1
|
Meier AM, D'Souza RD, Ji W, Han EB, Burkhalter A. Interdigitating Modules for Visual Processing During Locomotion and Rest in Mouse V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639505. [PMID: 40060542 PMCID: PMC11888233 DOI: 10.1101/2025.02.21.639505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Layer 1 of V1 has been shown to receive locomotion-related signals from the dorsal lateral geniculate (dLGN) and lateral posterior (LP) thalamic nuclei (Roth et al., 2016). Inputs from the dLGN terminate in M2+ patches while inputs from LP target M2- interpatches (D'Souza et al., 2019) suggesting that motion related signals are processed in distinct networks. Here, we investigated by calcium imaging in head-fixed awake mice whether L2/3 neurons underneath L1 M2+ and M2- modules are differentially activated by locomotion, and whether distinct networks of feedback connections from higher cortical areas to L1 may contribute to these differences. We found that strongly locomotion-modulated cell clusters during visual stimulation were aligned with M2- interpatches, while weakly modulated cells clustered under M2+ patches. Unlike M2+ patch cells, pairs of M2- interpatch cells showed increased correlated variability of calcium transients when the sites in the visuotopic map were far apart, suggesting that activity is integrated across large parts of the visual field. Pathway tracing further suggests that strong locomotion modulation in L2/3 M2- interpatch cells of V1 relies on looped, like-to-like networks between apical dendrites of MOs-, PM- and RSP-projecting neurons and feedback input from these areas to L1. M2- interpatches receive strong inputs from SST neurons, suggesting that during locomotion these interneurons influence the firing of specific subnetworks by controlling the excitability of apical dendrites in M2- interpatches.
Collapse
Affiliation(s)
- A M Meier
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - R D D'Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - W Ji
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - E B Han
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - A Burkhalter
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| |
Collapse
|
2
|
Dias RF, Rajan R, Baeta M, Belbut B, Marques T, Petreanu L. Visual experience reduces the spatial redundancy between cortical feedback inputs and primary visual cortex neurons. Neuron 2024; 112:3329-3342.e7. [PMID: 39137776 DOI: 10.1016/j.neuron.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/11/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024]
Abstract
The role of experience in the organization of cortical feedback (FB) remains unknown. We measured the effects of manipulating visual experience on the retinotopic specificity of supragranular and infragranular projections from the lateromedial (LM) visual area to layer (L)1 of the mouse primary visual cortex (V1). LM inputs were, on average, retinotopically matched with V1 neurons in normally and dark-reared mice, but visual exposure reduced the fraction of spatially overlapping inputs to V1. FB inputs from L5 conveyed more surround information to V1 than those from L2/3. The organization of LM inputs from L5 depended on their orientation preference and was disrupted by dark rearing. These observations were recapitulated by a model where visual experience minimizes receptive field overlap between LM inputs and V1 neurons. Our results provide a mechanism for the dependency of surround modulations on visual experience and suggest how expected interarea coactivation patterns are learned in cortical circuits.
Collapse
Affiliation(s)
- Rodrigo F Dias
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Radhika Rajan
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Beatriz Belbut
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Tiago Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
3
|
Meo DD, Sorelli M, Ramazzotti J, Cheli F, Bradley S, Perego L, Lorenzon B, Mazzamuto G, Emmi A, Porzionato A, Caro RD, Garbelli R, Biancheri D, Pelorosso C, Conti V, Guerrini R, Pavone FS, Costantini I. Quantitative cytoarchitectural phenotyping of deparaffinized human brain tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612232. [PMID: 39314456 PMCID: PMC11419081 DOI: 10.1101/2024.09.10.612232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Advanced 3D imaging techniques and image segmentation and classification methods can profoundly transform biomedical research by offering deep insights into the cytoarchitecture of the human brain in relation to pathological conditions. Here, we propose a comprehensive pipeline for performing 3D imaging and automated quantitative cellular phenotyping on Formalin-Fixed Paraffin-Embedded (FFPE) human brain specimens, a valuable yet underutilized resource. We exploited the versatility of our method by applying it to different human specimens from both adult and pediatric, normal and abnormal brain regions. Quantitative data on neuronal volume, ellipticity, local density, and spatial clustering level were obtained from a machine learning-based analysis of the 3D cytoarchitectural organization of cells identified by different molecular markers in two subjects with malformations of cortical development (MCD). This approach will grant access to a wide range of physiological and pathological paraffin-embedded clinical specimens, allowing for volumetric imaging and quantitative analysis of human brain samples at cellular resolution. Possible genotype-phenotype correlations can be unveiled, providing new insights into the pathogenesis of various brain diseases and enlarging treatment opportunities.
