1
|
Ramsaran AI, Ventura S, Gallucci J, De Snoo ML, Josselyn SA, Frankland PW. A sensitive period for the development of episodic-like memory in mice. Curr Biol 2025; 35:2032-2048.e3. [PMID: 40215964 PMCID: PMC12055481 DOI: 10.1016/j.cub.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 04/25/2025]
Abstract
Episodic-like memory is a later-developing cognitive function supported by the hippocampus. In mice, the formation of extracellular perineuronal nets in subfield cornu ammonis (CA) 1 of the dorsal hippocampus controls the emergence of episodic-like memory during the fourth post-natal week. Whether the timing of episodic-like memory onset is hard-wired, or flexibly set by early-life experiences during a critical or sensitive period for hippocampal maturation, is unknown. Here, we show that the trajectories for episodic-like memory development vary for mice given different sets of experiences spanning the second and third post-natal weeks. Specifically, episodic-like memory precision developed later in mice that experienced early-life adversity, while it developed earlier in mice that experienced early-life enrichment. Moreover, we demonstrate that early-life experiences set the timing of episodic-like memory development by modulating the pace of perineuronal net formation in dorsal CA1, which is dependent on the brain-derived neurotrophic factor (BDNF)-tropomysin receptor kinase B (TrkB) signaling pathway. These results indicate that the hippocampus undergoes a sensitive period during which early-life experiences determine the timing for episodic-like memory development.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Silvia Ventura
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Julia Gallucci
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Mitchell L De Snoo
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sheena A Josselyn
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul W Frankland
- Neurosciences & Mental Health Program, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research, 661 University Ave., Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
2
|
Xie F, Jain S, Xu R, Butrus S, Tan Z, Xu X, Shekhar K, Zipursky SL. Spatial profiling of the interplay between cell type- and vision-dependent transcriptomic programs in the visual cortex. Proc Natl Acad Sci U S A 2025; 122:e2421022122. [PMID: 39946537 PMCID: PMC11848306 DOI: 10.1073/pnas.2421022122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 02/19/2025] Open
Abstract
How early sensory experience during "critical periods" of postnatal life affects the organization of the mammalian neocortex at the resolution of neuronal cell types is poorly understood. We previously reported that the functional and molecular profiles of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent [S. Cheng et al., Cell 185, 311-327.e24 (2022)]. Here, we characterize the spatial organization of L2/3 cell types with and without visual experience. Spatial transcriptomic profiling based on 500 genes recapitulates the zonation of L2/3 cell types along the pial-ventricular axis in V1. By applying multitasking theory, we suggest that the spatial zonation of L2/3 cell types is linked to the continuous nature of their gene expression profiles, which can be represented as a 2D manifold bounded by three archetypal cell types. By comparing normally reared and dark reared L2/3 cells, we show that visual deprivation-induced transcriptomic changes comprise two independent gene programs. The first, induced specifically in the visual cortex, includes immediate-early genes and genes associated with metabolic processes. It manifests as a change in cell state that is orthogonal to cell-type-specific gene expression programs. By contrast, the second program impacts L2/3 cell-type identity, regulating a subset of cell-type-specific genes and shifting the distribution of cells within the L2/3 cell-type manifold. Through an integrated analysis of spatial transcriptomics with single-nucleus RNA-seq data, we describe how vision patterns cortical L2/3 cell types during the critical period.
Collapse
Affiliation(s)
- Fangming Xie
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Saumya Jain
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Runzhe Xu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| | - Zhiqun Tan
- Department of Anatomy and Neurobiology, Center for Neural Circuit Mapping, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, Center for Neural Circuit Mapping, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - S. Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
3
|
Elder JR, Zheng J, Shimelis LB, Rutishauser U, Lin MM. An invariant schema emerges within a neural network during hierarchical learning of visual boundaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635821. [PMID: 39975149 PMCID: PMC11838474 DOI: 10.1101/2025.01.30.635821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neural circuits must balance plasticity and stability to enable continual learning without catastrophic forgetting, a pervasive feature of artificial neural networks trained using end-to-end learning (e.g. backpropagation). Here, we apply an alternative, hierarchical learning algorithm to the cognitive task of boundary detection in video clips. In contrast to backpropagation, hierarchical training converges to a network executing a fixed schema and generates firing statistics consistent with single-neuron recordings from human subjects performing the same task. The hierarchically trained network's schema circuit remains invariant following training on sparse data, with additional data serving to refine the upstream representation.
Collapse
Affiliation(s)
- James R. Elder
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Dept. of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Molecular Biophysics Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jie Zheng
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA
- Department of Neurological Surgery, UC Davis Health, Davis, CA, USA
| | - Lydia B. Shimelis
- Biomedical Engineering and Neuroscience, Harvard University, Cambridge, MA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Milo M. Lin
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Dept. of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Dept. of Biophysics, University of Texas Southwestern Medical Ctr., Dallas, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Bissen D, Cary BA, Zhang A, Sailor KA, Van Hooser SD, Turrigiano GG. Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635373. [PMID: 39975102 PMCID: PMC11838381 DOI: 10.1101/2025.01.28.635373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Critical periods are developmental windows of high experience-dependent plasticity essential for the correct refinement of neuronal circuitry and function. While the consequences for the visual system of sensory deprivation during the critical period have been well-characterized, far less is known about the effects of enhanced sensory experience. Here, we use prey capture learning to assess structural and functional plasticity mediating visual learning in the primary visual cortex of critical period mice. We show that prey capture learning improves temporal frequency discrimination and drives a profound remodeling of visual circuitry through an increase in excitatory connectivity and spine turnover. This global and persistent rewiring is not observed in adult hunters and is mediated by TNFα-dependent mechanisms. Our findings demonstrate that enhanced visual experience in a naturalistic paradigm during the critical period can drive structural plasticity to improve visual function, and promotes a long-lasting increase in spine dynamics that could enhance subsequent plasticity.
