023.06.08.544257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Activity related to movement is found throughout sensory and motor regions of the brain. However, it remains unclear how movement-related activity is distributed across the brain and whether systematic differences exist between brain areas. Here, we analyzed movement related activity in brain-wide recordings containing more than 50,000 neurons in mice performing a decision-making task. Using multiple techniques, from markers to deep neural networks, we find that movement-related signals were pervasive across the brain, but systematically differed across areas. Movement-related activity was stronger in areas closer to the motor or sensory periphery. Delineating activity in terms of sensory- and motor-related components revealed finer scale structures of their encodings within brain areas. We further identified activity modulation that correlates with decision-making and uninstructed movement. Our work charts out a largescale map of movement encoding and provides a roadmap for dissecting different forms of movement and decision-making related encoding across multi-regional neural circuits.
Collapse
|
29
|
Nam H, Kim JM, Choi W, Bak S, Kam TE. The effects of layer-wise relevance propagation-based feature selection for EEG classification: a comparative study on multiple datasets. Front Hum Neurosci 2023; 17:1205881. [PMID: 37342822 PMCID: PMC10277566 DOI: 10.3389/fnhum.2023.1205881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The brain-computer interface (BCI) allows individuals to control external devices using their neural signals. One popular BCI paradigm is motor imagery (MI), which involves imagining movements to induce neural signals that can be decoded to control devices according to the user's intention. Electroencephalography (EEG) is frequently used for acquiring neural signals from the brain in the fields of MI-BCI due to its non-invasiveness and high temporal resolution. However, EEG signals can be affected by noise and artifacts, and patterns of EEG signals vary across different subjects. Therefore, selecting the most informative features is one of the essential processes to enhance classification performance in MI-BCI. Methods In this study, we design a layer-wise relevance propagation (LRP)-based feature selection method which can be easily integrated into deep learning (DL)-based models. We assess its effectiveness for reliable class-discriminative EEG feature selection on two different publicly available EEG datasets with various DL-based backbone models in the subject-dependent scenario. Results and discussion The results show that LRP-based feature selection enhances the performance for MI classification on both datasets for all DL-based backbone models. Based on our analysis, we believe that it can broad its capability to different research domains.
Collapse
Affiliation(s)
| | | | | | | | - Tae-Eui Kam
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Zippi EL, Shvartsman GF, Vendrell-Llopis N, Wallis JD, Carmena JM. Distinct neural representations during a brain-machine interface and manual reaching task in motor cortex, prefrontal cortex, and striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542532. [PMID: 37398143 PMCID: PMC10312492 DOI: 10.1101/2023.05.31.542532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Although brain-machine interfaces (BMIs) are directly controlled by the modulation of a select local population of neurons, distributed networks consisting of cortical and subcortical areas have been implicated in learning and maintaining control. Previous work in rodent BMI has demonstrated the involvement of the striatum in BMI learning. However, the prefrontal cortex has been largely ignored when studying motor BMI control despite its role in action planning, action selection, and learning abstract tasks. Here, we compare local field potentials simultaneously recorded from the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), and the caudate nucleus of the striatum (Cd) while nonhuman primates perform a two-dimensional, self-initiated, center-out task under BMI control and manual control. Our results demonstrate the presence of distinct neural representations for BMI and manual control in M1, DLPFC, and Cd. We find that neural activity from DLPFC and M1 best distinguish between control types at the go cue and target acquisition, respectively. We also found effective connectivity from DLPFC→M1 throughout trials across both control types and Cd→M1 during BMI control. These results suggest distributed network activity between M1, DLPFC, and Cd during BMI control that is similar yet distinct from manual control.