Collapse
Affiliation(s)
- Danila Di Meo
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Josephine Ramazzotti
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Franco Cheli
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Samuel Bradley
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Laura Perego
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Beatrice Lorenzon
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giacomo Mazzamuto
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- National Research Council – National Institute of Optics (CNR-INO), Sesto Fiorentino, Italy
| | - Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta
| | - Dalila Biancheri
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta
| | - Cristiana Pelorosso
- Department of Neuroscience and Medical Genetics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Valerio Conti
- Department of Neuroscience and Medical Genetics, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children’s Hospital IRCCS, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Francesco S. Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- National Research Council – National Institute of Optics (CNR-INO), Sesto Fiorentino, Italy
| | - Irene Costantini
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- National Research Council – National Institute of Optics (CNR-INO), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Italy
| |
Collapse
|
4
|
Burkhalter A, Ji W, Meier AM, D’Souza RD. Modular horizontal network within mouse primary visual cortex. Front Neuroanat 2024; 18:1364675. [PMID: 38650594 PMCID: PMC11033472 DOI: 10.3389/fnana.2024.1364675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between feedback connections from higher cortical areas and local horizontal connections within primary visual cortex (V1) were shown to play a role in contextual processing in different behavioral states. Layer 1 (L1) is an important part of the underlying network. This cell-sparse layer is a target of feedback and local inputs, and nexus for contacts onto apical dendrites of projection neurons in the layers below. Importantly, L1 is a site for coupling inputs from the outside world with internal information. To determine whether all of these circuit elements overlap in L1, we labeled the horizontal network within mouse V1 with anterograde and retrograde viral tracers. We found two types of local horizontal connections: short ones that were tangentially limited to the representation of the point image, and long ones which reached beyond the receptive field center, deep into its surround. The long connections were patchy and terminated preferentially in M2 muscarinic acetylcholine receptor-negative (M2-) interpatches. Anterogradely labeled inputs overlapped in M2-interpatches with apical dendrites of retrogradely labeled L2/3 and L5 cells, forming module-selective loops between topographically distant locations. Previous work showed that L1 of M2-interpatches receive inputs from the lateral posterior thalamic nucleus (LP) and from a feedback network from areas of the medial dorsal stream, including the secondary motor cortex. Together, these findings suggest that interactions in M2-interpatches play a role in processing visual inputs produced by object-and self-motion.
Collapse
Affiliation(s)
- Andreas Burkhalter
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Weiqing Ji
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew M. Meier
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Department of Speech, Language and Hearing Sciences, College of Engineering, Boston University, Boston, MA, United States
| | - Rinaldo D. D’Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
5
|
Znamenskiy P, Kim MH, Muir DR, Iacaruso MF, Hofer SB, Mrsic-Flogel TD. Functional specificity of recurrent inhibition in visual cortex. Neuron 2024; 112:991-1000.e8. [PMID: 38244539 DOI: 10.1016/j.neuron.2023.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
In the neocortex, neural activity is shaped by the interaction of excitatory and inhibitory neurons, defined by the organization of their synaptic connections. Although connections among excitatory pyramidal neurons are sparse and functionally tuned, inhibitory connectivity is thought to be dense and largely unstructured. By measuring in vivo visual responses and synaptic connectivity of parvalbumin-expressing (PV+) inhibitory cells in mouse primary visual cortex, we show that the synaptic weights of their connections to nearby pyramidal neurons are specifically tuned according to the similarity of the cells' responses. Individual PV+ cells strongly inhibit those pyramidal cells that provide them with strong excitation and share their visual selectivity. This structured organization of inhibitory synaptic weights provides a circuit mechanism for tuned inhibition onto pyramidal cells despite dense connectivity, stabilizing activity within feature-specific excitatory ensembles while supporting competition between them.
Collapse
Affiliation(s)
- Petr Znamenskiy
- Specification and Function of Neural Circuits Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| | - Mean-Hwan Kim
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Dylan R Muir
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | - Sonja B Hofer
- Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre, 25 Howland Street, London W1T 4JG, UK; Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Matteucci G, Bellacosa Marotti R, Zattera B, Zoccolan D. Truly pattern: Nonlinear integration of motion signals is required to account for the responses of pattern cells in rat visual cortex. SCIENCE ADVANCES 2023; 9:eadh4690. [PMID: 37939191 PMCID: PMC10631736 DOI: 10.1126/sciadv.adh4690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
A key feature of advanced motion processing in the primate dorsal stream is the existence of pattern cells-specialized cortical neurons that integrate local motion signals into pattern-invariant representations of global direction. Pattern cells have also been reported in rodent visual cortex, but it is unknown whether the tuning of these neurons results from truly integrative, nonlinear mechanisms or trivially arises from linear receptive fields (RFs) with a peculiar geometry. Here, we show that pattern cells in rat primary (V1) and lateromedial (LM) visual cortex process motion direction in a way that cannot be explained by the linear spatiotemporal structure of their RFs. Instead, their tuning properties are consistent with and well explained by those of units in a state-of-the-art neural network model of the dorsal stream. This suggests that similar cortical processes underlay motion representation in primates and rodents. The latter could thus serve as powerful model systems to unravel the underlying circuit-level mechanisms.
