1
|
Beijer D, Mengel D, Önder D, Wilke C, Traschütz A, Faber J, Timmann D, Boesch S, Vielhaber S, Klopstock T, van de Warrenburg BP, Silvestri G, Kamm C, Wedding IM, Fleszar Z, Harmuth F, Dufke C, Brais B, Rieß O, Schöls L, Haack T, Züchner S, Pellerin D, Klockgether T, Synofzik M. The genetic landscape of sporadic adult-onset degenerative ataxia: a multi-modal genetic study of 377 consecutive patients from the longitudinal multi-centre SPORTAX cohort. EBioMedicine 2025; 115:105715. [PMID: 40273470 PMCID: PMC12051541 DOI: 10.1016/j.ebiom.2025.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND While most sporadic adult-onset neurodegenerative diseases have only a minor monogenic component, given several recently identified late adult-onset ataxia genes, the genetic burden may be substantial in sporadic adult-onset ataxias. We report systematic mapping of the genetic landscape of sporadic adult-onset ataxia in a well-characterised, multi-centre cohort, combining several multi-modal genetic screening techniques, plus longitudinal natural history data. METHODS Systematic clinico-genetic analysis of a prospective longitudinal multi-centre cohort of 377 consecutive patients with sporadic adult-onset ataxia (SPORTAX cohort), including clinically defined sporadic adult-onset ataxia of unknown aetiology (SAOA) (n = 229) and 'clinically probable multiple system atrophy of cerebellar type' (MSA-Ccp) (n = 148). Combined GAA-FGF14 (SCA27B) and RFC1 repeat expansion screening with next-generation sequencing (NGS) was complemented by natural history and plasma neurofilament light chain analysis in key subgroups. FINDINGS 85 out of 377 (22.5%) patients with sporadic adult-onset ataxia carried a pathogenic or likely pathogenic variant, thereof 67/229 (29.3%) patients with SAOA and 18/148 (12.2%) patients meeting the MSA-Ccp criteria. This included: 45/377 (11.9%) patients with GAA-FGF14≥250 repeat expansions (nine with MSA-Ccp), 17/377 (4.5%) patients with RFC1 repeat expansions (three with MSA-Ccp), and 24/377 (6.4%) patients with single nucleotide variants (SNVs) identified by NGS (six with MSA-Ccp). Five patients (1.3%) were found to have two relevant genetic variants simultaneously (dual diagnosis). INTERPRETATION In this cohort of sporadic adult-onset ataxia, a cohort less likely to have a monogenic cause, a substantial burden of monogenic variants was identified, particularly GAA-FGF14 and RFC1 repeat expansions. This included a substantial share of patients meeting the MSA-Ccp criteria, suggesting a reduced specificity of this clinical diagnosis and potential co-occurrence of MSA-C plus a second, independent genetic condition. These findings have important implications for the genetic work-up and counselling of patients with sporadic ataxia, even when presenting with MSA-like features. With targeted treatments for genetic ataxias now on the horizon, these findings highlight their potential utility for these patients. FUNDING This work was supported by the Clinician Scientist programme "PRECISE.net" funded by the Else Kröner-Fresenius-Stiftung (to DM, AT, CW, OR, and MS), by the Deutsche Forschungsgemeinschaft (as part of the PROSPAX project), and by the Canadian Institutes of Health Research and the Fondation Groupe Monaco. Support was also provided by Humboldt Research Fellowship for Postdocs and the Hertie-Network of Excellence in Clinical Neuroscience and a Fellowship award from the Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Danique Beijer
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - David Mengel
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Demet Önder
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Center for Neurology, Department of Parkinson's Disease, Sleep and Movement Disorders, University Hospital Bonn, Bonn, Germany
| | - Carlo Wilke
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Germany
| | - Andreas Traschütz
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Center for Neurology, Department of Parkinson's Disease, Sleep and Movement Disorders, University Hospital Bonn, Bonn, Germany; Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Duisburg-Essen, 45147, Essen, Germany
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Vielhaber
- Neurologische Universitätsklinik, Universitätsklinikum Magdeburg A.ö.R., Magdeburg, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, LMU University Hospital of Ludwig-Maximilians-Universität München, 80336, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Gabriella Silvestri
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia Dipartimento Neuroscienze, Fondazione Policlinico Universitario A Gemelli IRCCS, Organi Di Senso e Torace, Rome, Italy
| | - Christoph Kamm
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | - Zofia Fleszar
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Germany
| | - Florian Harmuth
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Züchner
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, 33136, FL, USA
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada; Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, 33136, FL, USA
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
2
|
Heiduschka S, Prigione A. iPSC models of mitochondrial diseases. Neurobiol Dis 2025; 207:106822. [PMID: 39892770 DOI: 10.1016/j.nbd.2025.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Mitochondrial diseases are historically difficult to study. They cause multi-systemic defects with prevalent impairment of hard-to-access tissues such as the brain and the heart. Furthermore, they suffer from a paucity of conventional model systems, especially because of the challenges associated with mitochondrial DNA (mtDNA) engineering. Consequently, most mitochondrial diseases are currently untreatable. Human induced pluripotent stem cells (iPSCs) represent a promising approach for developing human model systems and assessing therapeutic avenues in a patient- and tissue-specific context. iPSCs are being increasingly used to investigate mitochondrial diseases, either for dissecting mutation-specific defects within two-dimensional (2D) or three-dimensional (3D) progenies or for unveiling the impact of potential treatment options. Here, we review how iPSC-derived 2D cells and 3D organoid models have been applied to the study of mitochondrial diseases caused by either nuclear or mtDNA defects. We anticipate that the field of iPSC-driven modeling of mitochondrial diseases will continue to grow, likely leading to the development of innovative platforms for treatment discovery and toxicity that could benefit the patient community suffering from these debilitating disorders with highly unmet medical needs.
Collapse
Affiliation(s)
- Sonja Heiduschka
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
3
|
Hao X, Hu Z, Li M, Zhang S, Tang M, Hao C, Qi S, Liang Y, Almeida MF, Smith K, Zuo C, Feng Y, Guo M, Ma D, Li S, Wang Z, Sun Y, Deng Z, Mao C, Xia Z, Jiang Y, Gao Y, Xu Y, Schisler JC, Shi C. E3 ubiquitin ligase CHIP facilitates cAMP and cGMP signalling cross-talk by polyubiquitinating PDE9A. EMBO J 2025; 44:1249-1273. [PMID: 39806097 PMCID: PMC11833080 DOI: 10.1038/s44318-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation. Conversely, dysfunctional CHIP disrupts this process, resulting in PDE9A accumulation, increased cGMP hydrolysis, and impaired PKG phosphorylation of CHIP at serine 19. This cascade further amplifies PDE9A accumulation, ultimately disrupting mitophagy and triggering neuronal apoptosis. Elevated PKA levels inhibit PDE9A degradation, further exacerbating this neuronal dysfunction. Notably, pharmacological inhibition of PDE9A via Bay 73-6691 or virus-mediated CHIP expression restored the balance of cGMP/cAMP signalling. These interventions protect against cerebellar neuropathologies, particularly Purkinje neuron mitophagy dysfunction. Thus, PDE9A upregulation considerably exacerbates ataxia associated with CHIP mutations, and targeting the interaction between PDE9A and CHIP is an innovative therapeutic strategy for CHIP-related ataxia.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenwei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shasha Qi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Michael F Almeida
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaitlan Smith
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yanmei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuangjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhiyun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuemeng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhifen Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yong Jiang
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Yanxia Gao
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Medical Key Laboratory of Poisoning Diseases of Henan Province, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Jonathan C Schisler
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Dong Y, Jia M, Tan S, Li XY, Song Y, Wang X, Wang Z, Wang C. Clinical, genetic, and neuroimaging profiles of autosomal recessive spinocerebellar ataxia type 4 caused by novel VPS13D variants in Chinese. Am J Med Genet A 2024; 194:e63828. [PMID: 39058251 DOI: 10.1002/ajmg.a.63828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Autosomal recessive spinocerebellar ataxias (SCARs) are a heterogeneous group of neurodegenerative disorders. VPS13D gene is currently the only gene associated with autosomal recessive spinocerebellar ataxia type 4 (SCAR4), also known as VPS13D dyskinesia. SCAR4 is a rare inherited disease, with only 34 reported cases reported worldwide. In this study, we reported three independent SCAR4 cases with adolescent onsets caused by five novel variants of the VPS13D gene. Each patient carried one frameshift and one missense variant: Patient 1 with c.10474del and c.9734C > A (p.Leu3492Tyrfs*43 and p.Thr3245Asn), Patient 2 with c.6094_6107delGTTCTCTTGATCCC and c.9734C > A (p.Val2032Argfs*7 and p.Thr3245Asn), and Patient 3 with c.11954_11963del and c.9833 T > G (p.Phe3985Serfs*10 and p.Ile3278Ser). Two of the three patients shared nystagmus with an identical variant c.9734C > A. Magnetic resonance imaging indicated thoracic spinal atrophy in all three patients and corpus callosum atrophy in one patient, along with other typical manifestations of white matter degradation, cerebral atrophy, and cerebellar atrophy. These findings expanded the genetic, clinical, and neuroimaging spectrum of SCAR4, and provided new insights into the genetic counseling, molecular mechanisms, and differential diagnosis of the disease.