Collapse
Affiliation(s)
- Diane Bissen
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Brian A Cary
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Amanda Zhang
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Kurt A Sailor
- Institut Pasteur, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | | | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
- Lead Contact
| |
Collapse
|
5
|
Brown TC, McGee AW. Experience directs the instability of neuronal tuning for critical period plasticity in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633213. [PMID: 39868143 PMCID: PMC11761750 DOI: 10.1101/2025.01.15.633213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Brief monocular deprivation during a developmental critical period, but not thereafter, alters the receptive field properties (tuning) of neurons in visual cortex, but the characteristics of neural circuitry that permit this experience-dependent plasticity are largely unknown. We performed repeated calcium imaging at neuronal resolution to track the tuning properties of populations of excitatory layer 2/3 neurons in mouse visual cortex during or after the critical period, as well as in nogo-66 receptor (ngr1) mutant mice that sustain critical-period plasticity as adults. The instability of tuning for populations of neurons was greater in juvenile mice and adult ngr1 mutant mice. We propose instability of neuronal tuning gates plasticity and is directed by experience to alter the tuning of neurons during the critical period.
Collapse
|
6
|
Ramsaran AI, Ventura S, Gallucci J, De Snoo ML, Josselyn SA, Frankland PW. A sensitive period for the development of episodic-like memory in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622296. [PMID: 39574753 PMCID: PMC11580884 DOI: 10.1101/2024.11.06.622296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Episodic-like memory is a later-developing cognitive function supported by the hippocampus. In mice, the formation of extracellular perineuronal nets in subfield CA1 of the dorsal hippocampus controls the emergence of episodic-like memory during the fourth postnatal week (Ramsaran et al., 2023). Whether the timing of episodic-like memory onset is hard-wired, or flexibly set by early-life experiences during a critical or sensitive period for hippocampal maturation, is unknown. Here, we show that the trajectories for episodic-like memory development vary for mice given different sets of experiences spanning the second and third postnatal weeks. Specifically, episodic-like memory precision developed later in mice that experienced early-life adversity, while it developed earlier in mice that experienced early-life enrichment. Moreover, we demonstrate that early-life experiences set the timing of episodic-like memory development by modulating the pace of perineuronal net formation in dorsal CA1. These results indicate that the hippocampus undergoes a sensitive period during which early-life experiences determine the timing for episodic-like memory development.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Silvia Ventura
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia Gallucci
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mitchell L De Snoo
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
| | - Sheena A Josselyn
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul W Frankland
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Xie F, Jain S, Xu R, Butrus S, Tan Z, Xu X, Shekhar K, Zipursky SL. Spatial profiling of the interplay between cell type- and vision-dependent transcriptomic programs in the visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572244. [PMID: 38187533 PMCID: PMC10769288 DOI: 10.1101/2023.12.18.572244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
How early sensory experience during "critical periods" of postnatal life affects the organization of the mammalian neocortex at the resolution of neuronal cell types is poorly understood. We previously reported that the functional and molecular profiles of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent (Tan et al., Neuron, 108(4), 2020; Cheng et al., Cell, 185(2), 2022). Here, we characterize the spatial organization of L2/3 cell types with and without visual experience. Spatial transcriptomic profiling based on 500 genes recapitulates the zonation of L2/3 cell types along the pial-ventricular axis in V1. By applying multi-tasking theory (Adler et al., Cell Systems, 8, 2019), we suggest that the spatial zonation of L2/3 cell types is linked to the continuous nature of their gene expression profiles, which can be represented as a 2D manifold bounded by three archetypal cell types ("A", "B", and "C"). By comparing normally reared and dark reared L2/3 cells, we show that visual deprivation-induced transcriptomic changes comprise two independent gene programs. The first, induced specifically in the visual cortex, includes immediate-early genes and genes associated with metabolic processes. It manifests as a change in cell state that is orthogonal to cell type-specific gene expression programs. By contrast, the second program impacts L2/3 cell type identity, regulating a subset of cell type-specific genes and shifting the distribution of cells within the L2/3 manifold, with a depression of the B-type and C-type and a gain of the A-type. Through an integrated analysis of spatial transcriptomic measurements with single-nucleus RNA-seq data from our previous study, we describe how vision patterns L2/3 cortical cell types during the postnatal critical period. Significance statement Layer 2/3 (L2/3) glutamatergic neurons are important sites of experience-dependent plasticity and learning in the mammalian cortex. Their properties vary continuously with cortical depth and depend upon experience. Here, by applying spatial transcriptomics and different computational approaches in the mouse primary visual cortex, we show that vision regulates orthogonal gene expression programs underlying cell states and cell types. Visual deprivation not only induces an activity-dependent cell state, but also alters the composition of L2/3 cell types, which are appropriately described as a transcriptomic continuum. Our results provide insights into how experience shapes transcriptomes that may, in turn, sculpt brain wiring, function, and behavior.