Collapse
|
8
|
Kawamura N, Osuka T, Kaneko R, Kishi E, Higuchi R, Yoshimura Y, Hirabayashi T, Yagi T, Tarusawa E. Reciprocal Connections between Parvalbumin-Expressing Cells and Adjacent Pyramidal Cells Are Regulated by Clustered Protocadherin γ. eNeuro 2023; 10:ENEURO.0250-23.2023. [PMID: 37890993 PMCID: PMC10614112 DOI: 10.1523/eneuro.0250-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Functional neural circuits in the cerebral cortex are established through specific neural connections between excitatory and various inhibitory cell types. However, the molecular mechanisms underlying synaptic partner recognition remain unclear. In this study, we examined the impact of clustered protocadherin-γ (cPcdhγ) gene deletion in parvalbumin-positive (PV+) cells on intralaminar and translaminar neural circuits formed between PV+ and pyramidal (Pyr) cells in the primary visual cortex (V1) of male and female mice. First, we used whole-cell recordings and laser-scan photostimulation with caged glutamate to map excitatory inputs from layer 2/3 to layer 6. We found that cPcdhγ-deficient PV+ cells in layer 2/3 received normal translaminar inputs from Pyr cells through layers 2/3-6. Second, to further elucidate the effect on PV+-Pyr microcircuits within intralaminar layer 2/3, we conducted multiple whole-cell recordings. While the overall connection probability of PV+-Pyr cells remained largely unchanged, the connectivity of PV+-Pyr was significantly different between control and PV+-specific cPcdhγ-conditional knock-out (PV-cKO) mice. In control mice, the number of reciprocally connected PV+ cells was significantly higher than PV+ cells connected one way to Pyr cells, a difference that was not significant in PV-cKO mice. Interestingly, the proportion of highly reciprocally connected PV+ cells to Pyr cells with large unitary IPSC (uIPSC) amplitudes was reduced in PV-cKO mice. Conversely, the proportion of middle reciprocally connected PV+ cells to Pyr cells with large uIPSC amplitudes increased compared with control mice. This study demonstrated that cPcdhγ in PV+ cells modulates their reciprocity with Pyr cells in the cortex.
Collapse
Affiliation(s)
- Nanami Kawamura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Osuka
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eri Kishi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuon Higuchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Hirabayashi
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Totsuka-ku, Yokohama 244-0806, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Etsuko Tarusawa
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Wang H, Dey O, Lagos WN, Callaway EM. Diversity in spatial frequency, temporal frequency, and speed tuning across mouse visual cortical areas and layers. J Comp Neurol 2022; 530:3226-3247. [PMID: 36070574 PMCID: PMC9588602 DOI: 10.1002/cne.25404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
The mouse visual system consists of several visual cortical areas thought to be specialized for different visual features and/or tasks. Previous studies have revealed differences between primary visual cortex (V1) and other higher visual areas, namely, anterolateral (AL) and posteromedial (PM), and their tuning preferences for spatial and temporal frequency. However, these differences have primarily been characterized using methods that are biased toward superficial layers of cortex, such as two-photon calcium imaging. Fewer studies have investigated cell types in deeper layers of these areas and their tuning preferences. Because superficial versus deep-layer neurons and different types of deep-layer neurons are known to have different feedforward and feedback inputs and outputs, comparing the tuning preferences of these groups is important for understanding cortical visual information processing. In this study, we used extracellular electrophysiology and two-photon calcium imaging targeted toward two different layer 5 cell classes to characterize their tuning properties in V1, AL, and PM. We find that deep-layer neurons, similar to superficial layer neurons, are also specialized for different spatial and temporal frequencies, with the strongest differences between AL and V1, and AL and PM, but not V1 and PM. However, we note that the deep-layer neuron populations preferred a larger range of SFs and TFs compared to previous studies. We also find that extratelencephalically projecting layer 5 neurons are more direction selective than intratelencephalically projecting layer 5 neurons.