Collapse
Affiliation(s)
- Yue Dong
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuang Tan
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xu-Ying Li
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yang Song
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xianling Wang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhanjun Wang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chaodong Wang
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Hamdan A, Hendrickx N, Hooker AC, Chen X, Comets E, Traschütz A, Schüle R, Mentré F, Synofzik M, Karlsson MO. Longitudinal Analysis of Natural History Progression of Rare and Ultra-Rare Cerebellar Ataxias Using Item Response Theory. Clin Pharmacol Ther 2024; 116:1593-1605. [PMID: 39403821 DOI: 10.1002/cpt.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Degenerative cerebellar ataxias comprise a heterogeneous group of rare and ultra-rare genetic diseases. While disease-modifying treatments are now on the horizon for many ataxias, robust trial designs and analysis methods are lacking. To better inform trial designs, we applied item response theory (IRT) modeling to evaluate the natural history progression of several ataxias, assessed with the widely used scale for assessment and rating of ataxia (SARA). A longitudinal IRT model was built utilizing real-world data from the large autosomal recessive cerebellar ataxia (ARCA) registry. Disease progression was evaluated for the overall cohort as well as for the 10 most common ARCA genotypes. Sample sizes were calculated for simulated trials with autosomal recessive spastic ataxia Charlevoix-Saguenay (ARSACS) and polymerase gamma (POLG) ataxia, as showcased, across multiple design and analysis scenarios. Longitudinal IRT models were able to describe the changes in the latent variable underlying SARA as a function of time since ataxia onset for both the overall ARCA cohort and the common genotypes. The typical progression rates varied across genotypes between relatively high in POLG (~ 0.98 SARA points/year at SARA = 20) and very low in COQ8A ataxia (~ 0.003 SARA points/year at SARA = 20). Smaller trial sizes were required in case of faster progression, longer trials (~ 75-90% less with 5 years vs. 2 years), and larger drug effects (~ 70-80% less with 100% vs. 50% inhibition). Simulating under the developed IRT model, the longitudinal IRT model had the highest power, with a well-controlled type I error, compared to total score models or end-of-treatment analyses. The established longitudinal IRT framework allows efficient utilization of natural history data and ultimately facilitates the design and analysis of treatment trials in rare and ultra-rare genetic ataxias.
Collapse
Affiliation(s)
- Alzahra Hamdan
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Andrew C Hooker
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Xiaomei Chen
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Emmanuelle Comets
- Université Paris Cité, IAME, Inserm, Paris, France
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | - Andreas Traschütz
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - Mats O Karlsson
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. CHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2122-2129. [PMID: 38436911 PMCID: PMC11489197 DOI: 10.1007/s12311-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
7
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Torres-Cuevas I, Ratcliffe E, Mouri D, Mignon V, Saubaméa B, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167272. [PMID: 38897257 DOI: 10.1016/j.bbadis.2024.167272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The functional integrity of the central nervous system relies on complex mechanisms in which the mitochondria are crucial actors because of their involvement in a multitude of bioenergetics and biosynthetic pathways. Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults and despite considerable efforts around the world there is still limited curative treatments. Harlequin mice correspond to a relevant model of recessive X-linked mitochondrial disease due to a proviral insertion in the first intron of the Apoptosis-inducing factor gene, resulting in an almost complete depletion of the corresponding protein. These mice exhibit progressive degeneration of the retina, optic nerve, cerebellum, and cortical regions leading to irremediable blindness and ataxia, reminiscent of what is observed in patients suffering from mitochondrial diseases. We evaluated the progression of cerebellar degeneration in Harlequin mice, especially for Purkinje cells and its relationship with bioenergetics failure and behavioral damage. For the first time to our knowledge, we demonstrated that Harlequin mice display cognitive and emotional impairments at early stage of the disease with further deteriorations as ataxia aggravates. These functions, corresponding to higher-order cognitive processing, have been assigned to a complex network of reciprocal connections between the cerebellum and many cortical areas which could be dysfunctional in these mice. Consequently, Harlequin mice become a suitable experimental model to test innovative therapeutics, via the targeting of mitochondria which can become available to a large spectrum of neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Isabel Torres-Cuevas
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Department of Physiology, University of Valencia, Vicent Andrés Estellés s/n, 46100 12 Burjassot, Spain
| | - Edward Ratcliffe
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Virginie Mignon
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France; Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Bruno Saubaméa
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
8
|
Rudaks LI, Yeow D, Ng K, Deveson IW, Kennerson ML, Kumar KR. An Update on the Adult-Onset Hereditary Cerebellar Ataxias: Novel Genetic Causes and New Diagnostic Approaches. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2152-2168. [PMID: 38760634 PMCID: PMC11489183 DOI: 10.1007/s12311-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The hereditary cerebellar ataxias (HCAs) are rare, progressive neurologic disorders caused by variants in many different genes. Inheritance may follow autosomal dominant, autosomal recessive, X-linked or mitochondrial patterns. The list of genes associated with adult-onset cerebellar ataxia is continuously growing, with several new genes discovered in the last few years. This includes short-tandem repeat (STR) expansions in RFC1, causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), FGF14-GAA causing spinocerebellar ataxia type 27B (SCA27B), and THAP11. In addition, the genetic basis for SCA4, has recently been identified as a STR expansion in ZFHX3. Given the large and growing number of genes, and different gene variant types, the approach to diagnostic testing for adult-onset HCA can be complex. Testing methods include targeted evaluation of STR expansions (e.g. SCAs, Friedreich ataxia, fragile X-associated tremor/ataxia syndrome, dentatorubral-pallidoluysian atrophy), next generation sequencing for conventional variants, which may include targeted gene panels, whole exome, or whole genome sequencing, followed by various potential additional tests. This review proposes a diagnostic approach for clinical testing, highlights the challenges with current testing technologies, and discusses future advances which may overcome these limitations. Implementing long-read sequencing has the potential to transform the diagnostic approach in HCA, with the overall aim to improve the diagnostic yield.
Collapse
Affiliation(s)
- Laura Ivete Rudaks
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia.
- Clinical Genetics Unit, Royal North Shore Hospital, Sydney, Australia.
| | - Dennis Yeow
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Karl Ng
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Neurology Department, Royal North Shore Hospital, Sydney, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Marina L Kennerson
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District, Sydney, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Genomics and Inherited Disease Program, The Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- Faculty of Medicine, St Vincent's Healthcare Campus, UNSW Sydney, Sydney, Australia
| |
Collapse
|
9
|
Beichert L, Ilg W, Kessler C, Traschütz A, Reich S, Santorelli FM, Başak AN, Gagnon C, Schüle R, Synofzik M. Digital Gait Outcomes for Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS): Discriminative, Convergent, and Ecological Validity in a Multicenter Study (PROSPAX). Mov Disord 2024; 39:1544-1555. [PMID: 38847438 DOI: 10.1002/mds.29876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND With treatment trials on the horizon, this study aimed to identify candidate digital-motor gait outcomes for autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS), capturable by wearable sensors with multicenter validity, and ideally also ecological validity during free walking outside laboratory settings. METHODS Cross-sectional multicenter study (four centers), with gait assessments in 36 subjects (18 ARSACS patients; 18 controls) using three body-worn sensors (Opal, APDM) in laboratory settings and free walking in public spaces. Sensor gait measures were analyzed for discriminative validity from controls, and for convergent (ie, clinical and patient relevance) validity by correlations with SPRSmobility (primary outcome) and Scale for the Assessment and Rating of Ataxia (SARA), Spastic Paraplegia Rating Scale (SPRS), and activities of daily living subscore of the Friedreich Ataxia Rating Scale (FARS-ADL) (exploratory outcomes). RESULTS Of 30 hypothesis-based digital gait measures, 14 measures discriminated ARSACS patients from controls with large effect sizes (|Cliff's δ| > 0.8) in laboratory settings, with strongest discrimination by measures of spatiotemporal variability Lateral Step Deviation (δ = 0.98), SPcmp (δ = 0.94), and Swing CV (δ = 0.93). Large correlations with the SPRSmobility were observed for Swing CV (Spearman's ρ = 0.84), Speed (ρ = -0.63), and Harmonic Ratio V (ρ = -0.62). During supervised free walking in a public space, 11/30 gait measures discriminated ARSACS from controls with large effect sizes. Large correlations with SPRSmobility were here observed for Swing CV (ρ = 0.78) and Speed (ρ = -0.69), without reductions in effect sizes compared with laboratory settings. CONCLUSIONS We identified a promising set of digital-motor candidate gait outcomes for ARSACS, applicable in multicenter settings, correlating with patient-relevant health aspects, and with high validity also outside laboratory settings, thus simulating real-life walking with higher ecological validity. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lukas Beichert
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Christoph Kessler
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
| | - Andreas Traschütz
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Selina Reich
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | | | - Ayşe Nazli Başak
- Koç University, Translational Medicine Research Center, KUTTAM-NDAL, Istanbul, Turkey
| | - Cynthia Gagnon
- Groupe de recherche interdisciplinaire sur les maladies neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Québec, Canada
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Quebec, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Rebecca Schüle
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Hamdan A, Hooker AC, Chen X, Traschütz A, Schüle R, ARCA Study Group, EVIDENCE‐RND consortium, Synofzik M, Karlsson MO. Item performance of the scale for the assessment and rating of ataxia in rare and ultra-rare genetic ataxias. CPT Pharmacometrics Syst Pharmacol 2024; 13:1327-1340. [PMID: 38769902 PMCID: PMC11330187 DOI: 10.1002/psp4.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
The Scale for the Assessment and Rating of Ataxia (SARA) is widely used for assessing the severity and progression of genetic cerebellar ataxias. SARA is now considered a primary end point in several ataxia treatment trials, but its underlying composite item measurement model has not yet been tested. This work aimed to evaluate the composite properties of SARA and its items using item response theory (IRT) and to demonstrate its applicability across even ultra-rare genetic ataxias. Leveraging SARA subscores data from 1932 visits from 990 patients of the Autosomal Recessive Cerebellar Ataxias (ARCA) registry, we assessed the performance of SARA using IRT methodology. The item characteristics were evaluated over the ataxia severity range of the entire ataxia population as well as the assessment validity across 115 genetic ARCA subpopulations. A unidimensional IRT model was able to describe SARA item data, indicating that SARA captures one single latent variable. All items had high discrimination values (1.5-2.9) indicating the effectiveness of the SARA in differentiating between subjects with different disease statuses. Each item contributed between 7% and 28% of the total assessment informativeness. There was no evidence for differences between the 115 genetic ARCA subpopulations in SARA applicability. These results show the good discrimination ability of SARA with all of its items adding informational value. The IRT framework provides a thorough description of SARA on the item level, and facilitates its utilization as a clinical outcome assessment in upcoming longitudinal natural history or treatment trials, across a large number of ataxias, including ultra-rare ones.