Collapse
Affiliation(s)
- Fangming Xie
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Saumya Jain
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- These authors contributed equally
| | - Runzhe Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3); Center for Computational Biology; Vision Sciences Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhiqun Tan
- Center for Neural Circuit Mapping (CNCM), Department of Anatomy and Neurobiology, Institute for Memory Impairments and Neurological Disorders (UCIMIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangmin Xu
- Center for Neural Circuit Mapping (CNCM), Department of Anatomy and Neurobiology, Institute for Memory Impairments and Neurological Disorders (UCIMIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3); Center for Computational Biology; Vision Sciences Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - S. Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Lead contact
| |
Collapse
|
8
|
Dai J, Sun QQ. Modulation of cortical representations of sensory and contextual information underlies aversive associative learning. Cell Rep 2024; 43:114672. [PMID: 39196779 PMCID: PMC11472654 DOI: 10.1016/j.celrep.2024.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 08/30/2024] Open
Abstract
Cortical neurons encode both sensory and contextual information, yet it remains unclear how experiences modulate these cortical representations. Here, we demonstrate that trace eyeblink conditioning (TEC), an aversive associative-learning paradigm linking conditioned (CS) with unconditioned stimuli (US), finely tunes cortical coding at both population and single-neuron levels. Initially, we show that the primary somatosensory cortex (S1) is necessary for TEC acquisition, as evidenced by local muscimol administration. At the population level, TEC enhances activity in a small subset (∼20%) of CS- or US-responsive primary neurons (rPNs) while diminishing activity in non-rPNs, including locomotion-tuned or unresponsive PNs. Crucially, TEC learning modulates the encoding of sensory versus contextual information in single rPNs: CS-responsive neurons become less responsive, while US-responsive neurons gain responses to CS. Moreover, we find that the cholinergic pathway, via nicotinic receptors, underlies TEC-induced modulations. These findings suggest that experiences dynamically tune cortical representations through cholinergic pathways.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
9
|
Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT. A dendritic mechanism for balancing synaptic flexibility and stability. Cell Rep 2024; 43:114638. [PMID: 39167486 PMCID: PMC11403626 DOI: 10.1016/j.celrep.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
Collapse
Affiliation(s)
- Courtney E Yaeger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitra Vardalaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Trang L D Pham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of mouse visual circuitry. Nat Neurosci 2024; 27:1462-1467. [PMID: 38977886 DOI: 10.1038/s41593-024-01706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
To test the hypothesized crucial role of microglia in the developmental refinement of neural circuitry, we depleted microglia from mice of both sexes with PLX5622 and examined the experience-dependent maturation of visual circuitry and function. We assessed retinal function, receptive field tuning of visual cortex neurons, acuity and experience-dependent plasticity. None of these measurements detectibly differed in the absence of microglia, challenging the role of microglia in sculpting neural circuits.
Collapse
Affiliation(s)
- Thomas C Brown
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Emily C Crouse
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Cecilia A Attaway
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Dana K Oakes
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Sarah W Minton
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Aaron W McGee
- Department of Anatomical Sciences and Neurobiology, The University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Translational Neuroscience, The University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
11
|
Sancho L, Boisvert MM, Dawoodtabar T, Burgado J, Wang E, Allen NJ. Astrocyte CCN1 stabilizes neural circuits in the adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585077. [PMID: 38559139 PMCID: PMC10979986 DOI: 10.1101/2024.03.14.585077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Neural circuits in many brain regions are refined by experience. Sensory circuits support higher plasticity at younger ages during critical periods - times of circuit refinement and maturation - and limit plasticity in adulthood for circuit stability. The mechanisms underlying these differing plasticity levels and how they serve to maintain and stabilize the properties of sensory circuits remain largely unclear. By combining a transcriptomic approach with ex vivo electrophysiology and in vivo imaging techniques, we identify that astrocytes release cellular communication network factor 1 (CCN1) to maintain synapse and circuit stability in the visual cortex. By overexpressing CCN1 in critical period astrocytes, we find that it promotes the maturation of inhibitory circuits and limits ocular dominance plasticity. Conversely, by knocking out astrocyte CCN1 in adults, binocular circuits are destabilized. These studies establish CCN1 as a novel astrocyte-secreted factor that stabilizes neuronal circuits. Moreover, they demonstrate that the composition and properties of sensory circuits require ongoing maintenance in adulthood, and that these maintenance cues are provided by astrocytes.
Collapse
|
12
|
Carlos-Lima E, Higa GSV, Viana FJC, Tamais AM, Cruvinel E, Borges FDS, Francis-Oliveira J, Ulrich H, De Pasquale R. Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex. Int J Mol Sci 2023; 25:519. [PMID: 38203689 PMCID: PMC10778629 DOI: 10.3390/ijms25010519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Serotonergic neurons constitute one of the main systems of neuromodulators, whose diffuse projections regulate the functions of the cerebral cortex. Serotonin (5-HT) is known to play a crucial role in the differential modulation of cortical activity related to behavioral contexts. Some features of the 5-HT signaling organization suggest its possible participation as a modulator of activity-dependent synaptic changes during the critical period of the primary visual cortex (V1). Cells of the serotonergic system are among the first neurons to differentiate and operate. During postnatal development, ramifications from raphe nuclei become massively distributed in the visual cortical area, remarkably increasing the availability of 5-HT for the regulation of excitatory and inhibitory synaptic activity. A substantial amount of evidence has demonstrated that synaptic plasticity at pyramidal neurons of the superficial layers of V1 critically depends on a fine regulation of the balance between excitation and inhibition (E/I). 5-HT could therefore play an important role in controlling this balance, providing the appropriate excitability conditions that favor synaptic modifications. In order to explore this possibility, the present work used in vitro intracellular electrophysiological recording techniques to study the effects of 5-HT on the E/I balance of V1 layer 2/3 neurons, during the critical period. Serotonergic action on the E/I balance has been analyzed on spontaneous activity, evoked synaptic responses, and long-term depression (LTD). Our results pointed out that the predominant action of 5-HT implies a reduction in the E/I balance. 5-HT promoted LTD at excitatory synapses while blocking it at inhibitory synaptic sites, thus shifting the Hebbian alterations of synaptic strength towards lower levels of E/I balance.