Collapse
Affiliation(s)
- Helen Wang
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Oyshi Dey
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Willian N. Lagos
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward M. Callaway
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Le Gratiet KL, Anderson CK, Puente N, Grandes P, Copas C, Nahirney PC, Delaney KR, Nashmi R. Differential Subcellular Distribution and Release Dynamics of Cotransmitted Cholinergic and GABAergic Synaptic Inputs Modify Dopaminergic Neuronal Excitability. J Neurosci 2022; 42:8670-8693. [PMID: 36195440 PMCID: PMC9671585 DOI: 10.1523/jneurosci.2514-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We identified three types of monosynaptic cholinergic inputs spatially arranged onto medial substantia nigra dopaminergic neurons in male and female mice: cotransmitted acetylcholine (ACh)/GABA, GABA-only, and ACh only. There was a predominant GABA-only conductance along lateral dendrites and soma-centered ACh/GABA cotransmission. In response to repeated stimulation, the GABA conductance found on lateral dendrites decremented less than the proximally located GABA conductance, and was more effective at inhibiting action potentials. While soma-localized ACh/GABA cotransmission showed depression of the GABA component with repeated stimulation, ACh-mediated nicotinic responses were largely maintained. We investigated whether this differential change in inhibitory/excitatory inputs leads to altered neuronal excitability. We found that a depolarizing current or glutamate preceded by cotransmitted ACh/GABA was more effective in eliciting an action potential compared with current, glutamate, or ACh/GABA alone. This enhanced excitability was abolished with nicotinic receptor inhibitors, and modulated by T- and L-type calcium channels, thus establishing that activity of multiple classes of ion channels integrates to shape neuronal excitability.SIGNIFICANCE STATEMENT Our laboratory has previously discovered a population of substantia nigra dopaminegic neurons (DA) that receive cotransmitted ACh and GABA. This study used subcellular optogenetic stimulation of cholinergic presynaptic terminals to map the functional ACh and GABA synaptic inputs across the somatodendritic extent of substantia nigra DA neurons. We determined spatially clustered GABA-only inputs on the lateral dendrites while cotransmitted ACh and GABA clustered close to the soma. We have shown that the action of GABA and ACh in cotransmission spatially clustered near the soma play a critical role in enhancing glutamate-mediated neuronal excitability through the activation of T- and L-type voltage-gated calcium channels.
Collapse
Affiliation(s)
| | | | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Charlotte Copas
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kerry R Delaney
- Department of Biology
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Raad Nashmi
- Department of Biology
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
11
|
Szabo GG, Farrell JS, Dudok B, Hou WH, Ortiz AL, Varga C, Moolchand P, Gulsever CI, Gschwind T, Dimidschstein J, Capogna M, Soltesz I. Ripple-selective GABAergic projection cells in the hippocampus. Neuron 2022; 110:1959-1977.e9. [PMID: 35489331 DOI: 10.1016/j.neuron.2022.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Ripples are brief high-frequency electrographic events with important roles in episodic memory. However, the in vivo circuit mechanisms coordinating ripple-related activity among local and distant neuronal ensembles are not well understood. Here, we define key characteristics of a long-distance projecting GABAergic cell group in the mouse hippocampus that selectively exhibits high-frequency firing during ripples while staying largely silent during theta-associated states when most other GABAergic cells are active. The high ripple-associated firing commenced before ripple onset and reached its maximum before ripple peak, with the signature theta-OFF, ripple-ON firing pattern being preserved across awake and sleep states. Controlled by septal GABAergic, cholinergic, and CA3 glutamatergic inputs, these ripple-selective cells innervate parvalbumin and cholecystokinin-expressing local interneurons while also targeting a variety of extra-hippocampal regions. These results demonstrate the existence of a hippocampal GABAergic circuit element that is uniquely positioned to coordinate ripple-related neuronal dynamics across neuronal assemblies.
Collapse
Affiliation(s)
- Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Anna L Ortiz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Csaba Varga
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark; Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Modular microcircuit organization of the presubicular head-direction map. Cell Rep 2022; 39:110684. [PMID: 35417686 DOI: 10.1016/j.celrep.2022.110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Our internal sense of direction is thought to rely on the activity of head-direction (HD) neurons. We find that the mouse dorsal presubiculum (PreS), a key structure in the cortical representation of HD, displays a modular "patch-matrix" organization, which is conserved across species (including human). Calbindin-positive layer 2 neurons within the "matrix" form modular recurrent microcircuits, while inputs from the anterodorsal and laterodorsal thalamic nuclei are non-overlapping and target the "patch" and "matrix" compartments, respectively. The apical dendrites of identified HD cells are largely restricted within the "matrix," pointing to a non-random sampling of patterned inputs and to a precise structure-function architecture. Optogenetic perturbation of modular recurrent microcircuits results in a drastic tonic suppression of firing only in a subpopulation of HD neurons. Altogether, our data reveal a modular microcircuit organization of the PreS HD map and point to the existence of cell-type-specific microcircuits that support the cortical HD representation.