Collapse
Affiliation(s)
- Ellen L. Zippi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
| | - Gabrielle F. Shvartsman
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA
| | - Nuria Vendrell-Llopis
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA
| | - Joni D. Wallis
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
- Department of Psychology, University of California, Berkeley, Berkeley, CA
| | - Jose M. Carmena
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
31
|
Chang JC, Perich MG, Miller LE, Gallego JA, Clopath C. De novo motor learning creates structure in neural activity space that shapes adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541925. [PMID: 37293081 PMCID: PMC10245862 DOI: 10.1101/2023.05.23.541925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animals can quickly adapt learned movements in response to external perturbations. Motor adaptation is likely influenced by an animal's existing movement repertoire, but the nature of this influence is unclear. Long-term learning causes lasting changes in neural connectivity which determine the activity patterns that can be produced. Here, we sought to understand how a neural population's activity repertoire, acquired through long-term learning, affects short-term adaptation by modeling motor cortical neural population dynamics during de novo learning and subsequent adaptation using recurrent neural networks. We trained these networks on different motor repertoires comprising varying numbers of movements. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization created by the neural population activity patterns corresponding to each movement. This structure facilitated adaptation, but only when small changes in motor output were required, and when the structure of the network inputs, the neural activity space, and the perturbation were congruent. These results highlight trade-offs in skill acquisition and demonstrate how prior experience and external cues during learning can shape the geometrical properties of neural population activity as well as subsequent adaptation.
Collapse
Affiliation(s)
- Joanna C. Chang
- Department of Bioengineering, Imperial College London, London, UK
| | - Matthew G. Perich
- Département de neurosciences, Université de Montréal, Montréal, Canada
| | - Lee E. Miller
- Department of Neuroscience, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Juan A. Gallego
- Department of Bioengineering, Imperial College London, London, UK
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
32
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
33
|
Meirhaeghe N, Riehle A, Brochier T. Parallel movement planning is achieved via an optimal preparatory state in motor cortex. Cell Rep 2023; 42:112136. [PMID: 36807145 DOI: 10.1016/j.celrep.2023.112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/16/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
How do patterns of neural activity in the motor cortex contribute to the planning of a movement? A recent theory developed for single movements proposes that the motor cortex acts as a dynamical system whose initial state is optimized during the preparatory phase of the movement. This theory makes important yet untested predictions about preparatory dynamics in more complex behavioral settings. Here, we analyze preparatory activity in non-human primates planning not one but two movements simultaneously. As predicted by the theory, we find that parallel planning is achieved by adjusting preparatory activity within an optimal subspace to an intermediate state reflecting a trade-off between the two movements. The theory quantitatively accounts for the relationship between this intermediate state and fluctuations in the animals' behavior down at the trial level. These results uncover a simple mechanism for planning multiple movements in parallel and further point to motor planning as a controlled dynamical process.
Collapse
Affiliation(s)
- Nicolas Meirhaeghe
- Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, 13005 Marseille, France.
| | - Alexa Riehle
- Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, 13005 Marseille, France; Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, 52428 Jülich, Germany
| | - Thomas Brochier
- Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
34
|
Miyamoto K, Rushworth MFS, Shea N. Imagining the future self through thought experiments. Trends Cogn Sci 2023; 27:446-455. [PMID: 36801162 DOI: 10.1016/j.tics.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
The ability of the mind to conceptualize what is not present is essential. It allows us to reason counterfactually about what might have happened had events unfolded differently or had another course of action been taken. It allows us to think about what might happen - to perform 'Gedankenexperimente' (thought experiments) - before we act. However, the cognitive and neural mechanisms mediating this ability are poorly understood. We suggest that the frontopolar cortex (FPC) keeps track of and evaluates alternative choices (what we might have done), whereas the anterior lateral prefrontal cortex (alPFC) compares simulations of possible future scenarios (what we might do) and evaluates their reward values. Together, these brain regions support the construction of suppositional scenarios.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan.
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicholas Shea
- Institute of Philosophy, School of Advanced Study, University of London, London, UK; Faculty of Philosophy, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Saltoun K, Adolphs R, Paul LK, Sharma V, Diedrichsen J, Yeo BTT, Bzdok D. Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles. Nat Hum Behav 2023; 7:251-268. [PMID: 36344655 DOI: 10.1038/s41562-022-01461-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Broca reported ~150 years ago that particular lesions of the left hemisphere impair speech. Since then, other brain regions have been reported to show lateralized structure and function. Yet, studies of brain asymmetry have limited their focus to pairwise comparisons between homologous regions. Here, we characterized separable whole-brain asymmetry patterns in grey and white matter structure from n = 37,441 UK Biobank participants. By pooling information on left-right shifts underlying whole-brain structure, we deconvolved signatures of brain asymmetry that are spatially distributed rather than locally constrained. Classically asymmetric regions turned out to belong to more than one asymmetry pattern. Instead of a single dominant signature, we discovered complementary asymmetry patterns that contributed similarly to whole-brain asymmetry at the population level. These asymmetry patterns were associated with unique collections of phenotypes, ranging from early lifestyle factors to demographic status to mental health indicators.
