1
|
Stieglitz T, Bersch I, Mrachacz-Kersting N, Pasluosta C. Differences and Commonalities of Electrical Stimulation Paradigms After Central Paralysis and Amputation. Artif Organs 2025. [PMID: 40317785 DOI: 10.1111/aor.15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Patients with spinal cord injury (SCI) or with severe brain stroke suffer from life-lasting functional and sensory impairments. Other traumatic injuries such as limb loss after an accident or disease also affect motor function and sensory feedback and impair quality of life in those individuals. Invasive and non-invasive functional electrical stimulation (FES) is a well-established method to partially restore function and sensory feedback of paralyzed and phantom limbs. It is also a supporting technology for the rehabilitation of the neuromuscular system and for complementing assistive devices. METHODS This work reviews the current state-of-the-art of FES as a technology for restoring function and supporting rehabilitation therapy and assistive devices. RESULTS Electrodes, electrical stimulation, use of brain signals for rehabilitation and control, and sensory feedback are covered as parts of the whole. A perspective is given on how clinical and research protocols developed for patients with SCI and brain injuries can be translated to the treatment of patients with an amputation and vice versa. We further elaborate on how motor learning strategies with quantitative electrophysiological and kinematic measurements may help caregivers in the rehabilitation process. Insights from practitioners (collected during a workshop of the IFESS 2025) have been integrated to summarize common needs, open questions, and challenges. CONCLUSIONS The information from the literature and from practitioners was integrated to propose the next steps towards establishing common guidelines and measures of FES in clinical practice towards evidence-driven treatment and objective assessments.
Collapse
Affiliation(s)
- Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools//IMBIT, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ines Bersch
- International FES Centre, Swiss Paraplegic Center, Nottwil, Switzerland
| | - Natalie Mrachacz-Kersting
- BrainLinks-BrainTools//IMBIT, University of Freiburg, Freiburg, Germany
- Department of Sports and Sport Sciences, University of Freiburg, Freiburg, Germany
| | - Cristian Pasluosta
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools//IMBIT, University of Freiburg, Freiburg, Germany
- International FES Centre, Swiss Paraplegic Center, Nottwil, Switzerland
| |
Collapse
|
2
|
Li WY, Qu WR, Li Y, Wang SY, Liu DM, Deng LX, Wang Y. DBS in the restoration of motor functional recovery following spinal cord injury. Front Neurol 2024; 15:1442281. [PMID: 39697443 PMCID: PMC11652279 DOI: 10.3389/fneur.2024.1442281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
The landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms. A literature review via Web of Science and PubMed databases from 1990 to May 29, 2024, reveals a growing body of evidence for therapeutic DBS in SCI recovery. Advances in techniques like optogenetics and whole-brain tractogram have helped elucidate DBS mechanisms. Neuronal targets sites for SCI functional recovery include the mesencephalic locomotor region (MLR), cuneiform nucleus (CNF), and nucleus raphe magnus (NRG), with pedunculopontine nucleus (PPN), periaqueductal gray (PAG), and nucleus ventroposterolateral thalami (VPL) for post-injury functional recovery treatment. Radiologically guided DBS optimization and combination therapy with classical rehabilitation have become an effective therapeutic method, though ongoing interventional trials are needed to enhance understanding and validate DBS efficacy in SCI. On the pre-clinical front, standardization of pre-clinical approaches are essential to enhance the quality of evidence on DBS safety and efficacy. Mapping brain targets and optimizing DBS protocols, aided by combined DBS and medical imaging, are critical endeavors. Overall, DBS holds promise for neurological and functional recovery after SCI, akin to other electrical stimulation approaches.