Collapse
|
13
|
Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat Commun 2022; 13:503. [PMID: 35082302 PMCID: PMC8791996 DOI: 10.1038/s41467-022-28035-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex. Mouse visual cortex is a dense, interconnected network of distinct areas. D’Souza et al. identify an anatomical index to quantify the hierarchical nature of pathways, and highlight the hierarchical and nonhierarchical features of the network.
Collapse
|
14
|
Hage TA, Bosma-Moody A, Baker CA, Kratz MB, Campagnola L, Jarsky T, Zeng H, Murphy GJ. Synaptic connectivity to L2/3 of primary visual cortex measured by two-photon optogenetic stimulation. eLife 2022; 11:71103. [PMID: 35060903 PMCID: PMC8824465 DOI: 10.7554/elife.71103] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding cortical microcircuits requires thorough measurement of physiological properties of synaptic connections formed within and between diverse subclasses of neurons. Towards this goal, we combined spatially precise optogenetic stimulation with multicellular recording to deeply characterize intralaminar and translaminar monosynaptic connections to supragranular (L2/3) neurons in the mouse visual cortex. The reliability and specificity of multiphoton optogenetic stimulation were measured across multiple Cre lines, and measurements of connectivity were verified by comparison to paired recordings and targeted patching of optically identified presynaptic cells. With a focus on translaminar pathways, excitatory and inhibitory synaptic connections from genetically defined presynaptic populations were characterized by their relative abundance, spatial profiles, strength, and short-term dynamics. Consistent with the canonical cortical microcircuit, layer 4 excitatory neurons and interneurons within L2/3 represented the most common sources of input to L2/3 pyramidal cells. More surprisingly, we also observed strong excitatory connections from layer 5 intratelencephalic neurons and potent translaminar inhibition from multiple interneuron subclasses. The hybrid approach revealed convergence to and divergence from excitatory and inhibitory neurons within and across cortical layers. Divergent excitatory connections often spanned hundreds of microns of horizontal space. In contrast, divergent inhibitory connections were more frequently measured from postsynaptic targets near each other.
Collapse
Affiliation(s)
- Travis A Hage
- Electrophysiology, Allen Institute for Brain Science
| | | | | | - Megan B Kratz
- Electrophysiology, Allen Institute for Brain Science
| | | | - Tim Jarsky
- Synaptic Physiology, Allen Institute for Brain Science
| | - Hongkui Zeng
- Synaptic Physiology, Allen Institute for Brain Science
| | - Gabe J Murphy
- Synaptic Physiology, Allen Institute for Brain Science
| |
Collapse
|
15
|
Rockland KS. Cytochrome oxidase "blobs": a call for more anatomy. Brain Struct Funct 2021; 226:2793-2806. [PMID: 34382115 PMCID: PMC8778949 DOI: 10.1007/s00429-021-02360-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/31/2021] [Indexed: 11/29/2022]
Abstract
An ordered relation of structure and function has been a cornerstone in thinking about brain organization. Like the brain itself, however, this is not straightforward and is confounded both by functional intricacy and structural plasticity (many routes to a given outcome). As a striking case of putative structure-function correlation, this mini-review focuses on the relatively well-characterized pattern of cytochrome oxidase (CO) blobs (aka "patches" or "puffs") in the supragranular layers of macaque monkey visual cortex. The pattern is without doubt visually compelling, and the semi-dichotomous array of CO+ blobs and CO- interblobs is consistent with multiple studies reporting compartment-specific preferential connectivity and distinctive physiological response properties. Nevertheless, as briefly reviewed here, the finer anatomical organization of this system is surprisingly under-investigated, and the relation to functional aspects, therefore, unclear. Microcircuitry, cell type, and three-dimensional spatiotemporal level investigations of the CO+ CO- pattern are needed and may open new views to structure-function organization of visual cortex, and to phylogenetic and ontogenetic comparisons across nonhuman primates (NHP), and between NHP and humans.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA.