Collapse
Affiliation(s)
- Alzahra Hamdan
- Pharmacometrics Research Group, Department of PharmacyUppsala UniversityUppsalaSweden
| | - Andrew C. Hooker
- Pharmacometrics Research Group, Department of PharmacyUppsala UniversityUppsalaSweden
| | - Xiaomei Chen
- Pharmacometrics Research Group, Department of PharmacyUppsala UniversityUppsalaSweden
| | - Andreas Traschütz
- Department of Neurodegenerative DiseasesCenter for Neurology and Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE) TübingenTübingenGermany
| | - Rebecca Schüle
- Department of Neurodegenerative DiseasesCenter for Neurology and Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Division of Neurodegenerative Diseases, Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | | | | | - Matthis Synofzik
- Department of Neurodegenerative DiseasesCenter for Neurology and Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE) TübingenTübingenGermany
| | - Mats O. Karlsson
- Pharmacometrics Research Group, Department of PharmacyUppsala UniversityUppsalaSweden
| |
Collapse
|
11
|
Sng KS, Sin YS, Alhawiti SMO. Jiao's style scalp acupuncture combined with physiotherapy for autosomal recessive spastic ataxia of Charlevoix-Saguenay type: A case report. Heliyon 2024; 10:e33046. [PMID: 39005899 PMCID: PMC11239588 DOI: 10.1016/j.heliyon.2024.e33046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
We present a case study of an 8-year-old girl with autosomal recessive spastic ataxia of Charlevoix-Saguenay, who experienced gait imbalance since the age of two. Magnetic resonance imaging of the brain and whole spine, as well as electroencephalography, revealed no abnormalities. However, genetic testing identified a likely pathogenic variant and an uncertain significance in the heterozygous state of the Sacsin Molecular Chaperone gene. Despite treatment with epileptic and antiparkinsonian medications, along with supplements, no significant improvements were observed. Subsequently, the patient underwent eight sessions of physiotherapy before starting with 14 sessions of combined Jiao's style scalp acupuncture targeting the motor and chorea-tremor areas with physiotherapy treatment. Positive changes were noted in the Trunk Control Measurement Scale (TCMS) and Pediatric Balance Scale (PBS) after three sessions of combined treatments from 25 to 36 and 21 to 43 respectively. Further combined treatments showed consistent improvements where the TCMS reached a peak of 57 out of 58 and PBS showed a peak of 54 out of 58 at the 6th month of combined treatment. This suggests that the combination of scalp acupuncture with physiotherapy treatment may provide improvement in the balance and gait of patients with ARSACS. More similar cases should be documented to better understand the potential benefits and synergies of both treatments of ARSACS.
Collapse
Affiliation(s)
- Kim Sia Sng
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yen Suan Sin
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Salma Musallam O. Alhawiti
- Department of Chinese Medicine, School of Alternative and Complementary Medicine, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Santorelli FM, McLoughlin HS, Wolter JM, Galatolo D, Synofzik M, Mengel D, Opal P. Standards of Fluid Biomarker Collection and Pre-analytical Processes in Humans and Mice: Recommendations by the Ataxia Global Initiative Working Group on Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:881-886. [PMID: 37243885 DOI: 10.1007/s12311-023-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
The Ataxia Global Initiative (AGI) aims to serve as a platform to facilitate clinical trial readiness for the hereditary ataxias. Clinical trials for these diseases have been hampered by the lack of objective measures to study disease onset, progression, and treatment efficacy. While these issues are not unique to the genetic ataxias, the relative rarity of these diseases makes the need for such measures even more pressing to achieve statistical power in clinical trials. In this report, we have described the efforts of the AGI fluid biomarker working group (WG) in developing uniform protocols for biomarker sampling and storage, both for human and preclinical studies in mice. By reducing collection variability, we anticipate reduced noise in downstream biomarker analysis that will improve statistical power and minimize the necessary sample size. The emphasis has been on defining and standardizing the sampling and pre-analytical work-up of minimal set of biological samples, specifically blood plasma and serum, keeping in mind the need for harmonization of collection and storage that can be achieved with relatively limited cost and resources. An optional package is detailed for those centers that have the resources and commitment for additional biofluids/sample processing and storage. Finally, we have delineated similar standardized protocols for mice that will be important for preclinical studies in the field.
Collapse
Affiliation(s)
- Filippo M Santorelli
- Molecular Medicine and Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy.
| | | | - Justin M Wolter
- UNC Neuroscience Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Daniele Galatolo
- Molecular Medicine and Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - David Mengel
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
13
|
Zhou Y, Sanchez VB, Xu P, Roule T, Flores-Mendez M, Ciesielski B, Yoo D, Teshome H, Jimenez T, Liu S, Henne M, O’Brien T, He Y, Mesaros C, Akizu N. Altered lipid homeostasis is associated with cerebellar neurodegeneration in SNX14 deficiency. JCI Insight 2024; 9:e168594. [PMID: 38625743 PMCID: PMC11141923 DOI: 10.1172/jci.insight.168594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.
Collapse
Affiliation(s)
- Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Vanessa B. Sanchez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Peining Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Brianna Ciesielski
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donna Yoo
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Hiab Teshome
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Teresa Jimenez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Shibo Liu
- The Graduate Center of the City University of New York, Advanced Science Research Center, New York, New York, USA
| | - Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tim O’Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ye He
- The Graduate Center of the City University of New York, Advanced Science Research Center, New York, New York, USA
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, New York, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| |
Collapse
|
14
|
Mahdieh N, Heidari M, Rezaei Z, Tavasoli AR, Hosseinpour S, Rasulinejad M, Dehnavi AZ, Ghahvechi Akbari M, Badv RS, Vafaei E, Mohebbi A, Mohammadi P, Hosseiny SMM, Azizimalamiri R, Nikkhah A, Pourbakhtyaran E, Rohani M, Khanbanha N, Nikbakht S, Movahedinia M, Karimi P, Ghabeli H, Hosseini SA, Rashidi FS, Garshasbi M, Kashani MR, Ghiasvand NM, Zuchner S, Synofzik M, Ashrafi MR. The genetic basis of early-onset hereditary ataxia in Iran: results of a national registry of a heterogeneous population. Hum Genomics 2024; 18:35. [PMID: 38570878 PMCID: PMC10988936 DOI: 10.1186/s40246-024-00598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND To investigate the genetics of early-onset progressive cerebellar ataxia in Iran, we conducted a study at the Children's Medical Center (CMC), the primary referral center for pediatric disorders in the country, over a three-year period from 2019 to 2022. In this report, we provide the initial findings from the national registry. METHODS We selected all early-onset patients with an autosomal recessive mode of inheritance to assess their phenotype, paraclinical tests, and genotypes. The clinical data encompassed clinical features, the Scale for the Assessment and Rating of Ataxia (SARA) scores, Magnetic Resonance Imaging (MRI) results, Electrodiagnostic exams (EDX), and biomarker features. Our genetic investigations included single-gene testing, Whole Exome Sequencing (WES), and Whole Genome Sequencing (WGS). RESULTS Our study enrolled 162 patients from various geographic regions of our country. Among our subpopulations, we identified known and novel pathogenic variants in 42 genes in 97 families. The overall genetic diagnostic rate was 59.9%. Notably, we observed PLA2G6, ATM, SACS, and SCA variants in 19, 14, 12, and 10 families, respectively. Remarkably, more than 59% of the cases were attributed to pathogenic variants in these genes. CONCLUSIONS Iran, being at the crossroad of the Middle East, exhibits a highly diverse genetic etiology for autosomal recessive hereditary ataxia. In light of this heterogeneity, the development of preventive strategies and targeted molecular therapeutics becomes crucial. A national guideline for the diagnosis and management of patients with these conditions could significantly aid in advancing healthcare approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Nejat Mahdieh
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Headache Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Sareh Hosseinpour
- Department of Pediatrics, Division of Paediatric Neurology, Vali-E-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rasulinejad
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Vafaei
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mohammad Mahdi Hosseiny
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizimalamiri
- Division of Pediatric Neurology, Department of Pediatrics, Golestan Medical, Educational and Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Ali Nikkhah
- Department of Pediatrics, Division of Paediatric Neurology, Vali-E-Asr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Division of Paediatric Neurology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Khanbanha
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Nikbakht
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Movahedinia
- Children Growth Disorders Research Center, Department of Pediatric, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parviz Karimi
- Department of Pediatric Diseases, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Homa Ghabeli
- Department of Pediatrics, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Ahmad Hosseini
- Department of Pediatrics, Taleghani Children's Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Noor M Ghiasvand
- Department of Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Stephan Zuchner
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mahmoud Reza Ashrafi
- Pediatric Neurology Division, Pediatrics Center of Excellence, Ataxia Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pediatrics, Division of Paediatric Neurology, Growth and Development Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Beijer D, Fogel BL, Beltran S, Danzi MC, Németh AH, Züchner S, Synofzik M. Standards of NGS Data Sharing and Analysis in Ataxias: Recommendations by the NGS Working Group of the Ataxia Global Initiative. CEREBELLUM (LONDON, ENGLAND) 2024; 23:391-400. [PMID: 36869969 PMCID: PMC10951009 DOI: 10.1007/s12311-023-01537-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
The Ataxia Global Initiative (AGI) is a worldwide multi-stakeholder research platform to systematically enhance trial-readiness in degenerative ataxias. The next-generation sequencing (NGS) working group of the AGI aims to improve methods, platforms, and international standards for ataxia NGS analysis and data sharing, ultimately allowing to increase the number of genetically ataxia patients amenable for natural history and treatment trials. Despite extensive implementation of NGS for ataxia patients in clinical and research settings, the diagnostic gap remains sizeable, as approximately 50% of patients with hereditary ataxia remain genetically undiagnosed. One current shortcoming is the fragmentation of patients and NGS datasets on different analysis platforms and databases around the world. The AGI NGS working group in collaboration with the AGI associated research platforms-CAGC, GENESIS, and RD-Connect GPAP-provides clinicians and scientists access to user-friendly and adaptable interfaces to analyze genome-scale patient data. These platforms also foster collaboration within the ataxia community. These efforts and tools have led to the diagnosis of > 500 ataxia patients and the discovery of > 30 novel ataxia genes. Here, the AGI NGS working group presents their consensus recommendations for NGS data sharing initiatives in the ataxia field, focusing on harmonized NGS variant analysis and standardized clinical and metadata collection, combined with collaborative data and analysis tool sharing across platforms.