Collapse
Affiliation(s)
- Wen-yuan Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Wen-rui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Shu-ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Dong-ming Liu
- Department of Neurology, Mudanjiang First People’s Hospital, Mudanjiang, China
| | - Ling-xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| |
Collapse
|
3
|
Hartner JP, Yi D, Zhu HL, Watson BO, Chen L. Three-dimensional-printed headcap with embedded microdrive system for customizable multi-region brain recordings with neural probes. Front Neurosci 2024; 18:1478421. [PMID: 39483323 PMCID: PMC11524913 DOI: 10.3389/fnins.2024.1478421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Electrophysiological recordings from single neurons are crucial for understanding the complex functioning of the brain and for developing eventual therapeutic interventions. For electrophysiology, the accuracy and fidelity of invasive implantations of small devices remains unmatched. This study introduces an innovative, cost-efficient, 3D-printed headcap with embedded microdrive (THEM) system designed to streamline the manual labor-intensive in-vivo electrode implantation process for efficient and precise multi-region brain neural probe implantations. A custom bregma-referenced headcap design and fabrication, embedded microdrive integration, and upper support structure for probe packaging are described. With the Sprague Dawley rat as test species and medial prefrontal cortex and CA1 of the dorsal hippocampus as targets, surgeries and electrophysiological recordings were conducted to test the capability of the THEM system as compared to conventional surgical methods. By shifting manual stereotaxic alignment work to pre-surgical preparation of a fully assembled headcap system, incorporating fully preassembled upper support framework for packaging management, and easy customization for specific experiment designs and probe types, our system significantly reduces the surgical time, simplifies multi-implant procedures, and enhances procedural accuracy and repeatability. The THEM system demonstrates a significant improvement over conventional surgical implantation methods and offers a promising tool for future neuroscience research.
Collapse
Affiliation(s)
- Jeremiah P. Hartner
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Harrison L. Zhu
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Brendon O. Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
4
|
Iwasa SN, Liu X, Naguib HE, Kalia SK, Popovic MR, Morshead CM. Electrical Stimulation for Stem Cell-Based Neural Repair: Zapping the Field to Action. eNeuro 2024; 11:ENEURO.0183-24.2024. [PMID: 39256040 PMCID: PMC11391505 DOI: 10.1523/eneuro.0183-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
| | - Xilin Liu
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Hani E Naguib
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario M5T 2S8, Canada
- Krembil Research Institute, Toronto, Ontario M5T 2S8, Canada
| | - Milos R Popovic
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Cindi M Morshead
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
5
|
Tanaka M, Battaglia S, Giménez-Llort L, Chen C, Hepsomali P, Avenanti A, Vécsei L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells 2024; 13:790. [PMID: 38786014 PMCID: PMC11120114 DOI: 10.3390/cells13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Translational research in neurological and psychiatric diseases is a rapidly advancing field that promises to redefine our approach to these complex conditions [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan;
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ET, UK;
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Boden K, Pongratanakul P, Vogel J, Willemsen N, Jülke EM, Balitzki J, Tinel H, Truebel H, Dinh W, Mondritzki T. Telemetric long-term assessment of autonomic function in experimental heart failure. J Pharmacol Toxicol Methods 2023; 124:107480. [PMID: 37979811 DOI: 10.1016/j.vascn.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Despite medical advances in the treatment of heart failure (HF), mortality remains high. It has been shown that alterations of the autonomic-nervous-system (ANS) are associated with HF progression and increased mortality. Preclinical models are required to evaluate the effectiveness of novel treatments modulating the autonomic imbalance. However, there are neither standard models nor diagnostic methods established to measure sympathetic and parasympathetic outflow continuously. Digital technologies might be a reliable tool for continuous assessment of autonomic function within experimental HF models. Telemetry devices and pacemakers were implanted in beagle dogs (n = 6). HF was induced by ventricular pacing. Cardiac hemodynamics, plasma catecholamines and parameter describing the ANS ((heart rate variability (HRV), deceleration capacity (DC), and baroreflex sensitivity (BRS)) were continuously measured at baseline, during HF conditions and during recovery phase. The pacing regime led to the expected depression in cardiac hemodynamics. Telemetric assessment of the ANS function showed a significant decrease in Total power, DC, and Heart rate recovery, whereas BRS was not significantly affected. In contrast, plasma catecholamines, revealing sympathetic activity, showed only a significant increase in the recovery phase. A precise diagnostic of the ANS in the context of HF is becoming increasingly important in experimental models. Up to now, these models have shown many limitations. Here we present the continuous assessment of the autonomic function in the progression of HF. We could demonstrate the advantage of highly resolved ANS measurement by HR and BP derived parameters due to early detection of an autonomic imbalance in the progression of HF.
Collapse
Affiliation(s)
- Katharina Boden
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany
| | | | - Julia Vogel
- University of Witten/Herdecke, Witten, Germany; Clinic for Cardiology and Angiology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Nicola Willemsen
- Bayer AG, Wuppertal, Germany; University of Duisburg-, Essen, Germany
| | | | - Jakob Balitzki
- Bayer AG, Wuppertal, Germany; Hannover Medical School, Hannover, Germany
| | | | | | - Wilfried Dinh
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany; Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Thomas Mondritzki
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany.
| |
Collapse
|
7
|
Wiegert JS, Spehr M, Hanganu-Opatz IL. Systems neuroscience: A box full of tools to illuminate the black box of the brain. PLoS Biol 2023; 21:e3002221. [PMID: 37498809 PMCID: PMC10374051 DOI: 10.1371/journal.pbio.3002221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Investigation of brain function has been fueled by an accelerating development of novel technologies and tools. This Perspective looks at the unprecedented neurotechnological progress of the past 2 decades and discusses future strategies to elucidate brain function.