| |
Collapse
|
16
|
Gămănuţ R, Shimaoka D. Anatomical and functional connectomes underlying hierarchical visual processing in mouse visual system. Brain Struct Funct 2021; 227:1297-1315. [PMID: 34846596 DOI: 10.1007/s00429-021-02415-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
Over the last 10 years, there has been a surge in interest in the rodent visual system resulting from the discovery of visual processing functions shared with primates V1, and of a complex anatomical structure in the extrastriate visual cortex. This surprisingly intricate visual system was elucidated by recent investigations using rapidly growing genetic tools primarily available in the mouse. Here, we examine the structural and functional connections of visual areas that have been identified in mice mostly during the past decade, and the impact of these findings on our understanding of brain functions associated with vision. Special attention is paid to structure-function relationships arising from the hierarchical organization, which is a prominent feature of the primate visual system. Recent evidence supports the existence of a hierarchical organization in rodents that contains levels that are poorly resolved relative to those observed in primates. This shallowness of the hierarchy indicates that the mouse visual system incorporates abundant non-hierarchical processing. Thus, the mouse visual system provides a unique opportunity to study non-hierarchical processing and its relation to hierarchical processing.
Collapse
Affiliation(s)
- Răzvan Gămănuţ
- Department of Physiology, Monash University, Melbourne, Australia
| | - Daisuke Shimaoka
- Department of Physiology, Monash University, Melbourne, Australia.
| |
Collapse
|
17
|
Oude Lohuis MN, Canton AC, Pennartz CMA, Olcese U. Higher Order Visual Areas Enhance Stimulus Responsiveness in Mouse Primary Visual Cortex. Cereb Cortex 2021; 32:3269-3288. [PMID: 34849636 PMCID: PMC9340391 DOI: 10.1093/cercor/bhab414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023] Open
Abstract
Over the past few years, the various areas that surround the primary visual cortex (V1) in the mouse have been associated with many functions, ranging from higher order visual processing to decision-making. Recently, some studies have shown that higher order visual areas influence the activity of the primary visual cortex, refining its processing capabilities. Here, we studied how in vivo optogenetic inactivation of two higher order visual areas with different functional properties affects responses evoked by moving bars in the primary visual cortex. In contrast with the prevailing view, our results demonstrate that distinct higher order visual areas similarly modulate early visual processing. In particular, these areas enhance stimulus responsiveness in the primary visual cortex, by more strongly amplifying weaker compared with stronger sensory-evoked responses (for instance specifically amplifying responses to stimuli not moving along the direction preferred by individual neurons) and by facilitating responses to stimuli entering the receptive field of single neurons. Such enhancement, however, comes at the expense of orientation and direction selectivity, which increased when the selected higher order visual areas were inactivated. Thus, feedback from higher order visual areas selectively amplifies weak sensory-evoked V1 responses, which may enable more robust processing of visual stimuli.
Collapse
Affiliation(s)
- Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Alexis Cervan Canton
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Vadakkan KI. Framework for internal sensation of pleasure using constraints from disparate findings in nucleus accumbens. World J Psychiatry 2021; 11:681-695. [PMID: 34733636 PMCID: PMC8546768 DOI: 10.5498/wjp.v11.i10.681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
It is necessary to find a mechanism that generates first-person inner sensation of pleasure to understand what causes addiction and associated behaviour by drugs of abuse. The actual mechanism is expected to explain several disparate findings in nucleus accumbens (NAc), a brain region associated with pleasure, in an interconnected manner. Previously, it was possible to derive a mechanism for natural learning and explain: (1) Generation of inner sensation of memory using changes generated by learning; and (2) Long-term potentiation as an experimental delayed scaled-up change by the same mechanism that occur during natural learning. By extending these findings and by using disparate third person observations in NAc from several studies, present work provides a framework of a mechanism that generates internal sensation of pleasure that can provide interconnected explanations for: (1) Ability to induce robust long-term depression (LTD) in NAc from naïve animals; (2) Impaired ability to induce LTD in “addicted” state; (3) Attenuation of postsynaptic potentials by cocaine; and (4) Reduced firing of medium spiny neurons in response to cocaine or dopamine. Findings made by this work are testable.
