1
|
Sadiq A, Funk AT, Waugh JL. The striatal compartments, striosome and matrix, are embedded in largely distinct resting-state functional networks. Front Neural Circuits 2025; 19:1514937. [PMID: 40453419 PMCID: PMC12122536 DOI: 10.3389/fncir.2025.1514937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/25/2025] [Indexed: 06/11/2025] Open
Abstract
The striatum is divided into two interdigitated tissue compartments, the striosome and matrix. These compartments exhibit distinct anatomical, neurochemical, and pharmacological characteristics and have separable roles in motor and mood functions. Little is known about the functions of these compartments in humans. While compartment-specific roles in neuropsychiatric diseases have been hypothesized, they have yet to be directly tested. Investigating compartment-specific functions is crucial for understanding the symptoms produced by striatal injury, and to elucidating the roles of each compartment in healthy human skills and behaviors. We mapped the functional networks of striosome-like and matrix-like voxels in humans in-vivo. We utilized a diverse cohort of 674 healthy adults, derived from the Human Connectome Project, including all subjects with complete diffusion and functional MRI data and excluding subjects with substance use disorders. We identified striatal voxels with striosome-like and matrix-like structural connectivity using probabilistic diffusion tractography. We then investigated resting-state functional connectivity (rsFC) using these compartment-like voxels as seeds. We found widespread differences in rsFC between striosome-like and matrix-like seeds (p < 0.05, family wise error corrected for multiple comparisons), suggesting that striosome and matrix occupy distinct functional networks. Slightly shifting seed voxel locations (<4 mm) eliminated these rsFC differences, underscoring the anatomic precision of these networks. Striosome-seeded networks exhibited ipsilateral dominance; matrix-seeded networks had contralateral dominance. Next, we assessed compartment-specific engagement with the triple-network model (default mode, salience, and frontoparietal networks). Striosome-like voxels dominated rsFC with the default mode network bilaterally. The anterior insula (a primary node in the salience network) had higher rsFC with striosome-like voxels. The inferior and middle frontal cortices (primary nodes, frontoparietal network) had stronger rsFC with matrix-like voxels on the left, and striosome-like voxels on the right. Since striosome-like and matrix-like voxels occupy highly segregated rsFC networks, striosome-selective injury may produce different motor, cognitive, and behavioral symptoms than matrix-selective injury. Moreover, compartment-specific rsFC abnormalities may be identifiable before disease-related structural injuries are evident. Localizing rsFC differences provides an anatomic substrate for understanding how the tissue-level organization of the striatum underpins complex brain networks, and how compartment-specific injury may contribute to the symptoms of specific neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
Waugh JL, Hassan AOA, Funk AT, Maldjian JA. The striatal matrix compartment is expanded in autism spectrum disorder. J Neurodev Disord 2025; 17:8. [PMID: 39955485 PMCID: PMC11829417 DOI: 10.1186/s11689-025-09596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is the second-most common neurodevelopmental disorder in childhood. This complex developmental disorder manifests with restricted interests, repetitive behaviors, and difficulties in communication and social awareness. The inherited and acquired causes of ASD impact many and diverse brain regions, challenging efforts to identify a shared neuroanatomical substrate for this range of symptoms. The striatum and its connections are among the most implicated sites of abnormal structure and/or function in ASD. Striatal projection neurons develop in segregated tissue compartments, the matrix and striosome, that are histochemically, pharmacologically, and functionally distinct. Immunohistochemical assessment of ASD and animal models of autism described abnormal matrix:striosome volume ratios, with an possible shift from striosome to matrix volume. Shifting the matrix:striosome ratio could result from expansion in matrix, reduction in striosome, spatial redistribution of the compartments, or a combination of these changes. Each type of ratio-shifting abnormality may predispose to ASD but yield different combinations of ASD features. METHODS We developed a cohort of 426 children and adults (213 matched ASD-control pairs) and performed connectivity-based parcellation (diffusion tractography) of the striatum. This identified voxels with matrix-like and striosome-like patterns of structural connectivity. RESULTS Matrix-like volume was increased in ASD, with no evident change in the volume or organization of the striosome-like compartment. The inter-compartment volume difference (matrix minus striosome) within each individual was 31% larger in ASD. Matrix-like volume was increased in both caudate and putamen, and in somatotopic zones throughout the rostral-caudal extent of the striatum. Subjects with moderate elevations in ADOS (Autism Diagnostic Observation Schedule) scores had increased matrix-like volume, but those with highly elevated ADOS scores had 3.7-fold larger increases in matrix-like volume. CONCLUSIONS Matrix and striosome are embedded in distinct structural and functional networks, suggesting that compartment-selective injury or maldevelopment may mediate specific and distinct clinical features. Previously, assessing the striatal compartments in humans required post mortem tissue. Striatal parcellation provides a means to assess neuropsychiatric diseases for compartment-specific abnormalities. While this ASD cohort had increased matrix-like volume, other mechanisms that shift the matrix:striosome ratio may also increase the chance of developing the diverse social, sensory, and motor phenotypes of ASD.