Collapse
Affiliation(s)
- Danique Beijer
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Strasse 3, Tübingen, Germany
| | - Brent L Fogel
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Microbiologia I Estadística, Facultat, de Biologia, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Strasse 3, Tübingen, Germany.
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
16
|
Wada T, Doi H, Okubo M, Tada M, Ueda N, Suzuki H, Tominaga W, Koike H, Komiya H, Kubota S, Hashiguchi S, Nakamura H, Takahashi K, Kunii M, Tanaka K, Miyaji Y, Higashiyama Y, Koshimizu E, Miyatake S, Katsuno M, Fujii S, Takahashi H, Matsumoto N, Takeuchi H, Tanaka F. RNA Foci in Two bi-Allelic RFC1 Expansion Carriers. Ann Neurol 2024; 95:607-613. [PMID: 38062616 DOI: 10.1002/ana.26848] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, autosomal recessive neurodegenerative disorder caused by biallelic AAGGG/ACAGG repeat expansion (AAGGG-exp/ACAGG-exp) in RFC1. The recent identification of patients with CANVAS exhibiting compound heterozygosity for AAGGG-exp and truncating variants supports the loss-of-function of RFC1 in CANVAS patients. We investigated the pathological changes in 2 autopsied patients with CANVAS harboring biallelic ACAGG-exp and AAGGG-exp. RNA fluorescence in situ hybridization of the 2 patients revealed CCTGT- and CCCTT-containing RNA foci, respectively, in neuronal nuclei of tissues with neuronal loss. Our findings suggest that RNA toxicity may be involved in the pathogenesis of CANVAS. ANN NEUROL 2024;95:607-613.
Collapse
Affiliation(s)
- Taishi Wada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Okubo
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wakana Tominaga
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuichi Higashiyama
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Yokohama, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
17
|
Van de Vondel L, De Winter J, Timmerman V, Baets J. Overarching pathomechanisms in inherited peripheral neuropathies, spastic paraplegias, and cerebellar ataxias. Trends Neurosci 2024; 47:227-238. [PMID: 38360512 DOI: 10.1016/j.tins.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
18
|
Pilotto F, Del Bondio A, Puccio H. Hereditary Ataxias: From Bench to Clinic, Where Do We Stand? Cells 2024; 13:319. [PMID: 38391932 PMCID: PMC10886822 DOI: 10.3390/cells13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.
Collapse
Affiliation(s)
| | | | - Hélène Puccio
- Institut Neuromyogène, Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS-Université Claude Bernard Lyon 1 UMR5261, 69008 Lyon, France
| |
Collapse
|
19
|
Lopergolo D, Rosini F, Pretegiani E, Bargagli A, Serchi V, Rufa A. Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features. Front Integr Neurosci 2024; 17:1275794. [PMID: 38390227 PMCID: PMC10883068 DOI: 10.3389/fnint.2023.1275794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Rosini
- UOC Stroke Unit, Department of Emergenza-Urgenza, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elena Pretegiani
- Unit of Neurology, Centre Hospitalier Universitaire Vaudoise Lausanne, Unit of Neurology and Cognitive Neurorehabilitation, Universitary Hospital of Fribourg, Fribourg, Switzerland
| | - Alessia Bargagli
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valeria Serchi
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
20
|
Pellerin D, Danzi MC, Renaud M, Houlden H, Synofzik M, Zuchner S, Brais B. Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia. Clin Transl Med 2024; 14:e1504. [PMID: 38279833 PMCID: PMC10819088 DOI: 10.1002/ctm2.1504] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 01/29/2024] Open
Abstract
Hereditary ataxias, especially when presenting sporadically in adulthood, present a particular diagnostic challenge owing to their great clinical and genetic heterogeneity. Currently, up to 75% of such patients remain without a genetic diagnosis. In an era of emerging disease-modifying gene-stratified therapies, the identification of causative alleles has become increasingly important. Over the past few years, the implementation of advanced bioinformatics tools and long-read sequencing has allowed the identification of a number of novel repeat expansion disorders, such as the recently described spinocerebellar ataxia 27B (SCA27B) caused by a (GAA)•(TTC) repeat expansion in intron 1 of the fibroblast growth factor 14 (FGF14) gene. SCA27B is rapidly gaining recognition as one of the most common forms of adult-onset hereditary ataxia, with several studies showing that it accounts for a substantial number (9-61%) of previously undiagnosed cases from different cohorts. First natural history studies and multiple reports have already outlined the progression and core phenotype of this novel disease, which consists of a late-onset slowly progressive pan-cerebellar syndrome that is frequently associated with cerebellar oculomotor signs, such as downbeat nystagmus, and episodic symptoms. Furthermore, preliminary studies in patients with SCA27B have shown promising symptomatic benefits of 4-aminopyridine, an already marketed drug. This review describes the current knowledge of the genetic and molecular basis, epidemiology, clinical features and prospective treatment strategies in SCA27B.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and InstituteMcGill UniversityMontrealQuebecCanada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUK
| | - Matt C. Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Mathilde Renaud
- INSERM‐U1256 NGEREUniversité de LorraineNancyFrance
- Service de Neurologie, CHRU de NancyNancyFrance
- Service de Génétique Clinique, CHRU de NancyNancyFrance
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryUniversity College LondonLondonUK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center of Neurology, University of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and InstituteMcGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
21
|
Martínez-Rubio D, Hinarejos I, Argente-Escrig H, Marco-Marín C, Lozano MA, Gorría-Redondo N, Lupo V, Martí-Carrera I, Miranda C, Vázquez-López M, García-Pérez A, Marco-Hernández AV, Tomás-Vila M, Aguilera-Albesa S, Espinós C. Genetic Heterogeneity Underlying Phenotypes with Early-Onset Cerebellar Atrophy. Int J Mol Sci 2023; 24:16400. [PMID: 38003592 PMCID: PMC10671053 DOI: 10.3390/ijms242216400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | - Isabel Hinarejos
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
| | | | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), 46022 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - María Ana Lozano
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Nerea Gorría-Redondo
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Vincenzo Lupo
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
| | - Itxaso Martí-Carrera
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Donostia, 20014 Donostia, Spain
| | - Concepción Miranda
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - María Vázquez-López
- Paediatric Neurology Unit, Department of Paediatrics, Hospital General Universitario Gregorio Marañón, 28027 Madrid, Spain
| | - Asunción García-Pérez
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Victoria Marco-Hernández
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari Doctor, Peset, 46017 València, Spain
| | - Miguel Tomás-Vila
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitari i Politècnic La Fe, 46026 València, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Paediatrics, Hospital Universitario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF), 46012 València, Spain
- Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 València, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
- Biotechnology Department, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
22
|
Seemann J, Traschütz A, Ilg W, Synofzik M. 4-Aminopyridine improves real-life gait performance in SCA27B on a single-subject level: a prospective n-of-1 treatment experience. J Neurol 2023; 270:5629-5634. [PMID: 37439944 PMCID: PMC10576659 DOI: 10.1007/s00415-023-11868-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Affiliation(s)
- Jens Seemann
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 25, 72076, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Andreas Traschütz
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany.
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
23
|
Manolaras I, Del Bondio A, Griso O, Reutenauer L, Eisenmann A, Habermann BH, Puccio H. Mitochondrial dysfunction and calcium dysregulation in COQ8A-ataxia Purkinje neurons are rescued by CoQ10 treatment. Brain 2023; 146:3836-3850. [PMID: 36960552 DOI: 10.1093/brain/awad099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
COQ8A-ataxia is a rare form of neurodegenerative disorder due to mutations in the COQ8A gene. The encoded mitochondrial protein is involved in the regulation of coenzyme Q10 biosynthesis. Previous studies on the constitutive Coq8a-/- mice indicated specific alterations of cerebellar Purkinje neurons involving altered electrophysiological function and dark cell degeneration. In the present manuscript, we extend our understanding of the contribution of Purkinje neuron dysfunction to the pathology. By generating a Purkinje-specific conditional COQ8A knockout, we demonstrate that loss of COQ8A in Purkinje neurons is the main cause of cerebellar ataxia. Furthermore, through in vivo and in vitro approaches, we show that COQ8A-depleted Purkinje neurons have abnormal dendritic arborizations, altered mitochondria function and intracellular calcium dysregulation. Furthermore, we demonstrate that oxidative phosphorylation, in particular Complex IV, is primarily altered at presymptomatic stages of the disease. Finally, the morphology of primary Purkinje neurons as well as the mitochondrial dysfunction and calcium dysregulation could be rescued by CoQ10 treatment, suggesting that CoQ10 could be a beneficial treatment for COQ8A-ataxia.