Collapse
|
19
|
Matteucci G, Zattera B, Bellacosa Marotti R, Zoccolan D. Rats spontaneously perceive global motion direction of drifting plaids. PLoS Comput Biol 2021; 17:e1009415. [PMID: 34520476 PMCID: PMC8462730 DOI: 10.1371/journal.pcbi.1009415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/24/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
Computing global motion direction of extended visual objects is a hallmark of primate high-level vision. Although neurons selective for global motion have also been found in mouse visual cortex, it remains unknown whether rodents can combine multiple motion signals into global, integrated percepts. To address this question, we trained two groups of rats to discriminate either gratings (G group) or plaids (i.e., superpositions of gratings with different orientations; P group) drifting horizontally along opposite directions. After the animals learned the task, we applied a visual priming paradigm, where presentation of the target stimulus was preceded by the brief presentation of either a grating or a plaid. The extent to which rat responses to the targets were biased by such prime stimuli provided a measure of the spontaneous, perceived similarity between primes and targets. We found that gratings and plaids, when used as primes, were equally effective at biasing the perception of plaid direction for the rats of the P group. Conversely, for the G group, only the gratings acted as effective prime stimuli, while the plaids failed to alter the perception of grating direction. To interpret these observations, we simulated a decision neuron reading out the representations of gratings and plaids, as conveyed by populations of either component or pattern cells (i.e., local or global motion detectors). We concluded that the findings for the P group are highly consistent with the existence of a population of pattern cells, playing a functional role similar to that demonstrated in primates. We also explored different scenarios that could explain the failure of the plaid stimuli to elicit a sizable priming magnitude for the G group. These simulations yielded testable predictions about the properties of motion representations in rodent visual cortex at the single-cell and circuitry level, thus paving the way to future neurophysiology experiments.
Collapse
Affiliation(s)
- Giulio Matteucci
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Benedetta Zattera
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
20
|
Universal autofocus for quantitative volumetric microscopy of whole mouse brains. Nat Methods 2021; 18:953-958. [PMID: 34312564 DOI: 10.1038/s41592-021-01208-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Unbiased quantitative analysis of macroscopic biological samples demands fast imaging systems capable of maintaining high resolution across large volumes. Here we introduce RAPID (rapid autofocusing via pupil-split image phase detection), a real-time autofocus method applicable in every widefield-based microscope. RAPID-enabled light-sheet microscopy reliably reconstructs intact, cleared mouse brains with subcellular resolution, and allowed us to characterize the three-dimensional (3D) spatial clustering of somatostatin-positive neurons in the whole encephalon, including densely labeled areas. Furthermore, it enabled 3D morphological analysis of microglia across the entire brain. Beyond light-sheet microscopy, we demonstrate that RAPID maintains high image quality in various settings, from in vivo fluorescence imaging to 3D tracking of fast-moving organisms. RAPID thus provides a flexible autofocus solution that is suitable for traditional automated microscopy tasks as well as for quantitative analysis of large biological specimens.
Collapse
|
21
|
Kooijmans RN, Sierhuis W, Self MW, Roelfsema PR. A Quantitative Comparison of Inhibitory Interneuron Size and Distribution between Mouse and Macaque V1, Using Calcium-Binding Proteins. Cereb Cortex Commun 2021; 1:tgaa068. [PMID: 34296129 PMCID: PMC8152890 DOI: 10.1093/texcom/tgaa068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022] Open
Abstract
The mouse is a useful and popular model for studying of visual cortical function. To facilitate the translation of results from mice to primates, it is important to establish the extent of cortical organization equivalence between species and to identify possible differences. We focused on the different types of interneurons as defined by calcium-binding protein (CBP) expression in the layers of primary visual cortex (V1) in mouse and rhesus macaque. CBPs parvalbumin (PV), calbindin (CB), and calretinin (CR) provide a standard, largely nonoverlapping, labeling scheme in macaque, with preserved corresponding morphologies in mouse, despite a slightly higher overlap. Other protein markers, which are relevant in mouse, are not preserved in macaque. We fluorescently tagged CBPs in V1 of both species, using antibodies raised against preserved aminoacid sequences. Our data demonstrate important similarities between the expression patterns of interneuron classes in the different layers between rodents and primates. However, in macaque, expression of PV and CB is more abundant, CR expression is lower, and the laminar distribution of interneuron populations is more differentiated. Our results reveal an integrated view of interneuron types that provides a basis for translating results from rodents to primates, and suggest a reconciliation of previous results.
Collapse
Affiliation(s)
- Roxana N Kooijmans
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, the Netherlands
| | - Wesley Sierhuis
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Meier AM, Wang Q, Ji W, Ganachaud J, Burkhalter A. Modular Network between Postrhinal Visual Cortex, Amygdala, and Entorhinal Cortex. J Neurosci 2021; 41:4809-4825. [PMID: 33849948 PMCID: PMC8260166 DOI: 10.1523/jneurosci.2185-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within muscarinic acetylcholine receptor 2 (M2)-positive (M2+) or M2- modules of POR that associate inputs from the thalamus, cortex, and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amygdala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nucleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2+ patches of POR. In contrast, input from the amygdala to L1 of POR terminated in M2- interpatches. Importantly, the amygdalocortical input to M2- interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amygdala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for navigation, do not receive direct thalamocortical M2+ patch-targeting inputs. Instead, they involve local networks of M2- interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to visual landmark cues for navigation.SIGNIFICANCE STATEMENT A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them. However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex, the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources. One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation.