Collapse
Affiliation(s)
- Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo 09210-580, SP, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Alicia Moraes Tamais
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, New York, NY 11203, USA;
| | - José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| |
Collapse
|
13
|
Brown TC, Crouse EC, Attaway CA, Oakes DK, Minton SW, Borghuis BG, McGee AW. Microglia are dispensable for experience-dependent refinement of visual circuitry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562708. [PMID: 37905138 PMCID: PMC10614920 DOI: 10.1101/2023.10.17.562708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Microglia are proposed to be critical for the refinement of developing neural circuitry. However, evidence identifying specific roles for microglia has been limited and often indirect. Here we examined whether microglia are required for the experience-dependent refinement of visual circuitry and visual function during development. We ablated microglia by administering the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622, and then examined the consequences for retinal function, receptive field tuning of neurons in primary visual cortex (V1), visual acuity, and experience-dependent plasticity in visual circuitry. Eradicating microglia by treating mice with PLX5622 beginning at postnatal day (P) 14 did not alter visual response properties of retinal ganglion cells examined three or more weeks later. Mice treated with PLX5622 from P14 lacked more than 95% of microglia in V1 by P18, prior to the opening of the critical period. Despite the absence of microglia, the receptive field tuning properties of neurons in V1 were normal at P32. Similarly, eradicating microglia did not affect the maturation of visual acuity. Mice treated with PLX5622 displayed typical ocular dominance plasticity in response to brief monocular deprivation. Thus, none of these principal measurements of visual circuit development and function detectibly differed in the absence of microglia. We conclude that microglia are dispensable for experience-dependent refinement of visual circuitry. These findings challenge the proposed critical role of microglia in refining neural circuitry.
Collapse
Affiliation(s)
- Thomas C. Brown
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Emily C. Crouse
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Cecilia A. Attaway
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Dana K. Oakes
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Sarah W. Minton
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, KY, 40202
| |
Collapse
|
14
|
Fu J, Tanabe S, Cang J. Widespread and Multifaceted Binocular Integration in the Mouse Primary Visual Cortex. J Neurosci 2023; 43:6495-6507. [PMID: 37604691 PMCID: PMC10513071 DOI: 10.1523/jneurosci.0925-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
The brain combines two-dimensional images received from the two eyes to form a percept of three-dimensional surroundings. This process of binocular integration in the primary visual cortex (V1) serves as a useful model for studying how neural circuits generate emergent properties from multiple input signals. Here, we perform a thorough characterization of binocular integration using electrophysiological recordings in the V1 of awake adult male and female mice by systematically varying the orientation and phase disparity of monocular and binocular stimuli. We reveal widespread binocular integration in mouse V1 and demonstrate that the three commonly studied binocular properties-ocular dominance, interocular matching, and disparity selectivity-are independent of each other. For individual neurons, the responses to monocular stimulation can predict the average amplitude of binocular response but not its selectivity. Finally, the extensive and independent binocular integration of monocular inputs is seen across cortical layers in both regular-spiking and fast-spiking neurons, regardless of stimulus design. Our data indicate that the current model of simple feedforward convergence is inadequate to account for binocular integration in mouse V1, thus suggesting an indispensable role played by intracortical circuits in binocular computation.SIGNIFICANCE STATEMENT Binocular integration is an important step of visual processing that takes place in the visual cortex. Studying the process by which V1 neurons become selective for certain binocular disparities is informative about how neural circuits integrate multiple information streams at a more general level. Here, we systematically characterize binocular integration in mice. Our data demonstrate more widespread and complex binocular integration in mouse V1 than previously reported. Binocular responses cannot be explained by a simple convergence of monocular responses, contrary to the prevailing model of binocular integration. These findings thus indicate that intracortical circuits must be involved in the exquisite computation of binocular disparity, which would endow brain circuits with the plasticity needed for binocular development and processing.