Collapse
Affiliation(s)
- Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA.
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Asim O A Hassan
- Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, Dallas, TX, USA
| | - Adrian T Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, Dallas, TX, USA
| | - Joseph A Maldjian
- Department of Radiology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
3
|
Sadiq A, Funk AT, Waugh JL. The striatal compartments, striosome and matrix, are embedded in largely distinct resting state functional networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628392. [PMID: 39763746 PMCID: PMC11702670 DOI: 10.1101/2024.12.13.628392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The striatum is divided into two interdigitated tissue compartments, the striosome and matrix. These compartments exhibit distinct anatomical, neurochemical, and pharmacological characteristics and have separable roles in motor and mood functions. Little is known about the functions of these compartments in humans. While compartment-specific roles in neuropsychiatric diseases have been hypothesized, they have yet to be directly tested. Investigating compartment-specific functions is crucial for understanding the symptoms produced by striatal injury, and to elucidating the roles of each compartment in healthy human skills and behaviors. We mapped the functional networks of striosome and matrix in humans in vivo. We utilized a diverse cohort of 674 healthy adults, derived from the Human Connectome Project, including all subjects with complete diffusion and functional MRI data and excluding subjects with substance use disorders. We identified striatal voxels with striosome-like and matrix-like structural connectivity using probabilistic diffusion tractography. We then investigated resting state functional connectivity (rsFC) using these compartment-like voxels as seeds. We found widespread differences in rsFC between striosome-like and matrix-like seeds (p < 0.05, FWE corrected for multiple comparisons), suggesting that striosome and matrix occupy distinct functional networks. Slightly shifting seed voxel locations (<4 mm) eliminated these rsFC differences, underscoring the anatomic precision of these networks. Striosome-seeded networks exhibited ipsilateral dominance; matrix-seeded networks had contralateral dominance. Next, we assessed compartment-specific engagement with the triple-network model (default mode, salience, and frontoparietal networks). Striosome-like voxels dominated rsFC with the default mode network bilaterally. The anterior insula (a primary node in the salience network) had higher rsFC with striosome-like voxels. The inferior and middle frontal cortices (primary nodes, frontoparietal network) had stronger rsFC with matrix-like voxels on the left, and striosome-like voxels on the right. Since striosome-like and matrix-like voxels occupy highly segregated rsFC networks, striosome-selective injury may produce different motor, cognitive, and behavioral symptoms than matrix-selective injury. Moreover, compartment-specific rsFC abnormalities may be identifiable before disease-related structural injuries are evident. Localizing rsFC differences provides an anatomic substrate for understanding how the tissue-level organization of the striatum underpins complex brain networks, and how compartment-specific injury may contribute to the symptoms of specific neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alishba Sadiq
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adrian T. Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Hagger-Vaughan N, Kolnier D, Storm JF. Non-apical plateau potentials and persistent firing induced by metabotropic cholinergic modulation in layer 2/3 pyramidal cells in the rat prefrontal cortex. PLoS One 2024; 19:e0314652. [PMID: 39656720 DOI: 10.1371/journal.pone.0314652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite. Thus, surprisingly, these PPs persisted when the apical dendrite was cut off (~50 μm from the soma), and were sustained by local calcium application only to the somatic and basal dendritic compartments. The prefrontal L2/3PCs have been postulated to have a key role in consciousness, according to the Global Neuronal Workspace Theory: their long-range cortico-cortical connections provide the architecture required for the "global work-space", "ignition", amplification, and sustained, reverberant activity, considered essential for conscious access. The PPs in L2/3PCs caused sustained spiking that profoundly altered the input-output relationships of these neurons, resembling the sustained activity suggested to underlie working memory and the mechanism underlying "behavioural time scale synaptic plasticity" in hippocampal pyramidal cells. The non-apical L2/3 PPs depended on metabotropic cholinergic (mAChR) or glutamatergic (mGluR) modulation, which is probably essential also for conscious brain states and experience, in both wakefulness and dreaming. Pharmacological tests indicated that the non-apical L2/3 PPs depend on transient receptor potential (TRP) cation channels, both TRPC4 and TRPC5, and require external calcium (Ca2+) and internal Ca2+ stores, but not voltage-gated Ca2+ channels, unlike Ca2+-dependent PPs in other cortical pyramidal neurons. These L2/3 non-apical plateau potentials may be involved in prefrontal functions, such as access consciousness, working memory, and executive functions such as planning, decision-making, and outcome prediction.