Collapse
Affiliation(s)
- Ioannis Manolaras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| | - Olivier Griso
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Bianca H Habermann
- CNRS, Institut de Biologie du Développement de Marseille (IBDM), UMR7288, Aix-Marseille University, 13009 Marseille, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| |
Collapse
|
24
|
Traschütz A, Adarmes-Gómez AD, Anheim M, Baets J, Brais B, Gagnon C, Gburek-Augustat J, Doss S, Hanağası HA, Kamm C, Klivenyi P, Klockgether T, Klopstock T, Minnerop M, Münchau A, Renaud M, Santorelli FM, Schöls L, Thieme A, Vielhaber S, van de Warrenburg BP, Zanni G, Hilgers RD, Synofzik M. Responsiveness of the Scale for the Assessment and Rating of Ataxia and Natural History in 884 Recessive and Early Onset Ataxia Patients. Ann Neurol 2023; 94:470-485. [PMID: 37243847 DOI: 10.1002/ana.26712] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE The Scale for the Assessment and Rating of Ataxia (SARA) is the most widely applied clinical outcome assessment (COA) for genetic ataxias, but presents metrological and regulatory challenges. To facilitate trial planning, we characterize its responsiveness (including subitem-level relations to ataxia severity and patient-focused outcomes) across a large number of ataxias, and provide first natural history data for several of them. METHODS Subitem-level correlation and distribution-based analysis of 1,637 SARA assessments in 884 patients with autosomal recessive/early onset ataxia (370 with 2-8 longitudinal assessments) were complemented by linear mixed effects modeling to estimate progression and sample sizes. RESULTS Although SARA subitem responsiveness varied between ataxia severities, gait/stance showed a robust granular linear scaling across the broadest range (SARA < 25). Responsiveness was diminished by incomplete subscale use at intermediate or upper levels, nontransitions ("static periods"), and fluctuating decreases/increases. All subitems except nose-finger showed moderate-to-strong correlations to activities of daily living, indicating that metric properties-not content validity-limit SARA responsiveness. SARA captured mild-to-moderate progression in many genotypes (eg, SYNE1-ataxia: 0.55 points/yr, ataxia with oculomotor apraxia type 2: 1.14 points/yr, POLG-ataxia: 1.56 points/yr), but no change in others (autosomal recessive spastic ataxia of Charlevoix-Saguenay, COQ8A-ataxia). Whereas sensitivity to change was optimal in mild ataxia (SARA < 10), it substantially deteriorated in advanced ataxia (SARA > 25; 2.7-fold sample size). Use of a novel rank-optimized SARA without subitems finger-chase and nose-finger reduces sample sizes by 20 to 25%. INTERPRETATION This study comprehensively characterizes COA properties and annualized changes of the SARA across and within a large number of ataxias. It suggests specific approaches for optimizing its responsiveness that might facilitate regulatory qualification and trial design. ANN NEUROL 2023;94:470-485.
Collapse
Affiliation(s)
- Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases," Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Astrid D Adarmes-Gómez
- Movement Disorders Unit, Department of Neurology and Clinical Neurophysiology, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Center for Biomedical Research Network on Neurodegenerative Diseases, Madrid, Spain
| | - Mathieu Anheim
- Department of Neurology, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France
- Federation of Translational Medicine of Strasbourg, University of Strasbourg, Strasbourg, France
- Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch, France
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Center, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Bernard Brais
- Department of Neurology, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Cynthia Gagnon
- CHUS Research Center and Health and Social Services Center of Saguenay-Lac-Saint-Jean, Faculty of Medicine, University of Sherbrooke, Quebec, Quebec, Canada
| | - Janina Gburek-Augustat
- Division of Neuropediatrics, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Sarah Doss
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, Berlin, Germany
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Haşmet A Hanağası
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christoph Kamm
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Peter Klivenyi
- Interdisciplinary Excellence Center, Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich Baur Institute, Ludwig Maximilian University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Mathilde Renaud
- Clinical Genetics Service, CHRU of Nancy, Nancy, France
- INSERM-U1256 NGERE, University of Lorraine, Nancy, France
| | | | - Ludger Schöls
- Research Division "Translational Genomics of Neurodegenerative Diseases," Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Childrens' Hospital, IRCCS, Rome, Italy
| | | | - Matthis Synofzik
- Research Division "Translational Genomics of Neurodegenerative Diseases," Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Late-onset genetic cerebellar ataxias are clinically heterogenous with variable phenotypes. Several of these conditions are commonly associated with dementia. Recognition of the relationship between ataxia and dementia can guide clinical genetic evaluation. RECENT FINDINGS Spinocerebellar ataxias often present with variable phenotypes that may include dementia. Genomic studies have begun to identify links between incomplete penetrance and such variable phenotypes in certain hereditary ataxias. Recent studies evaluating the interaction of TBP repeat expansions and STUB1 sequence variants provide a framework to understand how genetic interactions influence disease penetrance and dementia risk in spinocerebellar ataxia types 17 and 48. Further advances in next generation sequencing methods will continue to improve diagnosis and create new insights into the expressivity of existing disorders. SUMMARY The late-onset hereditary ataxias are a clinically heterogenous group of disorders with complex presentations that can include cognitive impairment and/or dementia. Genetic evaluation of late-onset ataxia patients with dementia follows a systemic testing approach that often utilizes repeat expansion testing followed by next-generation sequencing. Advances in bioinformatics and genomics is improving both diagnostic evaluation and establishing a basis for phenotypic variability. Whole genome sequencing will likely replace exome sequencing as a more comprehensive means of routine testing.
Collapse
Affiliation(s)
- Anthony J. Linares
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Brent L. Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095 USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 90095 USA
| |
Collapse
|
26
|
Eidhof I, Krebbers A, van de Warrenburg B, Schenck A. Ataxia-associated DNA repair genes protect the Drosophila mushroom body and locomotor function against glutamate signaling-associated damage. Front Neural Circuits 2023; 17:1148947. [PMID: 37476399 PMCID: PMC10354283 DOI: 10.3389/fncir.2023.1148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
The precise control of motor movements is of fundamental importance to all behaviors in the animal kingdom. Efficient motor behavior depends on dedicated neuronal circuits - such as those in the cerebellum - that are controlled by extensive genetic programs. Autosomal recessive cerebellar ataxias (ARCAs) provide a valuable entry point into how interactions between genetic programs maintain cerebellar motor circuits. We previously identified a striking enrichment of DNA repair genes in ARCAs. How dysfunction of ARCA-associated DNA repair genes leads to preferential cerebellar dysfunction and impaired motor function is however unknown. The expression of ARCA DNA repair genes is not specific to the cerebellum. Only a limited number of animal models for DNA repair ARCAs exist, and, even for these, the interconnection between DNA repair defects, cerebellar circuit dysfunction, and motor behavior is barely established. We used Drosophila melanogaster to characterize the function of ARCA-associated DNA repair genes in the mushroom body (MB), a structure in the Drosophila central brain that shares structural features with the cerebellum. Here, we demonstrate that the MB is required for efficient startle-induced and spontaneous motor behaviors. Inhibition of synaptic transmission and loss-of-function of ARCA-associated DNA repair genes in the MB affected motor behavior in several assays. These motor deficits correlated with increased levels of MB DNA damage, MB Kenyon cell apoptosis and/or alterations in MB morphology. We further show that expression of genes involved in glutamate signaling pathways are highly, specifically, and persistently elevated in the postnatal human cerebellum. Manipulation of glutamate signaling in the MB induced motor defects, Kenyon cell DNA damage and apoptosis. Importantly, pharmacological reduction of glutamate signaling in the ARCA DNA repair models rescued the identified motor deficits, suggesting a role for aberrant glutamate signaling in ARCA-DNA repair disorders. In conclusion, our data highlight the importance of ARCA-associated DNA repair genes and glutamate signaling pathways to the cerebellum, the Drosophila MB and motor behavior. We propose that glutamate signaling may confer preferential cerebellar vulnerability in ARCA-associated DNA repair disorders. Targeting glutamate signaling could provide an exciting therapeutic entry point in this large group of so far untreatable disorders.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
27
|
Fleszar Z, Dufke C, Sturm M, Schüle R, Schöls L, Haack TB, Synofzik M. Short-read genome sequencing allows 'en route' diagnosis of patients with atypical Friedreich ataxia. J Neurol 2023:10.1007/s00415-023-11745-8. [PMID: 37119371 DOI: 10.1007/s00415-023-11745-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Affiliation(s)
- Zofia Fleszar
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
28
|
Hussain T, Sanchez K, Crayton J, Saha D, Jeter C, Lu Y, Abba M, Seo R, Noebels JL, Fonken L, Aldaz CM. WWOX P47T partial loss-of-function mutation induces epilepsy, progressive neuroinflammation, and cerebellar degeneration in mice phenocopying human SCAR12. Prog Neurobiol 2023; 223:102425. [PMID: 36828035 PMCID: PMC10835625 DOI: 10.1016/j.pneurobio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Crayton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Martin Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata 1900, Argentina
| | - Ryan Seo
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
29
|
Lin CYR, Kuo SH. Ataxias: Hereditary, Acquired, and Reversible Etiologies. Semin Neurol 2023; 43:48-64. [PMID: 36828010 DOI: 10.1055/s-0043-1763511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
A variety of etiologies can cause cerebellar dysfunction, leading to ataxia symptoms. Therefore, the accurate diagnosis of the cause for cerebellar ataxia can be challenging. A step-wise investigation will reveal underlying causes, including nutritional, toxin, immune-mediated, genetic, and degenerative disorders. Recent advances in genetics have identified new genes for both autosomal dominant and autosomal recessive ataxias, and new therapies are on the horizon for targeting specific biological pathways. New diagnostic criteria for degenerative ataxias have been proposed, specifically for multiple system atrophy, which will have a broad impact on the future clinical research in ataxia. In this article, we aim to provide a review focus on symptoms, laboratory testing, neuroimaging, and genetic testing for the diagnosis of cerebellar ataxia causes, with a special emphasis on recent advances. Strategies for the management of cerebellar ataxia is also discussed.