Collapse
Affiliation(s)
- Jieming Fu
- Neuroscience Graduate Program
- Department of Biology
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| | - Jianhua Cang
- Department of Biology
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
15
|
Dai J, Sun QQ. Learning induced neuronal identity switch in the superficial layers of the primary somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555603. [PMID: 37693620 PMCID: PMC10491147 DOI: 10.1101/2023.08.30.555603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During learning, multi-dimensional inputs are integrated within the sensory cortices. However, the strategies by which the sensory cortex employs to achieve learning remains poorly understood. We studied the sensory cortical neuronal coding of trace eyeblink conditioning (TEC) in head-fixed, freely running mice, where whisker deflection was used as a conditioned stimulus (CS) and an air puff to the cornea delivered after an interval was used as unconditioned stimulus (US). After training, mice learned the task with a set of stereotypical behavioral changes, most prominent ones include prolonged closure of eyelids, and increased reverse running between CS and US onset. The local blockade of the primary somatosensory cortex (S1) activities with muscimol abolished the behavior learning suggesting that S1 is required for the TEC. In naive animals, based on the response properties to the CS and US, identities of the small proportion (~20%) of responsive primary neurons (PNs) were divided into two subtypes: CR (i.e. CS-responsive) and UR neurons (i.e. US-responsive). After animals learned the task, identity of CR and UR neurons changed: while the CR neurons are less responsive to CS, UR neurons gain responsiveness to CS, a new phenomenon we defined as 'learning induced neuronal identity switch (LINIS)'. To explore the potential mechanisms underlying LINIS, we found that systemic and local (i.e. in S1) administration of the nicotinic receptor antagonist during TEC training blocked the LINIS, and concomitantly disrupted the behavior learning. Additionally, we monitored responses of two types of cortical interneurons (INs) and observed that the responses of the somatostatin-expressing (SST), but not parvalbumin-expressing (PV) INs are negatively correlated with the learning performance, suggesting that SST-INs contribute to the LINIS. Thus, we conclude that L2/3 PNs in S1 encode perceptual learning by LINIS like mechanisms, and cholinergic pathways and cortical SST interneurons are involved in the formation of LINIS.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| |
Collapse
|
16
|
Experience-dependent functional plasticity and visual response selectivity of surviving subplate neurons in the mouse visual cortex. Proc Natl Acad Sci U S A 2023; 120:e2217011120. [PMID: 36812195 PMCID: PMC9992851 DOI: 10.1073/pnas.2217011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Subplate neurons are early-born cortical neurons that transiently form neural circuits during perinatal development and guide cortical maturation. Thereafter, most subplate neurons undergo cell death, while some survive and renew their target areas for synaptic connections. However, the functional properties of the surviving subplate neurons remain largely unknown. This study aimed to characterize the visual responses and experience-dependent functional plasticity of layer 6b (L6b) neurons, the remnants of subplate neurons, in the primary visual cortex (V1). Two-photon Ca2+ imaging was performed in V1 of awake juvenile mice. L6b neurons showed broader tunings for orientation, direction, and spatial frequency than did layer 2/3 (L2/3) and L6a neurons. In addition, L6b neurons showed lower matching of preferred orientation between the left and right eyes compared with other layers. Post hoc 3D immunohistochemistry confirmed that the majority of recorded L6b neurons expressed connective tissue growth factor (CTGF), a subplate neuron marker. Moreover, chronic two-photon imaging showed that L6b neurons exhibited ocular dominance (OD) plasticity by monocular deprivation during critical periods. The OD shift to the open eye depended on the response strength to the stimulation of the eye to be deprived before starting monocular deprivation. There were no significant differences in visual response selectivity prior to monocular deprivation between the OD changed and unchanged neuron groups, suggesting that OD plasticity can occur in L6b neurons showing any response features. In conclusion, our results provide strong evidence that surviving subplate neurons exhibit sensory responses and experience-dependent plasticity at a relatively late stage of cortical development.
Collapse
|
17
|
Cang J, Fu J, Tanabe S. Neural circuits for binocular vision: Ocular dominance, interocular matching, and disparity selectivity. Front Neural Circuits 2023; 17:1084027. [PMID: 36874946 PMCID: PMC9975354 DOI: 10.3389/fncir.2023.1084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
The brain creates a single visual percept of the world with inputs from two eyes. This means that downstream structures must integrate information from the two eyes coherently. Not only does the brain meet this challenge effortlessly, it also uses small differences between the two eyes' inputs, i.e., binocular disparity, to construct depth information in a perceptual process called stereopsis. Recent studies have advanced our understanding of the neural circuits underlying stereoscopic vision and its development. Here, we review these advances in the context of three binocular properties that have been most commonly studied for visual cortical neurons: ocular dominance of response magnitude, interocular matching of orientation preference, and response selectivity for binocular disparity. By focusing mostly on mouse studies, as well as recent studies using ferrets and tree shrews, we highlight unresolved controversies and significant knowledge gaps regarding the neural circuits underlying binocular vision. We note that in most ocular dominance studies, only monocular stimulations are used, which could lead to a mischaracterization of binocularity. On the other hand, much remains unknown regarding the circuit basis of interocular matching and disparity selectivity and its development. We conclude by outlining opportunities for future studies on the neural circuits and functional development of binocular integration in the early visual system.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Jieming Fu
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Allen K, Gonzalez-Olvera R, Kumar M, Feng T, Pieraut S, Hoy JL. A binocular perception deficit characterizes prey pursuit in developing mice. iScience 2022; 25:105368. [PMID: 36339264 PMCID: PMC9626674 DOI: 10.1016/j.isci.2022.105368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023] Open
Abstract
Integration of binocular information at the cellular level has long been studied in the mouse model to uncover the fundamental developmental mechanisms underlying mammalian vision. However, we lack an understanding of the corresponding ontogeny of visual behavior in mice that relies on binocular integration. To address this major outstanding question, we quantified the natural visually guided behavior of postnatal day 21 (P21) and adult mice using a live prey capture assay and a computerized-spontaneous perception of objects task (C-SPOT). We found a robust and specific binocular visual field processing deficit in P21 mice as compared to adults that corresponded to a selective increase in c-Fos expression in the anterior superior colliculus (SC) of the juveniles after C-SPOT. These data link a specific binocular perception deficit in developing mice to activity changes in the SC.