Collapse
Affiliation(s)
- Karin Saltoun
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,School of Computer Science, McGill University, Quebec, Canada
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5), Pasadena, CA, USA.,Fuller Graduate School of Psychology, Travis Research Institute, Pasadena, CA, USA
| | - Vaibhav Sharma
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Joern Diedrichsen
- The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada.,Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Ito T, Kamiue M, Hosokawa T, Kimura D, Tsubahara A. Individual differences in processing ability to transform visual stimuli during the mental rotation task are closely related to individual motor adaptation ability. Front Neurosci 2022; 16:941942. [DOI: 10.3389/fnins.2022.941942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Mental rotation (MR) is a well-established experimental paradigm for exploring human spatial ability. Although MR tasks are assumed to be involved in several cognitive processes, it remains unclear which cognitive processes are related to the individual ability of motor adaptation. Therefore, we aimed to elucidate the relationship between the response time (RT) of MR using body parts and the adaptive motor learning capability of gait. In the MR task, dorsal hand, palmar plane, dorsal foot, and plantar plane images rotated in 45° increments were utilized to measure the RTs required for judging hand/foot laterality. A split-belt treadmill paradigm was applied, and the number of strides until the value of the asymmetrical ground reaction force reached a steady state was calculated to evaluate the individual motor adaptation ability. No significant relationship was found between the mean RT of the egocentric perspectives (0°, 45°, and 315°) or allocentric perspectives (135°, 180°, and 225°) and adaptive learning ability of gait, irrespective of body parts or image planes. Contrarily, the change rate of RTs obtained by subtracting the RT of the egocentric perspective from that of the allocentric perspective in dorsal hand/foot images that reflect the time to mentally transform a rotated visual stimulus correlated only with adaptive learning ability. Interestingly, the change rate of RTs calculated using the palmar and plantar images, assumed to reflect the three-dimensional transformation process, was not correlated. These findings suggest that individual differences in the processing capability of visual stimuli during the transformation process involved in the pure motor simulation of MR tasks are precisely related to individual motor adaptation ability.
Collapse
|
37
|
Zippi EL, You AK, Ganguly K, Carmena JM. Selective modulation of cortical population dynamics during neuroprosthetic skill learning. Sci Rep 2022; 12:15948. [PMID: 36153356 PMCID: PMC9509316 DOI: 10.1038/s41598-022-20218-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 01/23/2023] Open
Abstract
Brain-machine interfaces (BMIs) provide a framework for studying how cortical population dynamics evolve over learning in a task in which the mapping between neural activity and behavior is precisely defined. Learning to control a BMI is associated with the emergence of coordinated neural dynamics in populations of neurons whose activity serves as direct input to the BMI decoder (direct subpopulation). While previous work shows differential modification of firing rate modulation in this population relative to a population whose activity was not directly input to the BMI decoder (indirect subpopulation), little is known about how learning-related changes in cortical population dynamics within these groups compare.To investigate this, we monitored both direct and indirect subpopulations as two macaque monkeys learned to control a BMI. We found that while the combined population increased coordinated neural dynamics, this increase in coordination was primarily driven by changes in the direct subpopulation. These findings suggest that motor cortex refines cortical dynamics by increasing neural variance throughout the entire population during learning, with a more pronounced coordination of firing activity in subpopulations that are causally linked to behavior.