Collapse
Affiliation(s)
- J Simon Wiegert
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Yoo SH, Choi K, Nam S, Yoon EK, Sohn JW, Oh BM, Shim J, Choi MY. Development of Korea Neuroethics Guidelines. J Korean Med Sci 2023; 38:e193. [PMID: 37365727 DOI: 10.3346/jkms.2023.38.e193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Advances in neuroscience and neurotechnology provide great benefits to humans though unknown challenges may arise. We should address these challenges using new standards as well as existing ones. Novel standards should include ethical, legal, and social aspects which would be appropriate for advancing neuroscience and technology. Therefore, the Korea Neuroethics Guidelines were developed by stakeholders related to neuroscience and neurotechnology, including experts, policy makers, and the public in the Republic of Korea. METHOD The guidelines were drafted by neuroethics experts, were disclosed at a public hearing, and were subsequently revised by opinions of various stakeholders. RESULTS The guidelines are composed of twelve issues; humanity or human dignity, individual personality and identity, social justice, safety, sociocultural prejudice and public communication, misuse of technology, responsibility for the use of neuroscience and technology, specificity according to the purpose of using neurotechnology, autonomy, privacy and personal information, research, and enhancement. CONCLUSION Although the guidelines may require a more detailed discussion after future advances in neuroscience and technology or changes in socio-cultural milieu, the development of the Korea Neuroethics Guidelines is a milestone for the scientific community and society in general for the ongoing development in neuroscience and neurotechnology.
Collapse
Affiliation(s)
- Sang-Ho Yoo
- Department of Medical Humanities and Ethics, Hanyang University College of Medicine, Seoul, Korea
| | - Kyungsuk Choi
- School of Law/Bioethics Policy Studies, Ewha Womans University, Seoul, Korea
| | - Seungmin Nam
- Department of Pre-Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Ei-Kyung Yoon
- Department of Criminal Justice Policy Research, Korean Institute of Criminology and Justice, Seoul, Korea
| | - Jeong-Woo Sohn
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jiwon Shim
- Department of Philosophy, Dongguk University, Seoul, Korea
| | - Min-Young Choi
- Department of Criminal Justice Policy Research, Korean Institute of Criminology and Justice, Seoul, Korea.
| |
Collapse
|
9
|
Nguyen MH, Onken A, Wulff A, Foremny K, Torgau P, Schütte H, Hild S, Doll T. Computational Modeling of Diffusion-Based Delamination for Active Implantable Medical Devices. Bioengineering (Basel) 2023; 10:bioengineering10050625. [PMID: 37237696 DOI: 10.3390/bioengineering10050625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Delamination at heterogeneous material interfaces is one of the most prominent failure modes in active implantable medical devices (AIMDs). A well-known example of an AIMD is the cochlear implant (CI). In mechanical engineering, a multitude of testing procedures are known whose data can be used for detailed modeling with respect to digital twins. Detailed, complex models for digital twins are still lacking in bioengineering since body fluid infiltration occurs both into the polymer substrate and along the metal-polymer interfaces. For a newly developed test for an AIMD or CI composed of silicone rubber and metal wiring or electrodes, a mathematical model of these mechanisms is presented. It provides a better understanding of the failure mechanisms in such devices and their validation against real-life data. The implementation utilizes COMSOL Multiphysics®, consisting of a volume diffusion part and models for interface diffusion (and delamination). For a set of experimental data, the necessary diffusion coefficient could be derived. A subsequent comparison of experimental and modeling results showed a good qualitative and functional match. The delamination model follows a mechanical approach. The results of the interface diffusion model, which follows a substance transport-based approach, show a very good approximation to the results of previous experiments.