Collapse
Affiliation(s)
- Kelsey Allen
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | | | - Milen Kumar
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ting Feng
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jennifer L. Hoy
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
19
|
Huh CYL, Leinonen H, Nakayama T, Tomasello JR, Zhang J, Zeitoun J, Peach JP, Halabi M, Kiser JZ, Palczewski K, Kiser PD, Gandhi SP. Retinoid therapy restores eye-specific cortical responses in adult mice with retinal degeneration. Curr Biol 2022; 32:4538-4546.e5. [PMID: 36152631 PMCID: PMC10083103 DOI: 10.1016/j.cub.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/28/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Despite the recent emergence of multiple cellular and molecular strategies to restore vision in retinal disorders, it remains unclear to what extent central visual circuits can recover when retinal defects are corrected in adulthood. We addressed this question in an Lrat-/- mouse model of Leber congenital amaurosis (LCA) in which retinal light sensitivity and optomotor responses are partially restored by 9-cis-retinyl acetate administration in adulthood. Following treatment, two-photon calcium imaging revealed increases in the number and response amplitude of visually responsive neurons in the primary visual cortex (V1). In particular, retinoid treatment enhanced responses from the ipsilateral eye, restoring the normal balance of eye-specific responses in V1. Additionally, the treatment rescued the modulation of cortical responses by arousal. These findings illustrate the significant plasticity of the adult central visual system and underscore the therapeutic potential of retinoid administration for adults with retinal diseases.
Collapse
Affiliation(s)
- Carey Y L Huh
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA 92697, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Taylor Nakayama
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Julia R Tomasello
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Jack Zeitoun
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - John P Peach
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maximilian Halabi
- Gavin Herbert Eye Institute, Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Jianying Z Kiser
- Gavin Herbert Eye Institute, Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute, Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, Irvine, CA 92697, USA
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Juvenile depletion of microglia reduces orientation but not high spatial frequency selectivity in mouse V1. Sci Rep 2022; 12:12779. [PMID: 35896554 PMCID: PMC9329297 DOI: 10.1038/s41598-022-15503-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023] Open
Abstract
Microglia contain multiple mechanisms that shape the synaptic landscape during postnatal development. Whether the synaptic changes mediated by microglia reflect the developmental refinement of neuronal responses in sensory cortices, however, remains poorly understood. In postnatal life, the development of increased orientation and spatial frequency selectivity of neuronal responses in primary visual cortex (V1) supports the emergence of high visual acuity. Here, we used the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to rapidly and durably deplete microglia in mice during the juvenile period in which increased orientation and spatial frequency selectivity emerge. Excitatory and inhibitory tuning properties were measured simultaneously using multi-photon calcium imaging in layer II/III of mouse V1. We found that microglia depletion generally increased evoked activity which, in turn, reduced orientation selectivity. Surprisingly, microglia were not required for the emergence of high spatial frequency tuned responses. In addition, microglia depletion did not perturb cortical binocularity, suggesting normal depth processing. Together, our finding that orientation and high spatial frequency selectivity in V1 are differentially supported by microglia reveal that microglia are required normal sensory processing, albeit selectively.
Collapse
|
21
|
Somaratna MA, Freeman AW. A model for the development of binocular congruence in primary visual cortex. Sci Rep 2022; 12:12669. [PMID: 35879517 PMCID: PMC9314406 DOI: 10.1038/s41598-022-16739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Neurons in primary visual cortex are selective for stimulus orientation, and a neuron's preferred orientation changes little when the stimulus is switched from one eye to the other. It has recently been shown that monocular orientation preferences are uncorrelated before eye opening; how, then, do they become aligned during visual experience? We aimed to provide a model for this acquired congruence. Our model, which simulates the cat's visual system, comprises multiple on-centre and off-centre channels from both eyes converging onto neurons in primary visual cortex; development proceeds in two phases via Hebbian plasticity in the geniculocortical synapse. First, cortical drive comes from waves of activity drifting across each retina. The result is orientation tuning that differs between the two eyes. The second phase begins with eye opening: at each visual field location, on-centre cortical inputs from one eye can cancel off-centre inputs from the other eye. Synaptic plasticity reduces the destructive interference by up-regulating inputs from one eye at the expense of its fellow, resulting in binocular congruence of orientation tuning. We also show that orthogonal orientation preferences at the end of the first phase result in ocular dominance, suggesting that ocular dominance is a by-product of binocular congruence.
Collapse
Affiliation(s)
- Manula A Somaratna
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Alan W Freeman
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
22
|
Scholl B, Tepohl C, Ryan MA, Thomas CI, Kamasawa N, Fitzpatrick D. A binocular synaptic network supports interocular response alignment in visual cortical neurons. Neuron 2022; 110:1573-1584.e4. [PMID: 35123654 PMCID: PMC9081247 DOI: 10.1016/j.neuron.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
In visual cortex, signals from the two eyes merge to form a coherent binocular representation. Here we investigate the synaptic interactions underlying the binocular representation of stimulus orientation in ferret visual cortex with in vivo calcium imaging of layer 2/3 neurons and their dendritic spines. Individual neurons with aligned somatic responses received a mixture of monocular and binocular synaptic inputs. Surprisingly, monocular pathways alone could not account for somatic alignment because ipsilateral monocular inputs poorly matched somatic preference. Binocular inputs exhibited different degrees of interocular alignment, and those with a high degree of alignment (congruent) had greater selectivity and somatic specificity. While congruent inputs were similar to others in measures of strength, simulations show that the number of active congruent inputs predicts aligned somatic output. Our study suggests that coherent binocular responses derive from connectivity biases that support functional amplification of aligned signals within a heterogeneous binocular intracortical network.