Collapse
Affiliation(s)
- Chi-Ying R Lin
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas.,Department of Neurology, Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, Texas
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.,Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
30
|
Synofzik M, Rugarli E, Reid E, Schüle R. Ataxia and spastic paraplegia in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:79-98. [PMID: 36813322 DOI: 10.1016/b978-0-12-821751-1.00009-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Degenerative ataxias and hereditary spastic paraplegias (HSPs) form a continuous, often overlapping disease spectrum sharing not only phenotypic features and underlying genes, but also cellular pathways and disease mechanisms. Mitochondrial metabolism presents a major molecular theme underlying both multiple ataxias and HSPs, thus indicating a heightened vulnerability of Purkinje cells, spinocerebellar tracts, and motor neurons to mitochondrial dysfunction, which is of particular interest for translational approaches. Mitochondrial dysfunction might be the primary (upstream) or secondary (downstream) result of a genetic defect, with underlying genetic defects in nuclear-encoded genes being much more frequent than in mtDNA genes in both, ataxias and HSPs. Here, we outline the substantial number of ataxias, spastic ataxias and HSPs caused by mutated genes implicated in (primary or secondary) mitochondrial dysfunction, highlighting several key "mitochondrial" ataxias and HSPs which are of particular interest for their frequency, pathogenesis and translational opportunities. We then showcase prototypic mitochondrial mechanisms by which disruption of these ataxia and HSP genes contributes to Purkinje cells or corticospinal neuron dysfunction, thus elucidating hypotheses on Purkinje cells and corticospinal neuron vulnerability to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Elena Rugarli
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Evan Reid
- Cambridge Institute for Medical Research and Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Center for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
31
|
Klockgether T. [Gene Therapy for Ataxias]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:147-152. [PMID: 36806180 DOI: 10.1055/a-2015-3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ataxias are progressive diseases that are usually the result of cerebellar degeneration. Ataxias are divided into genetic, sporadic degenerative and acquired (secondary) forms. While there are established therapies for acquired (secondary) ataxias, genetic and sporadic degenerative ataxias are currently not medically treatable. For these ataxias, the development of somatic gene therapies is a promising avenue. The goals of gene therapies for genetic ataxias are to inactivate deleterious genes by gene silencing or to replace or correct a non-functional gene. Another option, which may also be considered for sporadic degenerative ataxias, are therapies that involve transferring new or modified genes. Gene therapies are being actively developed for the more common ataxias, such as Friedreich's ataxia, certain spinocerebellar ataxias, and multiple system atrphy, and initial phase I trials are underway.
Collapse
Affiliation(s)
- Thomas Klockgether
- Klinik für Neurologie, Universitätsklinikum Bonn und Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn
| |
Collapse
|
32
|
A novel biallelic variant further delineates PRDX3-related autosomal recessive cerebellar ataxia. Neurogenetics 2023; 24:55-60. [PMID: 36190665 DOI: 10.1007/s10048-022-00701-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 01/01/2023]
Abstract
Cerebellar ataxias (CAs) comprise a rare group of neurological disorders characterized by extensive phenotypic and genetic heterogeneity. In the last several years, our understanding of the CA etiology has increased significantly and resulted in the discoveries of numerous ataxia-associated genes. Herein, we describe a single affected individual from a consanguineous family segregating a recessive neurodevelopmental disorder. The proband showed features such as global developmental delay, cerebellar atrophy, hypotonia, speech issues, dystonia, and profound hearing impairment. Whole-exome sequencing and Sanger sequencing revealed a biallelic nonsense variant (c.496A > T; p.Lys166*) in the exon 5 of the PRDX3 gene that segregated perfectly within the family. This is the third report that associates the PRDX3 gene variant with cerebellar ataxia. In addition, associated hearing impairment further delineates the PRDX3 associated gene phenotypes.
Collapse
|
33
|
Gauhar Z, Tejwani L, Abdullah U, Saeed S, Shafique S, Badshah M, Choi J, Dong W, Nelson-Williams C, Lifton RP, Lim J, Raja GK. A Novel Missense Mutation in ERCC8 Co-Segregates with Cerebellar Ataxia in a Consanguineous Pakistani Family. Cells 2022; 11:3090. [PMID: 36231052 PMCID: PMC9564319 DOI: 10.3390/cells11193090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autosomal-recessive cerebellar ataxias (ARCAs) are heterogeneous rare disorders mainly affecting the cerebellum and manifest as movement disorders in children and young adults. To date, ARCA causing mutations have been identified in nearly 100 genes; however, they account for less than 50% of all cases. We studied a multiplex, consanguineous Pakistani family presenting with a slowly progressive gait ataxia, body imbalance, and dysarthria. Cerebellar atrophy was identified by magnetic resonance imaging of brain. Using whole exome sequencing, a novel homozygous missense mutation ERCC8:c.176T>C (p.M59T) was identified that co-segregated with the disease. Previous studies have identified homozygous mutations in ERCC8 as causal for Cockayne Syndrome type A (CSA), a UV light-sensitive syndrome, and several ARCAs. ERCC8 plays critical roles in the nucleotide excision repair complex. The p.M59T, a substitution mutation, is located in a highly conserved WD1 beta-transducin repeat motif. In silico modeling showed that the structure of this protein is significantly affected by the p.M59T mutation, likely impairing complex formation and protein-protein interactions. In cultured cells, the p.M59T mutation significantly lowered protein stability compared to wildtype ERCC8 protein. These findings expand the role of ERCC8 mutations in ARCAs and indicate that ERCC8-related mutations should be considered in the differential diagnosis of ARCAs.
Collapse
Affiliation(s)
- Zeeshan Gauhar
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Sadia Saeed
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Shagufta Shafique
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
- Department of Health Informatics, Women University, Swabi 23430, Pakistan
| | - Mazhar Badshah
- Department of Neurology, Pakistan Institute of Medical Sciences (PIMS), Islamabad 04485, Pakistan
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY 10065, USA
| | | | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY 10065, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ghazala K. Raja
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| |
Collapse
|
34
|
Imbault V, Dionisi C, Naeije G, Communi D, Pandolfo M. Cerebrospinal Fluid Proteomics in Friedreich Ataxia Reveals Markers of Neurodegeneration and Neuroinflammation. Front Neurosci 2022; 16:885313. [PMID: 35911978 PMCID: PMC9326443 DOI: 10.3389/fnins.2022.885313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical trials in rare diseases as Friedreich ataxia (FRDA) offer special challenges, particularly when multiple treatments become ready for clinical testing. Regulatory health authorities have developed specific pathways for “orphan” drugs allowing the use of a validated biomarker for initial approval. This study aimed to identify changes in cerebrospinal fluid (CSF) proteins occurring in FRDA patients that may be potential biomarkers in therapeutic trials. CSF was obtained from 5 FRDA patients (4 females, 1 male) from the Brussels site of the European Friedreich Ataxia Consortium for Translational Studies (EFACTS). Two patients were ambulatory, three used a wheelchair. Residual CSF samples from 19 patients who had had a lumbar puncture as part of a diagnostic workup were used as controls. All CSF samples had normal cells, total protein and glucose levels. Proteins were identified by label-free data-dependent acquisition mass spectrometry (MS) coupled to micro-high performance liquid chromatography. We found 172 differentially expressed proteins (DEPs) (92 up, 80 down) between FRDA patients and controls at P < 0.05, 34 DEPs (28 up, 6 down) at P < 0.0001. Remarkably, there was no overlap between FRDA patients and controls for seven upregulated and six downregulated DEPs. Represented pathways included extracellular matrix organization, signaling, the complement cascade, adhesion molecules, synaptic proteins, neurexins and neuroligins. This study supports the hypothesis that the quantitative analysis CSF proteins may provide robust biomarkers for clinical trials as well as shed light on pathogenic mechanisms. Interestingly, DEPs in FA patients CSF point to neurodegeneration and neuroinflammation processes that may respond to treatment.
Collapse
Affiliation(s)
- Virginie Imbault
- Mass Spectrometry and Proteomics Laboratory/Platform, Institut de Recherche en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Dionisi
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilles Naeije
- Neurology Service, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - David Communi
- Mass Spectrometry and Proteomics Laboratory/Platform, Institut de Recherche en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium
- Neurology Service, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- *Correspondence: Massimo Pandolfo,
| |
Collapse
|
35
|
Subramony SH, Burns M, Kugelmann EL, Zingariello CD. Inherited Ataxias in Children. Pediatr Neurol 2022; 131:54-62. [PMID: 35490578 DOI: 10.1016/j.pediatrneurol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
The purpose of this review is to describe the current diagnostic approach to inherited ataxias during childhood. With the expanding use and availability of gene testing technologies including large sequencing panels, the ability to arrive at a precise genetic diagnosis in this group of disorders has been improving. We have reviewed all the gene sequencing studies of ataxias available by a comprehensive literature search and summarize their results. We provide a logical algorithm for a diagnostic approach in the context of this evolving information. We stress the fact that both autosomal recessive and autosomal dominant mutations can occur in children with ataxias and the need for keeping in mind nucleotide repeat expansions, which cannot be detected by sequencing technologies, as a possible cause of progressive ataxias in children. We discuss the traditional phenotype-based diagnostic approach in the context of gene testing technologies. Finally, we summarize those disorders in which a specific therapy may be indicated.
Collapse
Affiliation(s)
- Sub H Subramony
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida; Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida.
| | - Matthew Burns
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - E Lee Kugelmann
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Carla D Zingariello
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
36
|
Zhao J, Zhang H, Fan X, Yu X, Huai J. Lipid Dyshomeostasis and Inherited Cerebellar Ataxia. Mol Neurobiol 2022; 59:3800-3828. [PMID: 35420383 PMCID: PMC9148275 DOI: 10.1007/s12035-022-02826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
Cerebellar ataxia is a form of ataxia that originates from dysfunction of the cerebellum, but may involve additional neurological tissues. Its clinical symptoms are mainly characterized by the absence of voluntary muscle coordination and loss of control of movement with varying manifestations due to differences in severity, in the site of cerebellar damage and in the involvement of extracerebellar tissues. Cerebellar ataxia may be sporadic, acquired, and hereditary. Hereditary ataxia accounts for the majority of cases. Hereditary ataxia has been tentatively divided into several subtypes by scientists in the field, and nearly all of them remain incurable. This is mainly because the detailed mechanisms of these cerebellar disorders are incompletely understood. To precisely diagnose and treat these diseases, studies on their molecular mechanisms have been conducted extensively in the past. Accumulating evidence has demonstrated that some common pathogenic mechanisms exist within each subtype of inherited ataxia. However, no reports have indicated whether there is a common mechanism among the different subtypes of inherited cerebellar ataxia. In this review, we summarize the available references and databases on neurological disorders characterized by cerebellar ataxia and show that a subset of genes involved in lipid homeostasis form a new group that may cause ataxic disorders through a common mechanism. This common signaling pathway can provide a valuable reference for future diagnosis and treatment of ataxic disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xue Yu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
37
|
Thieme A, Timmann D. [Diagnosis and Treatment of Ataxias: An Up-To-Date Overview]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2022; 90:233-251. [PMID: 35584690 DOI: 10.1055/a-1772-8897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ataxias are a heterogeneous group of diseases. They can occur at any age and have various causes. Most ataxias are rare diseases and many are genetic disorders. A large and steadily increasing number of underlying gene defects are known. The path to the correct diagnosis is often challenging. This overview summarizes the typical findings for the most important acquired, hereditary and non-hereditary degenerative ataxias. The focus is on ataxias with adult onset.