Collapse
Affiliation(s)
- Minh-Hai Nguyen
- Department of Otolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School MHH, 30625 Hannover, Germany
- Department of Otolaryngology, Hannover Medical School MHH, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Adrian Onken
- Department of Otolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School MHH, 30625 Hannover, Germany
- Department of Otolaryngology, Hannover Medical School MHH, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Department of Engineering, Jade University of Applied Sciences, 26382 Wilhelmshaven, Germany
| | - Anika Wulff
- Department of Otolaryngology, Hannover Medical School MHH, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Katharina Foremny
- Department of Otolaryngology, Hannover Medical School MHH, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Patricia Torgau
- Department of Otolaryngology, Hannover Medical School MHH, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Helmut Schütte
- Department of Engineering, Jade University of Applied Sciences, 26382 Wilhelmshaven, Germany
| | - Sabine Hild
- Institute of Polymer Chemistry, Johannes Kepler University, 4010 Linz, Austria
| | - Theodor Doll
- Department of Otolaryngology and Cluster of Excellence "Hearing4all", Hannover Medical School MHH, 30625 Hannover, Germany
- Department of Otolaryngology, Hannover Medical School MHH, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany
| |
Collapse
|
10
|
Böhler C, Vomero M, Soula M, Vöröslakos M, Porto Cruz M, Liljemalm R, Buzsaki G, Stieglitz T, Asplund M. Multilayer Arrays for Neurotechnology Applications (MANTA): Chronically Stable Thin-Film Intracortical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207576. [PMID: 36935361 DOI: 10.1002/advs.202207576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023]
Abstract
Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10-60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.
Collapse
Affiliation(s)
- Christian Böhler
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Vomero
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Maria Porto Cruz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Rickard Liljemalm
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - György Buzsaki
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, 10016, USA
| | - Thomas Stieglitz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Division of Nursing and Medical Technology, Luleå University of Technology, Luleå, 97187, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
11
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
12
|
Farina D, Vujaklija I, Brånemark R, Bull AMJ, Dietl H, Graimann B, Hargrove LJ, Hoffmann KP, Huang HH, Ingvarsson T, Janusson HB, Kristjánsson K, Kuiken T, Micera S, Stieglitz T, Sturma A, Tyler D, Weir RFF, Aszmann OC. Toward higher-performance bionic limbs for wider clinical use. Nat Biomed Eng 2023; 7:473-485. [PMID: 34059810 DOI: 10.1038/s41551-021-00732-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, London, UK.
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Rickard Brånemark
- Center for Extreme Bionics, Biomechatronics Group, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, London, UK
| | - Hans Dietl
- Ottobock Products SE & Co. KGaA, Vienna, Austria
| | | | - Levi J Hargrove
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Klaus-Peter Hoffmann
- Department of Medical Engineering & Neuroprosthetics, Fraunhofer-Institut für Biomedizinische Technik, Sulzbach, Germany
| | - He Helen Huang
- NCSU/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thorvaldur Ingvarsson
- Department of Research and Development, Össur Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Hilmar Bragi Janusson
- School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Todd Kuiken
- Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
- Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, BrainLinks-BrainTools Center and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Agnes Sturma
- Department of Bioengineering, Imperial College London, London, UK
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Dustin Tyler
- Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Veterans Affairs Medical Centre, Cleveland, OH, USA
| | - Richard F Ff Weir
- Biomechatronics Development Laboratory, Bioengineering Department, University of Colorado Denver and VA Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Oskar C Aszmann
- Clinical Laboratory for Bionic Extremity Reconstruction, Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Mostajo-Radji MA. A Latin American perspective on neurodiplomacy. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1005043. [PMID: 36712171 PMCID: PMC9880232 DOI: 10.3389/fmedt.2022.1005043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mohammed A. Mostajo-Radji
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
14
|