Collapse
Affiliation(s)
- Benjamin Scholl
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Clara Tepohl
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| | - David Fitzpatrick
- Functional Architecture and Development of Cerebral Cortex, Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL, USA
| |
Collapse
|
23
|
Tan L, Ringach DL, Trachtenberg JT. The Development of Receptive Field Tuning Properties in Mouse Binocular Primary Visual Cortex. J Neurosci 2022; 42:3546-3556. [PMID: 35296547 PMCID: PMC9053846 DOI: 10.1523/jneurosci.1702-21.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/06/2021] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
The mouse primary visual cortex is a model system for understanding the relationship between cortical structure, function, and behavior (Seabrook et al., 2017; Chaplin and Margrie, 2020; Hooks and Chen, 2020; Saleem, 2020; Flossmann and Rochefort, 2021). Binocular neurons in V1 are the cellular basis of binocular vision, which is required for predation (Scholl et al., 2013; Hoy et al., 2016; La Chioma et al., 2020; Berson, 2021; Johnson et al., 2021). The normal development of binocular responses, however, has not been systematically measured. Here, we measure tuning properties of neurons to either eye in awake mice of either sex from eye opening to the closure of the critical period. At eye opening, we find an adult-like fraction of neurons responding to the contralateral-eye stimulation, which are selective for orientation and spatial frequency; few neurons respond to ipsilateral eye, and their tuning is immature. Fraction of ipsilateral-eye responses increases rapidly in the first few days after eye opening and more slowly thereafter, reaching adult levels by critical period closure. Tuning of these responses improves with a similar time course. The development and tuning of binocular responses parallel that of ipsilateral-eye responses. Four days after eye opening, monocular neurons respond to a full range of orientations but become more biased to cardinal orientations. Binocular responses, by contrast, lose their cardinal bias with age. Together, these data provide an in-depth accounting of the development of monocular and binocular responses in the binocular region of mouse V1 using a consistent set of visual stimuli and measurements.SIGNIFICANCE STATEMENT In this manuscript, we present a full accounting of the emergence and refinement of monocular and binocular receptive field tuning properties of thousands of pyramidal neurons in mouse primary visual cortex. Our data reveal new features of monocular and binocular development that revise current models on the emergence of cortical binocularity. Given the recent interest in visually guided behaviors in mice that require binocular vision (e.g., predation), our measures will provide the basis for studies on the emergence of the neural circuitry guiding these behaviors.
Collapse
Affiliation(s)
- Liming Tan
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
- Department of Psychology, UCLA, Los Angeles, California 90095
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
24
|
Chronic Monocular Deprivation Reveals MMP9-Dependent and -Independent Aspects of Murine Visual System Plasticity. Int J Mol Sci 2022; 23:ijms23052438. [PMID: 35269580 PMCID: PMC8909986 DOI: 10.3390/ijms23052438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
The deletion of matrix metalloproteinase MMP9 is combined here with chronic monocular deprivation (cMD) to identify the contributions of this proteinase to plasticity in the visual system. Calcium imaging of supragranular neurons of the binocular region of primary visual cortex (V1b) of wild-type mice revealed that cMD initiated at eye opening significantly decreased the strength of deprived-eye visual responses to all stimulus contrasts and spatial frequencies. cMD did not change the selectivity of V1b neurons for the spatial frequency, but orientation selectivity was higher in low spatial frequency-tuned neurons, and orientation and direction selectivity were lower in high spatial frequency-tuned neurons. Constitutive deletion of MMP9 did not impact the stimulus selectivity of V1b neurons, including ocular preference and tuning for spatial frequency, orientation, and direction. However, MMP9-/- mice were completely insensitive to plasticity engaged by cMD, such that the strength of the visual responses evoked by deprived-eye stimulation was maintained across all stimulus contrasts, orientations, directions, and spatial frequencies. Other forms of experience-dependent plasticity, including stimulus selective response potentiation, were normal in MMP9-/- mice. Thus, MMP9 activity is dispensable for many forms of activity-dependent plasticity in the mouse visual system, but is obligatory for the plasticity engaged by cMD.
Collapse
|
25
|
Cheng S, Butrus S, Tan L, Xu R, Sagireddy S, Trachtenberg JT, Shekhar K, Zipursky SL. Vision-dependent specification of cell types and function in the developing cortex. Cell 2022; 185:311-327.e24. [PMID: 35063073 PMCID: PMC8813006 DOI: 10.1016/j.cell.2021.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023]
Abstract
The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.