Collapse
Affiliation(s)
- Andrew M Meier
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Quanxin Wang
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Weiqing Ji
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Jehan Ganachaud
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
23
|
Herrero JL, Thiele A. Effects of muscarinic and nicotinic receptors on contextual modulation in macaque area V1. Sci Rep 2021; 11:8384. [PMID: 33863988 PMCID: PMC8052350 DOI: 10.1038/s41598-021-88044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023] Open
Abstract
Context affects the salience and visibility of image elements in visual scenes. Collinear flankers can enhance or decrease the perceptual and neuronal sensitivity to flanked stimuli. These effects are mediated through lateral interactions between neurons in the primary visual cortex (area V1), in conjunction with feedback from higher visual areas. The strength of lateral interactions is affected by cholinergic neuromodulation. Blockade of muscarinic receptors should increase the strength of lateral intracortical interactions, while nicotinic blockade should reduce thalamocortical feed-forward drive. Here we test this proposal through local iontophoretic application of the muscarinic receptor antagonist scopolamine and the nicotinic receptor antagonist mecamylamine, while recording single cells in parafoveal representations in awake fixating macaque V1. Collinear flankers generally reduced neuronal contrast sensitivity. Muscarinic and nicotinic receptor blockade equally reduced neuronal contrast sensitivity. Contrary to our hypothesis, flanker interactions were not systematically affected by either receptor blockade.
Collapse
Affiliation(s)
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
24
|
Federer F, Ta'afua S, Merlin S, Hassanpour MS, Angelucci A. Stream-specific feedback inputs to the primate primary visual cortex. Nat Commun 2021; 12:228. [PMID: 33431862 PMCID: PMC7801467 DOI: 10.1038/s41467-020-20505-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The sensory neocortex consists of hierarchically-organized areas reciprocally connected via feedforward and feedback circuits. Feedforward connections shape the receptive field properties of neurons in higher areas within parallel streams specialized in processing specific stimulus attributes. Feedback connections have been implicated in top-down modulations, such as attention, prediction and sensory context. However, their computational role remains unknown, partly because we lack knowledge about rules of feedback connectivity to constrain models of feedback function. For example, it is unknown whether feedback connections maintain stream-specific segregation, or integrate information across parallel streams. Using viral-mediated labeling of feedback connections arising from specific cytochrome-oxidase stripes of macaque visual area V2, here we show that feedback to the primary visual cortex (V1) is organized into parallel streams resembling the reciprocal feedforward pathways. This suggests that functionally-specialized V2 feedback channels modulate V1 responses to specific stimulus attributes, an organizational principle potentially extending to feedback pathways in other sensory systems.
Collapse
Affiliation(s)
- Frederick Federer
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Seminare Ta'afua
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84132, USA
| | - Sam Merlin
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW, 2560, Australia
| | - Mahlega S Hassanpour
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science Moran Eye Institute, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
25
|
Zhang Y, Zhang X. Portrait of visual cortical circuits for generating neural oscillation dynamics. Cogn Neurodyn 2020; 15:3-16. [PMID: 34109010 DOI: 10.1007/s11571-020-09623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
The mouse primary visual cortex (V1) has emerged as a classical system to study neural circuit mechanisms underlying visual function and plasticity. A variety of efferent-afferent neuronal connections exists within the V1 and between the V1 and higher visual cortical areas or thalamic nuclei, indicating that the V1 system is more than a mere receiver in information processing. Sensory representations in the V1 are dynamically correlated with neural activity oscillations that are distributed across different cortical layers in an input-dependent manner. Circuits consisting of excitatory pyramidal cells (PCs) and inhibitory interneurons (INs) are the basis for generating neural oscillations. In general, INs are clustered with their adjacent PCs to form specific microcircuits that gate or filter the neural information. The interaction between these two cell populations has to be coordinated within a local circuit in order to preserve neural coding schemes and maintain excitation-inhibition (E-I) balance. Phasic alternations of the E-I balance can dynamically regulate temporal rhythms of neural oscillation. Accumulating experimental evidence suggests that the two major sub-types of INs, parvalbumin-expressing (PV+) cells and somatostatin-expressing (SOM+) INs, are active in controlling slow and fast oscillations, respectively, in the mouse V1. The review summarizes recent experimental findings on elucidating cellular or circuitry mechanisms for the generation of neural oscillations with distinct rhythms in either developing or matured mouse V1, mainly focusing on visual relaying circuits and distinct local inhibitory circuits.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
26
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|