Collapse
|
38
|
Gama MTD, Braga-Neto P, Rangel DM, Godeiro C, Alencar R, Embiruçu EK, Cornejo-Olivas M, Sarapura-Castro E, Saffie Awad P, Muñoz Chesta D, Kauffman M, Rodriguez-Quiroga S, Jardim LB, da Graça FF, França MC, Tomaselli PJ, Marques W, Teive HAG, Barsottini OGP, Pedroso JL, Synofzik M. Autosomal Recessive Cerebellar Ataxias in South America: A Multicenter Study of 1338 Patients. Mov Disord 2022; 37:1773-1774. [PMID: 35507441 DOI: 10.1002/mds.29046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Maria Thereza D Gama
- Ataxia Unit, Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Pedro Braga-Neto
- Neurology Section, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, Brazil.,Neurology Service, Hospital Geral de Fortaleza, Fortaleza, Brazil
| | - Deborah M Rangel
- Neurology Section, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, Brazil.,Neurology Service, Hospital Geral de Fortaleza, Fortaleza, Brazil
| | - Clécio Godeiro
- Neurology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Rodrigo Alencar
- Neurology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Emília K Embiruçu
- Medical Genetics Service, Hospital Universitário Professor Edgard Santos, Salvador, Brazil
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru.,Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Paula Saffie Awad
- CETRAM-Centro de Estudios de Transtornos del Movimiento, Santiago, Chile
| | - Daniela Muñoz Chesta
- CETRAM-Centro de Estudios de Transtornos del Movimiento, Santiago, Chile.,Hospital San Borra Arriarán, Santiago, Chile
| | - Marcelo Kauffman
- Neurogenetics Unit, Hospital General de Agudos José Maria Ramos Mejía, Buenos Aires, Argentina
| | | | - Laura B Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, e Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Felipe F da Graça
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcondes C França
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pedro J Tomaselli
- Department of Neuroscience and Behavioural Science, School of Medicine, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Wilson Marques
- Department of Neuroscience and Behavioural Science, School of Medicine, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Helio A G Teive
- Internal Medicine Department, Federal University of Paraná, Curitiba, Brazil
| | - Orlando G P Barsottini
- Ataxia Unit, Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - José Luiz Pedroso
- Ataxia Unit, Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Matthis Synofzik
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
39
|
Klockgether T, Ashizawa T, Brais B, Chuang R, Durr A, Fogel B, Greenfield J, Hagen S, Jardim LB, Jiang H, Onodera O, Pedroso JL, Soong BW, Szmulewicz D, Graessner H, Synofzik M. Paving the Way Toward Meaningful Trials in Ataxias: An Ataxia Global Initiative Perspective. Mov Disord 2022; 37:1125-1130. [PMID: 35475582 DOI: 10.1002/mds.29032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Tetsuo Ashizawa
- Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist, Houston, Texas, USA
| | | | | | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, Paris Brain Institute - ICM, INSERM, CNRS, APHP, University Hospital de la Pitié-Salpêtrière Paris, Paris, France
| | - Brent Fogel
- Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Sue Hagen
- National Ataxia Foundation, Minneapolis, Minnesota, USA
| | - Laura Bannach Jardim
- Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hong Jiang
- Xiangya Hospital, Central South University, Changsha, China
| | - Osamu Onodera
- Brain Research Institute, Niigata University, Niigata, Japan
| | - José Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bin-Weng Soong
- National Yang-Ming Chiao Tung University, Taipei, Taiwan.,Taipei Neurologic Institute, Taipei Medical University, Taipei, Taiwan
| | | | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | |
Collapse
|
40
|
Recessive cerebellar and afferent ataxias - clinical challenges and future directions. Nat Rev Neurol 2022; 18:257-272. [PMID: 35332317 DOI: 10.1038/s41582-022-00634-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Cerebellar and afferent ataxias present with a characteristic gait disorder that reflects cerebellar motor dysfunction and sensory loss. These disorders are a diagnostic challenge for clinicians because of the large number of acquired and inherited diseases that cause cerebellar and sensory neuron damage. Among such conditions that are recessively inherited, Friedreich ataxia and RFC1-associated cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) include the characteristic clinical, neuropathological and imaging features of ganglionopathies, a distinctive non-length-dependent type of sensory involvement. In this Review, we discuss the typical and atypical phenotypes of Friedreich ataxia and CANVAS, along with the features of other recessive ataxias that present with a ganglionopathy or polyneuropathy, with an emphasis on recently described clinical features, natural history and genotype-phenotype correlations. We review the main developments in understanding the complex pathology that affects the sensory neurons and cerebellum, which seem to be most vulnerable to disorders that affect mitochondrial function and DNA repair mechanisms. Finally, we discuss disease-modifying therapeutic advances in Friedreich ataxia, highlighting the most promising candidate molecules and lessons learned from previous clinical trials.
Collapse
|
41
|
Qian N, Wei T, Yang W, Wang J, Zhang S, Jin S, Dong W, Hao W, Yang Y, Huang R. Case Report: Late-Onset Autosomal Recessive Cerebellar Ataxia Associated With SYNE1 Mutation in a Chinese Family. Front Genet 2022; 13:795188. [PMID: 35281832 PMCID: PMC8905644 DOI: 10.3389/fgene.2022.795188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal recessive cerebellar ataxia type 1 (ARCA-1), also known as autosomal recessive spinocerebellar ataxia type 8 (SCAR8), is caused by spectrin repeat containing nuclear envelope protein 1 (SYNE1) gene mutation. Nesprin-1, encoded by SYNE1, is widely expressed in various tissues, especially in the striated muscle and cerebellum. The destruction of Nesprin-1 is related to neuronal and neuromuscular lesions. It has been reported that SYNE1 gene variation is associated with Emery-Dreifuss muscular dystrophy type 4, arthrogryposis multiplex congenita, SCAR8, and dilated cardiomyopathy. The clinical manifestations of SCAR8 are mainly characterized by relatively pure cerebellar ataxia and may be accompanied by upper and/or lower motor neuron dysfunction. Some affected people may also display cerebellar cognitive affective syndrome. It is conventionally held that the age at the onset of SCAR8 is between 6 and 42 years (the median age is 17 years). Here, we report a pedigree with SCAR8 where the onset age in the proband is 48 years. This case report extends the genetic profile and clinical features of SCAR8. A new pathogenic site (c.7578del; p.S2526Sfs*8) located in SYNE1, which is the genetic cause of the patient, was identified via whole exome sequencing (WES).
Collapse
Affiliation(s)
- Nannan Qian
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Taohua Wei
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Key Laboratory of Xin’an Medicine Ministry of Education, Hefei, China
| | - Jiuxiang Wang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shijie Zhang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shan Jin
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wei Dong
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wenjie Hao
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yue Yang
- Graduate School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ru Huang
- V-Medical Laboratory Co., Ltd, Hangzhou, China
| |
Collapse
|
42
|
Yorns WR. Neurologic Disorders Affecting the Foot and Ankle. Clin Podiatr Med Surg 2022; 39:15-35. [PMID: 34809793 DOI: 10.1016/j.cpm.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurologic causes of foot and leg dysfunction are reviewed. Disorders causing foot and ankle pain, weakness, or other sensorimotor disturbances often cause difficulty with ambulation and prompt patients to seek medical evaluation. Physical signs and symptoms along with targeted diagnostic testing are needed to come to the correct diagnosis and treatment plan. An overview of peripheral nerve, muscle, and central nervous system disorders affecting the foot and leg are discussed.
Collapse
Affiliation(s)
- William R Yorns
- Department of Neurology, UCONN School of Medicine, Connecticut Children's Medical Center, 505 Farmington Avenue., 2nd Floor, Farmington, CT 06032, USA.
| |
Collapse
|
43
|
Karmarkar SA, Rajan DS. Child with Ataxia. SYMPTOM-BASED APPROACH TO PEDIATRIC NEUROLOGY 2022:487-500. [DOI: 10.1007/978-3-031-10494-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
MRI Findings in a Patient with Known SCAR-16 Type STUB1 Associated Cerebellar Ataxia. J Belg Soc Radiol 2022; 106:131. [PMID: 36569391 PMCID: PMC9756905 DOI: 10.5334/jbsr.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Our case report describes a 34-year-old patient sent for magnetic resonance imaging (MRI) after four years of slow onset neurological symptoms. An MRI of her brain showed moderate to severe atrophy of the cerebellum and brainstem. She has a family history of spinocerebellar ataxia and has known STUB1 mutation. Imaging features, genetic analysis, and clinical history are in keeping with the SCAR-16 type of STUB1-associated cerebellar ataxia. Teaching Point This case report will help the radiologist to familiarize themselves with the CT and MRI features of STUB1-associated cerebellar ataxia and will provide suggestions to further differentiate between the SCAR-16 and SCA-48 types of STUB1-associated cerebellar ataxia.