Valle G. Peripheral neurostimulation for encoding artificial somatosensations. Eur J Neurosci 2022; 56:5888-5901. [PMID: 36097134 PMCID: PMC9826263 DOI: 10.1111/ejn.15822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The direct neural stimulation of peripheral or central nervous systems has been shown as an effective tool to treat neurological conditions. The electrical activation of the nervous sensory pathway can be adopted to restore the artificial sense of touch and proprioception in people suffering from sensory-motor disorders. The modulation of the neural stimulation parameters has a direct effect on the electrically induced sensations, both when targeting the somatosensory cortex and the peripheral somatic nerves. The properties of the artificial sensations perceived, as their location, quality and intensity are strongly dependent on the direct modulation of pulse width, amplitude and frequency of the neural stimulation. Different sensory encoding schemes have been tested in patients showing distinct effects and outcomes according to their impact on the neural activation. Here, I reported the most adopted neural stimulation strategies to artificially encode somatosensation into the peripheral nervous system. The real-time implementation of these strategies in bionic devices is crucial to exploit the artificial sensory feedback in prosthetics. Thus, neural stimulation becomes a tool to directly communicate with the human nervous system. Given the importance of adding artificial sensory information to neuroprosthetic devices to improve their control and functionality, the choice of an optimal neural stimulation paradigm could increase the impact of prosthetic devices on the quality of life of people with sensorimotor disabilities.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and TechnologyInstitute for Robotics and Intelligent Systems, ETH ZürichZürichSwitzerland
| |
Collapse
|
15
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Otte E, Vlachos A, Asplund M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell Tissue Res 2022; 387:461-477. [PMID: 35029757 PMCID: PMC8975777 DOI: 10.1007/s00441-021-03567-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Neural probes are sophisticated electrophysiological tools used for intra-cortical recording and stimulation. These microelectrode arrays, designed to penetrate and interface the brain from within, contribute at the forefront of basic and clinical neuroscience. However, one of the challenges and currently most significant limitations is their ‘seamless’ long-term integration into the surrounding brain tissue. Following implantation, which is typically accompanied by bleeding, the tissue responds with a scarring process, resulting in a gliotic region closest to the probe. This glial scarring is often associated with neuroinflammation, neurodegeneration, and a leaky blood–brain interface (BBI). The engineering progress on minimizing this reaction in the form of improved materials, microfabrication, and surgical techniques is summarized in this review. As research over the past decade has progressed towards a more detailed understanding of the nature of this biological response, it is time to pose the question: Are penetrating probes completely free from glial scarring at all possible?
Collapse
|
17
|
Devi M, Vomero M, Fuhrer E, Castagnola E, Gueli C, Nimbalkar S, Hirabayashi M, Kassegne S, Stieglitz T, Sharma S. Carbon-based neural electrodes: promises and challenges. J Neural Eng 2021; 18. [PMID: 34404037 DOI: 10.1088/1741-2552/ac1e45] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.
Collapse
Affiliation(s)
- Mamta Devi
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Maria Vomero
- Bioelectronic Systems Laboratory, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Erwin Fuhrer
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075 India
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Calogero Gueli
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany
| | - Surabhi Nimbalkar
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Mieko Hirabayashi
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Sam Kassegne
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany
| | - Swati Sharma
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| |
Collapse
|
18
|
Sellers KK, Chung JE, Zhou J, Triplett MG, Dawes HE, Haque R, Chang EF. Thin-film microfabrication and intraoperative testing of µECoG and iEEG depth arrays for sense and stimulation. J Neural Eng 2021; 18:10.1088/1741-2552/ac1984. [PMID: 34330113 PMCID: PMC10495194 DOI: 10.1088/1741-2552/ac1984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/30/2021] [Indexed: 11/11/2022]
Abstract
Objective.Intracranial neural recordings and electrical stimulation are tools used in an increasing range of applications, including intraoperative clinical mapping and monitoring, therapeutic neuromodulation, and brain computer interface control and feedback. However, many of these applications suffer from a lack of spatial specificity and localization, both in terms of sensed neural signal and applied stimulation. This stems from limited manufacturing processes of commercial-off-the-shelf (COTS) arrays unable to accommodate increased channel density, higher channel count, and smaller contact size.Approach.Here, we describe a manufacturing and assembly approach using thin-film microfabrication for 32-channel high density subdural micro-electrocorticography (µECoG) surface arrays (contacts 1.2 mm diameter, 2 mm pitch) and intracranial electroencephalography (iEEG) depth arrays (contacts 0.5 mm × 1.5 mm, pitch 0.8 mm × 2.5 mm). Crucially, we tackle the translational hurdle and test these arrays during intraoperative studies conducted in four humans under regulatory approval.Main results.We demonstrate that the higher-density contacts provide additional unique information across the recording span compared to the density of COTS arrays which typically have electrode pitch of 8 mm or greater; 4 mm in case of specially ordered arrays. Our intracranial stimulation study results reveal that refined spatial targeting of stimulation elicits evoked potentials with differing spatial spread.Significance.Thin-film,μECoG and iEEG depth arrays offer a promising substrate for advancing a number of clinical and research applications reliant on high-resolution neural sensing and intracranial stimulation.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States of America