Collapse
Affiliation(s)
- Sarah Cheng
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Runzhe Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Srikant Sagireddy
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Chan J, Hao X, Liu Q, Cang J, Gu Y. Closing the Critical Period Is Required for the Maturation of Binocular Integration in Mouse Primary Visual Cortex. Front Cell Neurosci 2021; 15:749265. [PMID: 34899187 PMCID: PMC8663722 DOI: 10.3389/fncel.2021.749265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
Binocular matching of orientation preference between the two eyes is a common form of binocular integration that is regarded as the basis for stereopsis. How critical period plasticity enables binocular matching under the guidance of normal visual experience has not been fully demonstrated. To investigate how critical period closure affects the binocular matching, a critical period prolonged mouse model was constructed through the administration of bumetanide, an NKCC1 transporter antagonist. Using acute in vivo extracellular recording and molecular assay, we revealed that binocular matching was transiently disrupted due to heightened plasticity after the normal critical period, together with an increase in the density of spines and synapses, and the upregulation of GluA1 expression. Diazepam (DZ)/[(R, S)-3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP)] could reclose the extended critical period, and rescue the deficits in binocular matching. Furthermore, the extended critical period, alone, with normal visual experience is sufficient for the completion of binocular matching in amblyopic mice. Similarly, prolonging the critical period into adulthood by knocking out Nogo-66 receptor can prevent the normal maturation of binocular matching and depth perception. These results suggest that maintaining an optimal plasticity level during adolescence is most beneficial for the systemic maturation. Extending the critical period provides new clues for the maturation of binocular vision and may have critical implications for the treatment of amblyopia.
Collapse
Affiliation(s)
- Jiangping Chan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiangwen Hao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiong Liu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.,School of Life Sciences, Westlake University, Hangzhou, China
| | - Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, United States.,Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Tan L, Ringach DL, Zipursky SL, Trachtenberg JT. Vision is required for the formation of binocular neurons prior to the classical critical period. Curr Biol 2021; 31:4305-4313.e5. [PMID: 34411526 PMCID: PMC8511080 DOI: 10.1016/j.cub.2021.07.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Depth perception emerges from the development of binocular neurons in primary visual cortex. Vision is required for these neurons to acquire their mature responses to visual stimuli. The prevailing view is that vision does not influence binocular circuitry until the onset of the critical period, about a week after eye opening, and that plasticity of visual responses is triggered by increased inhibition. Here, we show that vision is required to form binocular neurons and to improve binocular tuning and matching from eye opening until critical period closure. Enhancing inhibition does not accelerate this process. Vision soon after eye opening improves the tuning properties of binocular neurons by strengthening and sharpening ipsilateral eye cortical responses. This progressively changes the population of neurons in the binocular pool, and this plasticity is sensitive to interocular differences prior to critical period onset. Thus, vision establishes binocular circuitry and guides binocular plasticity from eye opening.
Collapse
Affiliation(s)
- Liming Tan
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Nishio N, Hayashi K, Ishikawa AW, Yoshimura Y. The role of early visual experience in the development of spatial-frequency preference in the primary visual cortex. J Physiol 2021; 599:4131-4152. [PMID: 34275157 DOI: 10.1113/jp281463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The mature functioning of the primary visual cortex depends on postnatal visual experience, while the orientation/direction preference is established just after eye-opening, independently of visual experience. In this study, we find that visual experience is required for the normal development of spatial-frequency (SF) preference in mouse primary visual cortex. We show that age- and experience-dependent shifts in optimal SFs towards higher frequencies occurred similarly in excitatory neurons and parvalbumin-positive interneurons. We also show that some excitatory and parvalbumin-positive neurons preferentially responded to visual stimuli consisting of very high SFs and posterior directions, and that the preference was established at earlier developmental stages than the SF preference in the standard frequency range. These results suggest that early visual experience is required for the development of SF representation and shed light on the experience-dependent developmental mechanisms underlying visual cortical functions. ABSTRACT Early visual experience is crucial for the maturation of visual cortical functions. It has been demonstrated that the orientation and direction preferences in individual neurons of the primary visual cortex are well established immediately after eye-opening. The postnatal development of spatial frequency (SF) tuning and its dependence on visual experience, however, has not been thoroughly quantified. In this study, macroscopic imaging with flavoprotein autofluorescence revealed that the optimal SFs shift towards higher frequency values during normal development in mouse primary visual cortex. This developmental shift was impaired by binocular deprivation during the sensitive period, postnatal 3 weeks (PW3) to PW6. Furthermore, two-photon Ca2+ imaging revealed that the developmental shift of the optimal SFs, depending on visual experience, concurrently occurs in excitatory neurons and parvalbumin-positive inhibitory interneurons (PV neurons). In addition, some excitatory and PV neurons exhibited a preference for visual stimuli consisting of particularly high SFs and posterior directions at relatively early developmental stages; this preference was not affected by binocular deprivation. Thus, there may be two distinct developmental mechanisms for the establishment of SF preference depending on the frequency values. After PW3, SF tuning for neurons tuned to standard frequency ranges was sharper in excitatory neurons and slightly broader in PV neurons, leading to considerably attenuated SF tuning in PV neurons compared to excitatory neurons by PW5. Our findings suggest that early visual experience is far more important than orientation/direction selectivity for the development of the neural representation of the diverse SFs.
Collapse
Affiliation(s)
- Nana Nishio
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kenji Hayashi
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ayako Wendy Ishikawa
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
29
|
Abstract
Most binocular neurons in the mammalian visual cortex show matched selectivity for light stimuli presented through either eye. A recent study tracked the responses of individual neurons in early visual cortex over time, revealing that matched binocular selectivity develops through major rearrangements of binocular visual circuits.
Collapse
Affiliation(s)
| | - Mark Hübener
- Max Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|