Collapse
|
45
|
Pedroso JL, Tonholo Silva TY, Simabukuro MM, Rosa ABR, G Barsottini O. From VUS to AUS: The Connection and the Differences between Genetics and Immune-Mediated Disorders. Mov Disord 2021; 36:2453-2454. [PMID: 34658069 DOI: 10.1002/mds.28770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/07/2022] Open
Affiliation(s)
- José Luiz Pedroso
- Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
46
|
Cheng HL, Shao YR, Dong Y, Dong HL, Yang L, Ma Y, Shen Y, Wu ZY. Genetic spectrum and clinical features in a cohort of Chinese patients with autosomal recessive cerebellar ataxias. Transl Neurodegener 2021; 10:40. [PMID: 34663476 PMCID: PMC8522248 DOI: 10.1186/s40035-021-00264-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Background Although many causative genes have been uncovered in recent years, genetic diagnosis is still missing for approximately 50% of autosomal recessive cerebellar ataxia (ARCA) patients. Few studies have been performed to determine the genetic spectrum and clinical profile of ARCA patients in the Chinese population. Methods Fifty-four Chinese index patients with unexplained autosomal recessive or sporadic ataxia were investigated by whole-exome sequencing (WES) and copy number variation (CNV) calling with ExomeDepth. Likely causal CNV predictions were validated by CNVseq. Results Thirty-eight mutations including 29 novel ones were identified in 25 out of the 54 patients, providing a 46.3% positive molecular diagnostic rate. Ten different genes were involved, of which four most common genes were SACS, SYNE1, ADCK3 and SETX, which accounted for 76.0% (19/25) of the positive cases. The de novo microdeletion in SACS was reported for the first time in China and the uniparental disomy of ADCK3 was reported for the first time worldwide. Clinical features of the patients carrying SACS, SYNE1 and ADCK3 mutations were summarized. Conclusions Our results expand the genetic spectrum and clinical profiles of ARCA patients, demonstrate the high efficiency and reliability of WES combined with CNV analysis in the diagnosis of suspected ARCA, and emphasize the importance of complete bioinformatics analysis of WES data for accurate diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00264-z.
Collapse
Affiliation(s)
- Hao-Ling Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ya-Ru Shao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lu Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ying Shen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200000, China.
| |
Collapse
|
47
|
Raslan IR, Barsottini OG, Pedroso JL. A Proposed Clinical Classification and a Diagnostic Approach for Congenital Ataxias. Neurol Clin Pract 2021; 11:e328-e336. [PMID: 34484907 DOI: 10.1212/cpj.0000000000000966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 01/12/2023]
Abstract
Purpose of Review This review proposes a clinical classification for congenital ataxias based on clinical features, neuroimaging, and course of the disease. Recent Findings Congenital ataxias are an unusual group of neurologic disorders, with heterogeneous clinical and genetic presentation. Typical clinical features of congenital ataxias include variable degrees of motor developmental delay, very early onset cerebellar ataxia, cognitive impairment, and hypotonia, frequently mistakenly diagnosed as cerebral palsy. Congenital ataxias are usually nonprogressive. Neuroimaging plays an important role in the characterization of congenital ataxias. Despite the development of genetics with exome sequencing, several congenital ataxias remain undetermined, and medical literature on this topic is scarce. Summary A didactic classification based on the clinical and neuroimaging features for congenital ataxias include the following 4 main groups: cerebellar malformation, syndromic congenital ataxias, congenital cerebellar hypoplasia, and pontocerebellar hypoplasia. A diagnostic approach for congenital ataxias is proposed, and its differential diagnosis is also discussed.
Collapse
Affiliation(s)
- Ivana Rocha Raslan
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Schüle R, Timmann D, Erasmus CE, Reichbauer J, Wayand M, van de Warrenburg B, Schöls L, Wilke C, Bevot A, Zuchner S, Beltran S, Laurie S, Matalonga L, Graessner H, Synofzik M. Solving unsolved rare neurological diseases-a Solve-RD viewpoint. Eur J Hum Genet 2021; 29:1332-1336. [PMID: 33972714 PMCID: PMC8440537 DOI: 10.1038/s41431-021-00901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rebecca Schüle
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany.
- European Reference Network for Rare Neurological Diseases, Tübingen, Germany.
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Corrie E Erasmus
- Department of Pediatric Neurology, Radboud University Medical Center, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Jennifer Reichbauer
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Melanie Wayand
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Bart van de Warrenburg
- European Reference Network for Rare Neurological Diseases, Tübingen, Germany
- Department of Neurology, Donders Centre for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ludger Schöls
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
- European Reference Network for Rare Neurological Diseases, Tübingen, Germany
| | - Carlo Wilke
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Holm Graessner
- European Reference Network for Rare Neurological Diseases, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
- European Reference Network for Rare Neurological Diseases, Tübingen, Germany
| |
Collapse
|
49
|
NGS in Hereditary Ataxia: When Rare Becomes Frequent. Int J Mol Sci 2021; 22:ijms22168490. [PMID: 34445196 PMCID: PMC8395181 DOI: 10.3390/ijms22168490] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The term hereditary ataxia (HA) refers to a heterogeneous group of neurological disorders with multiple genetic etiologies and a wide spectrum of ataxia-dominated phenotypes. Massive gene analysis in next-generation sequencing has entered the HA scenario, broadening our genetic and clinical knowledge of these conditions. In this study, we employed a targeted resequencing panel (TRP) in a large and highly heterogeneous cohort of 377 patients with a clinical diagnosis of HA, but no molecular diagnosis on routine genetic tests. We obtained a positive result (genetic diagnosis) in 33.2% of the patients, a rate significantly higher than those reported in similar studies employing TRP (average 19.4%), and in line with those performed using exome sequencing (ES, average 34.6%). Moreover, 15.6% of the patients had an uncertain molecular diagnosis. STUB1, PRKCG, and SPG7 were the most common causative genes. A comparison with published literature data showed that our panel would have identified 97% of the positive cases reported in previous TRP-based studies and 92% of those diagnosed by ES. Proper use of multigene panels, when combined with detailed phenotypic data, seems to be even more efficient than ES in clinical practice.
Collapse
|
50
|
Traschütz A, Reich S, Adarmes AD, Anheim M, Ashrafi MR, Baets J, Basak AN, Bertini E, Brais B, Gagnon C, Gburek-Augustat J, Hanagasi HA, Heinzmann A, Horvath R, de Jonghe P, Kamm C, Klivenyi P, Klopstock T, Minnerop M, Münchau A, Renaud M, Roxburgh RH, Santorelli FM, Schirinzi T, Sival DA, Timmann D, Vielhaber S, Wallner M, van de Warrenburg BP, Zanni G, Zuchner S, Klockgether T, Schüle R, Schöls L, PREPARE Consortium, Synofzik M. The ARCA Registry: A Collaborative Global Platform for Advancing Trial Readiness in Autosomal Recessive Cerebellar Ataxias. Front Neurol 2021; 12:677551. [PMID: 34248822 PMCID: PMC8267795 DOI: 10.3389/fneur.2021.677551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 01/19/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) form an ultrarare yet expanding group of neurodegenerative multisystemic diseases affecting the cerebellum and other neurological or non-neurological systems. With the advent of targeted therapies for ARCAs, disease registries have become a precious source of real-world quantitative and qualitative data complementing knowledge from preclinical studies and clinical trials. Here, we review the ARCA Registry, a global collaborative multicenter platform (>15 countries, >30 sites) with the overarching goal to advance trial readiness in ARCAs. It presents a good clinical practice (GCP)- and general data protection regulation (GDPR)-compliant professional-reported registry for multicenter web-based capture of cross-center standardized longitudinal data. Modular electronic case report forms (eCRFs) with core, extended, and optional datasets allow data capture tailored to the participating site's variable interests and resources. The eCRFs cover all key data elements required by regulatory authorities [European Medicines Agency (EMA)] and the European Rare Disease (ERD) platform. They capture genotype, phenotype, and progression and include demographic data, biomarkers, comorbidity, medication, magnetic resonance imaging (MRI), and longitudinal clinician- or patient-reported ratings of ataxia severity, non-ataxia features, disease stage, activities of daily living, and (mental) health status. Moreover, they are aligned to major autosomal-dominant spinocerebellar ataxia (SCA) and sporadic ataxia (SPORTAX) registries in the field, thus allowing for joint and comparative analyses not only across ARCAs but also with SCAs and sporadic ataxias. The registry is at the core of a systematic multi-component ARCA database cluster with a linked biobank and an evolving study database for digital outcome measures. Currently, the registry contains more than 800 patients with almost 1,500 visits representing all ages and disease stages; 65% of patients with established genetic diagnoses capture all the main ARCA genes, and 35% with unsolved diagnoses are targets for advanced next-generation sequencing. The ARCA Registry serves as the backbone of many major European and transatlantic consortia, such as PREPARE, PROSPAX, and the Ataxia Global Initiative, with additional data input from SPORTAX. It has thus become the largest global trial-readiness registry in the ARCA field.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Astrid D. Adarmes
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Mahmoud Reza Ashrafi
- Department of Pediatric Neurology, Ataxia Clinic, Growth and Development Research Center, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, UAntwerpen, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
| | - A. Nazli Basak
- Neurodegeneration Research Laboratory, Suna and Inan Kiraç Foundation, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bernard Brais
- Department of Neurology, McGill University, Montreal Neurological Institute, Montréal, QC, Canada
| | - Cynthia Gagnon
- Centre de Recherche Charles-Le Moyne-Saguenay-Lac-Saint-Jean sur les Innovations en Santé, Sherbrooke University, Sherbrooke, QC, Canada
| | - Janina Gburek-Augustat
- Division of Neuropaediatrics, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Hasmet A. Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Anna Heinzmann
- AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter de Jonghe
- Translational Neurosciences, Faculty of Medicine and Health Sciences, UAntwerpen, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Neuromuscular Reference Centre, Antwerp University Hospital, Antwerp, Belgium
| | - Christoph Kamm
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Peter Klivenyi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Münchau
- Neurogenetics, Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Mathilde Renaud
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
- INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | - Richard H. Roxburgh
- Auckland District Health Board, Auckland, New Zealand
- Centre of Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| | | | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Deborah A. Sival
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) Within the Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | | | - Bart P. van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Thomas Klockgether
- Department of Neurology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|