Collapse
Affiliation(s)
- Ellen L. Zippi
- grid.47840.3f0000 0001 2181 7878Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720 USA
| | - Albert K. You
- grid.47840.3f0000 0001 2181 7878Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720 USA
| | - Karunesh Ganguly
- grid.410372.30000 0004 0419 2775Neurology and Rehabilitation Service, San Francisco VA Medical Center, San Francisco, CA 94121 USA ,grid.266102.10000 0001 2297 6811Department of Neurology, University of California, San Francisco, CA 94143 USA
| | - Jose M. Carmena
- grid.47840.3f0000 0001 2181 7878Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
38
|
Gallego-Carracedo C, Perich MG, Chowdhury RH, Miller LE, Gallego JÁ. Local field potentials reflect cortical population dynamics in a region-specific and frequency-dependent manner. eLife 2022; 11:73155. [PMID: 35968845 PMCID: PMC9470163 DOI: 10.7554/elife.73155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The spiking activity of populations of cortical neurons is well described by the dynamics of a small number of population-wide covariance patterns, the 'latent dynamics'. These latent dynamics are largely driven by the same correlated synaptic currents across the circuit that determine the generation of local field potentials (LFP). Yet, the relationship between latent dynamics and LFPs remains largely unexplored. Here, we characterised this relationship for three different regions of primate sensorimotor cortex during reaching. The correlation between latent dynamics and LFPs was frequency-dependent and varied across regions. However, for any given region, this relationship remained stable throughout the behaviour: in each of primary motor and premotor cortices, the LFP-latent dynamics correlation profile was remarkably similar between movement planning and execution. These robust associations between LFPs and neural population latent dynamics help bridge the wealth of studies reporting neural correlates of behaviour using either type of recordings.
Collapse
Affiliation(s)
| | - Matthew G Perich
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Raeed H Chowdhury
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Lee E Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, United States
| | - Juan Álvaro Gallego
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Pandarinath C, Bensmaia SJ. The science and engineering behind sensitized brain-controlled bionic hands. Physiol Rev 2022; 102:551-604. [PMID: 34541898 PMCID: PMC8742729 DOI: 10.1152/physrev.00034.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in our understanding of brain function, along with the development of neural interfaces that allow for the monitoring and activation of neurons, have paved the way for brain-machine interfaces (BMIs), which harness neural signals to reanimate the limbs via electrical activation of the muscles or to control extracorporeal devices, thereby bypassing the muscles and senses altogether. BMIs consist of reading out motor intent from the neuronal responses monitored in motor regions of the brain and executing intended movements with bionic limbs, reanimated limbs, or exoskeletons. BMIs also allow for the restoration of the sense of touch by electrically activating neurons in somatosensory regions of the brain, thereby evoking vivid tactile sensations and conveying feedback about object interactions. In this review, we discuss the neural mechanisms of motor control and somatosensation in able-bodied individuals and describe approaches to use neuronal responses as control signals for movement restoration and to activate residual sensory pathways to restore touch. Although the focus of the review is on intracortical approaches, we also describe alternative signal sources for control and noninvasive strategies for sensory restoration.
Collapse
Affiliation(s)
- Chethan Pandarinath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces. Neural Netw 2022; 151:111-120. [DOI: 10.1016/j.neunet.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
|
41
|
|
42
|
Sun X, O'Shea DJ, Golub MD, Trautmann EM, Vyas S, Ryu SI, Shenoy KV. Cortical preparatory activity indexes learned motor memories. Nature 2022; 602:274-279. [PMID: 35082444 PMCID: PMC9851374 DOI: 10.1038/s41586-021-04329-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 12/09/2021] [Indexed: 01/21/2023]
Abstract
The brain's remarkable ability to learn and execute various motor behaviours harnesses the capacity of neural populations to generate a variety of activity patterns. Here we explore systematic changes in preparatory activity in motor cortex that accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task1 in a curl force field that elicited new muscle forces for some, but not all, movement directions2,3. We found that in a neural subspace predictive of hand forces, changes in preparatory activity tracked the learned behavioural modifications and reassociated4 existing activity patterns with updated movements. Along a neural population dimension orthogonal to the force-predictive subspace, we discovered that preparatory activity shifted uniformly for all movement directions, including those unaltered by learning. During a washout period when the curl field was removed, preparatory activity gradually reverted in the force-predictive subspace, but the uniform shift persisted. These persistent preparatory activity patterns may retain a motor memory of the learned field5,6 and support accelerated relearning of the same curl field. When a set of distinct curl fields was learned in sequence, we observed a corresponding set of field-specific uniform shifts which separated the associated motor memories in the neural state space7-9. The precise geometry of these uniform shifts in preparatory activity could serve to index motor memories, facilitating the acquisition, retention and retrieval of a broad motor repertoire.