- These authors contributed equally
| | - Jason E Chung
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States of America
- These authors contributed equally
| | - Jenny Zhou
- Lawrence Livermore National Laboratories, Livermore, CA, United States of America
| | - Michael G Triplett
- Lawrence Livermore National Laboratories, Livermore, CA, United States of America
| | - Heather E Dawes
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States of America
| | - Razi Haque
- Lawrence Livermore National Laboratories, Livermore, CA, United States of America
| | - Edward F Chang
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
19
|
Strauss I, Niederhoffer T, Giannotti A, Panarese AM, Bernini F, Gabisonia K, Ottaviani MM, Petrini FM, Recchia FA, Raspopovic S, Micera S. Q-PINE: A quick to implant peripheral intraneural electrode. J Neural Eng 2020; 17. [DOI: 10.1088/1741-2552/abc52a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/27/2020] [Indexed: 11/11/2022]
|
20
|
Borton DA, Dawes HE, Worrell GA, Starr PA, Denison TJ. Developing Collaborative Platforms to Advance Neurotechnology and Its Translation. Neuron 2020; 108:286-301. [PMID: 33120024 PMCID: PMC7610607 DOI: 10.1016/j.neuron.2020.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Neurotechnological devices are failing to deliver on their therapeutic promise because of the time it takes to translate them from bench to clinic. In this Perspective, we reflect on lessons learned from medical device successes and failures and consider how such lessons might shape a strategic vision for translating neurotechnologies in the future. We articulate how the intentional design and deployment of "scientific platforms," from the technology stack of hardware and software through the supporting ecosystem, could catalyze a new wave of innovation, discovery, and therapy. We also identify specific actions that could promote future neurotechnology roadmaps and industrial-academic-government collaborative activities. We believe that community-supported neurotechnology platforms will prove to be transformational in accelerating ideas from bench to bedside, maximizing scientific discovery and improving patient care.
Collapse
Affiliation(s)
- David A Borton
- School of Engineering and the Carney Institute for Brain Science, Brown University, Providence, RI 02906, USA; VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
| | - Heather E Dawes
- Department of Neurological Surgery, UCSF, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94143, USA
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55902, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Philip A Starr
- Department of Neurological Surgery, UCSF, San Francisco, CA 94143, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94143, USA
| | - Timothy J Denison
- Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK; MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
21
|
Kiele P, Braig D, Weis J, Baslan Y, Pasluosta C, Stieglitz T. Neural Implants Without Electronics: A Proof-of-Concept Study on a Human Skin Model. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:91-97. [PMID: 35402961 PMCID: PMC8975271 DOI: 10.1109/ojemb.2020.2981254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 03/10/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: Chronic neural implants require energy and signal supply. The objective of this work was to evaluate a multichannel transcutaneous coupling approach in an ex vivo split-concept study, which minimizes the invasiveness of such an implant by externalizing the processing electronics. Methods: Herein, the experimental work focused on the transcutaneous energy and signal transmission. The performance was discussed with widely evaluated concepts of neural interfaces in the literature. Results: The performance of the transcutaneous coupling approach increased with higher channel count and higher electrode pitches. Electrical crosstalk among channels was present, but acceptable for the stimulation of peripheral nerves. Conclusions: Transcutaneous coupling with extracorporeal transmitting arrays and subcutaneous counterparts provide a promising alternative to the inductive concept particularly when a fully integration of the system in a prosthetic shaft is intended. The relocation of the electronics can potentially prevent pressure sores, improve accessibility for maintenance and increase lifetime of the implant.
Collapse
Affiliation(s)
- Patrick Kiele
- Laboratory of Biomedical MicrotechnologyDepartment of Microsystems Engineering-IMTEKUniversity of Freiburg 79110 Freiburg Germany
| | - David Braig
- Department of Plastic and Hand Surgery, Medical Center-University of FreiburgFaculty of MedicineUniversity of Freiburg 79106 Freiburg Germany
- Division of HandPlastic and Aesthetic SurgeryUniversity Hospital 80336 LMU Munich Germany
| | - Jakob Weis
- Division of HandPlastic and Aesthetic SurgeryUniversity Hospital 80336 LMU Munich Germany
| | - Yara Baslan
- Laboratory of Biomedical MicrotechnologyDepartment of Microsystems Engineering-IMTEKUniversity of Freiburg 79110 Freiburg Germany
| | - Cristian Pasluosta
- Laboratory of Biomedical MicrotechnologyDepartment of Microsystems Engineering-IMTEKUniversity of Freiburg 79110 Freiburg Germany
| | - Thomas Stieglitz
- Laboratory of Biomedical MicrotechnologyDepartment of Microsystems Engineering-IMTEKUniversity of Freiburg 79110 Freiburg Germany
- Bernstein Center FreiburgUniversity of Freiburg 79098 Freiburg Germany
- BrainLinks-BrainToolsUniversity of Freiburg 79110 Freiburg Germany
| |
Collapse
|