Collapse
Affiliation(s)
- Xulu Sun
- Department of Biology, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Daniel J O'Shea
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Matthew D Golub
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Eric M Trautmann
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Saurabh Vyas
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Krishna V Shenoy
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
43
|
Hennig JA, Oby ER, Losey DM, Batista AP, Yu BM, Chase SM. How learning unfolds in the brain: toward an optimization view. Neuron 2021; 109:3720-3735. [PMID: 34648749 PMCID: PMC8639641 DOI: 10.1016/j.neuron.2021.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
How do changes in the brain lead to learning? To answer this question, consider an artificial neural network (ANN), where learning proceeds by optimizing a given objective or cost function. This "optimization framework" may provide new insights into how the brain learns, as many idiosyncratic features of neural activity can be recapitulated by an ANN trained to perform the same task. Nevertheless, there are key features of how neural population activity changes throughout learning that cannot be readily explained in terms of optimization and are not typically features of ANNs. Here we detail three of these features: (1) the inflexibility of neural variability throughout learning, (2) the use of multiple learning processes even during simple tasks, and (3) the presence of large task-nonspecific activity changes. We propose that understanding the role of these features in the brain will be key to describing biological learning using an optimization framework.
Collapse
Affiliation(s)
- Jay A Hennig
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Emily R Oby
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Darby M Losey
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Byron M Yu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Steven M Chase
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Thibault S, Py R, Gervasi AM, Salemme R, Koun E, Lövden M, Boulenger V, Roy AC, Brozzoli C. Tool use and language share syntactic processes and neural patterns in the basal ganglia. Science 2021; 374:eabe0874. [PMID: 34762470 DOI: 10.1126/science.abe0874] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Simon Thibault
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, 69000, France.,University of Lyon, Lyon 69000, France
| | - Raphaël Py
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, 69000, France.,University of Lyon, Lyon 69000, France
| | - Angelo Mattia Gervasi
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, 69000, France
| | - Romeo Salemme
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, 69000, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, 69000, France
| | - Martin Lövden
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177 Stockholm, Sweden.,Department of Psychology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Véronique Boulenger
- University of Lyon, Lyon 69000, France.,Dynamics of Language laboratory, CNRS UMR5596, Lyon, France
| | - Alice C Roy
- University of Lyon, Lyon 69000, France.,Dynamics of Language laboratory, CNRS UMR5596, Lyon, France
| | - Claudio Brozzoli
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Lyon, 69000, France.,University of Lyon, Lyon 69000, France.,Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
45
|
Zhang Y, Wan Z, Wan G, Zheng Q, Chen W, Zhang S. Changes in Modulation Characteristics of Neurons in Different Modes of Motion Control Using Brain-Machine Interface. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6445-6448. [PMID: 34892587 DOI: 10.1109/embc46164.2021.9630212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the research of motion control using brain-machine interface (BMI), analysis is usually conducted on one ensemble of neurons whose activity serves as direct input to the BMI decoder (control units). The number of control units is diverse in different control modes. That is to say, the size of dimensions of neural signals used in motion control is diverse. However, how will the behavioral performance change with this kind of diversity? What effects does this diversity have on modulation characteristics of control units? To answer these questions, we designed three modes of motion tasks using neural signals with different dimension sizes to control. Our results imply that as the dimension reduces, some deviations appear in behavioral performance. At the same time, the control units tend to have a directional division of control, then enhance their stability and increase modulations after division.
Collapse
|
46
|
Sobinov AR, Bensmaia SJ. The neural mechanisms of manual dexterity. Nat Rev Neurosci 2021; 22:741-757. [PMID: 34711956 DOI: 10.1038/s41583-021-00528-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
The hand endows us with unparalleled precision and versatility in our interactions with objects, from mundane activities such as grasping to extraordinary ones such as virtuoso pianism. The complex anatomy of the human hand combined with expansive and specialized neuronal control circuits allows a wide range of precise manual behaviours. To support these behaviours, an exquisite sensory apparatus, spanning the modalities of touch and proprioception, conveys detailed and timely information about our interactions with objects and about the objects themselves. The study of manual dexterity provides a unique lens into the sensorimotor mechanisms that endow the nervous system with the ability to flexibly generate complex behaviour.
Collapse
Affiliation(s)
- Anton R Sobinov
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.,Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA. .,Neuroscience Institute, University of Chicago, Chicago, IL, USA. .,Committee on Computational Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
47
|
Umakantha A, Morina R, Cowley BR, Snyder AC, Smith MA, Yu BM. Bridging neuronal correlations and dimensionality reduction. Neuron 2021; 109:2740-2754.e12. [PMID: 34293295 PMCID: PMC8505167 DOI: 10.1016/j.neuron.2021.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Two commonly used approaches to study interactions among neurons are spike count correlation, which describes pairs of neurons, and dimensionality reduction, applied to a population of neurons. Although both approaches have been used to study trial-to-trial neuronal variability correlated among neurons, they are often used in isolation and have not been directly related. We first established concrete mathematical and empirical relationships between pairwise correlation and metrics of population-wide covariability based on dimensionality reduction. Applying these insights to macaque V4 population recordings, we found that the previously reported decrease in mean pairwise correlation associated with attention stemmed from three distinct changes in population-wide covariability. Overall, our work builds the intuition and formalism to bridge between pairwise correlation and population-wide covariability and presents a cautionary tale about the inferences one can make about population activity by using a single statistic, whether it be mean pairwise correlation or dimensionality.
Collapse
Affiliation(s)
- Akash Umakantha
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rudina Morina
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Benjamin R Cowley
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Adam C Snyder
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA; Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
| | - Matthew A Smith
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Byron M Yu
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Abstract
Significant experimental, computational, and theoretical work has identified rich structure within the coordinated activity of interconnected neural populations. An emerging challenge now is to uncover the nature of the associated computations, how they are implemented, and what role they play in driving behavior. We term this computation through neural population dynamics. If successful, this framework will reveal general motifs of neural population activity and quantitatively describe how neural population dynamics implement computations necessary for driving goal-directed behavior. Here, we start with a mathematical primer on dynamical systems theory and analytical tools necessary to apply this perspective to experimental data. Next, we highlight some recent discoveries resulting from successful application of dynamical systems. We focus on studies spanning motor control, timing, decision-making, and working memory. Finally, we briefly discuss promising recent lines of investigation and future directions for the computation through neural population dynamics framework.
Collapse
Affiliation(s)
- Saurabh Vyas
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, USA
| | - Matthew D Golub
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, USA
| | - David Sussillo
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, USA.,Google AI, Google Inc., Mountain View, California 94305, USA
| | - Krishna V Shenoy
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, USA.,Department of Neurobiology, Bio-X Institute, Neurosciences Program, and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
49
|
Lanore F, Cayco-Gajic NA, Gurnani H, Coyle D, Silver RA. Cerebellar granule cell axons support high-dimensional representations. Nat Neurosci 2021; 24:1142-1150. [PMID: 34168340 PMCID: PMC7611462 DOI: 10.1038/s41593-021-00873-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell 'decoders', we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures.
Collapse
Affiliation(s)
- Frederic Lanore
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - N Alex Cayco-Gajic
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
- Group for Neural Theory, Laboratoire de neurosciences cognitives et computationnelles, Département d'études cognitives, École normale supérieure, INSERM U960, Université Paris Sciences et Lettres, Paris, France
| | - Harsha Gurnani
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Diccon Coyle
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK.
| |
Collapse
|
50
|
Trautmann EM, O'Shea DJ, Sun X, Marshel JH, Crow A, Hsueh B, Vesuna S, Cofer L, Bohner G, Allen W, Kauvar I, Quirin S, MacDougall M, Chen Y, Whitmire MP, Ramakrishnan C, Sahani M, Seidemann E, Ryu SI, Deisseroth K, Shenoy KV. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface. Nat Commun 2021; 12:3689. [PMID: 34140486 PMCID: PMC8211867 DOI: 10.1038/s41467-021-23884-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.
Collapse
Affiliation(s)
- Eric M Trautmann
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Daniel J O'Shea
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Xulu Sun
- Department of Biology, Stanford University, Stanford, CA, USA.
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ailey Crow
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Brian Hsueh
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sam Vesuna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucas Cofer
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gergő Bohner
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Will Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Isaac Kauvar
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Yuzhi Chen
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Matthew P Whitmire
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | | | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eyal Seidemann
- Center for Perceptual Systems, University of Texas, Austin, TX, USA
- Department of Psychology, University of Texas, Austin, TX, USA
- Department of Neuroscience, University of Texas, Austin, TX, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - Karl Deisseroth
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| | - Krishna V Shenoy
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|