Collapse
Affiliation(s)
- Nicholas Hagger-Vaughan
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel Kolnier
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Johan F Storm
- Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Kim MJ, Gibson DJ, Hu D, Yoshida T, Hueske E, Matsushima A, Mahar A, Schofield CJ, Sompolpong P, Tran KT, Tian L, Graybiel AM. Dopamine release plateau and outcome signals in dorsal striatum contrast with classic reinforcement learning formulations. Nat Commun 2024; 15:8856. [PMID: 39402067 PMCID: PMC11473536 DOI: 10.1038/s41467-024-53176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
We recorded dopamine release signals in centromedial and centrolateral sectors of the striatum as mice learned consecutive versions of visual cue-outcome conditioning tasks. Dopamine release responses differed for the centromedial and centrolateral sites. In neither sector could these be accounted for by classic reinforcement learning alone as classically applied to the activity of nigral dopamine-containing neurons. Medially, cue responses ranged from initial sharp peaks to modulated plateau responses; outcome (reward) responses during cue conditioning were minimal or, initially, negative. At centrolateral sites, by contrast, strong, transient dopamine release responses occurred at both cue and outcome. Prolonged, plateau release responses to cues emerged in both regions when discriminative behavioral responses became required. At most sites, we found no evidence for a transition from outcome signaling to cue signaling, a hallmark of temporal difference reinforcement learning as applied to midbrain dopaminergic neuronal activity. These findings delineate a reshaping of striatal dopamine release activity during learning and suggest that current views of reward prediction error encoding need review to accommodate distinct learning-related spatial and temporal patterns of striatal dopamine release in the dorsal striatum.
Collapse
Affiliation(s)
- Min Jung Kim
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
- Advanced Imaging Research Center, University of Texas, Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Emily Hueske
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Ara Mahar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Cynthia J Schofield
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Patlapa Sompolpong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathy T Tran
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA
| | - Lin Tian
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, 02139, USA.
| |
Collapse
|
6
|
Funk AT, Hassan AAO, Waugh JL. In Humans, Insulo-striate Structural Connectivity is Largely Biased Toward Either Striosome-like or Matrix-like Striatal Compartments. Neurosci Insights 2024; 19:26331055241268079. [PMID: 39280330 PMCID: PMC11402065 DOI: 10.1177/26331055241268079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
The insula is an integral component of sensory, motor, limbic, and executive functions, and insular dysfunction is associated with numerous human neuropsychiatric disorders. Insular efferents project widely, but insulo-striate projections are especially numerous. The targets of these insulo-striate projections are organized into tissue compartments, the striosome and matrix. These striatal compartments have distinct embryologic origins, afferent and efferent connectivity, dopamine pharmacology, and susceptibility to injury. Striosome and matrix appear to occupy separate sets of cortico-striato-thalamo-cortical loops, so a bias in insulo-striate projections toward one compartment may also embed an insular subregion in distinct regulatory and functional networks. Compartment-specific mapping of insulo-striate structural connectivity is sparse; the insular subregions are largely unmapped for compartment-specific projections. In 100 healthy adults, diffusion tractography was utilized to map and quantify structural connectivity between 19 structurally-defined insular subregions and each striatal compartment. Insulo-striate streamlines that reached striosome-like and matrix-like voxels were concentrated in distinct insular zones (striosome: rostro- and caudoventral; matrix: caudodorsal) and followed different paths to reach the striatum. Though tractography was generated independently in each hemisphere, the spatial distribution and relative bias of striosome-like and matrix-like streamlines were highly similar in the left and right insula. 16 insular subregions were significantly biased toward 1 compartment: 7 toward striosome-like voxels and 9 toward matrix-like voxels. Striosome-favoring bundles had significantly higher streamline density, especially from rostroventral insular subregions. The biases in insulo-striate structural connectivity that were identified mirrored the compartment-specific biases identified in prior studies that utilized injected tract tracers, cytoarchitecture, or functional MRI. Segregating insulo-striate structural connectivity through either striosome or matrix may be an anatomic substrate for functional specialization among the insular subregions.
Collapse
Affiliation(s)
- Adrian T Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Asim AO Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, TX, USA
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
7
|
Beck DW, Heaton CN, Davila LD, Rakocevic LI, Drammis SM, Tyulmankov D, Vara P, Giri A, Umashankar Beck S, Zhang Q, Pokojovy M, Negishi K, Batson SA, Salcido AA, Reyes NF, Macias AY, Ibanez-Alcala RJ, Hossain SB, Waller GL, O'Dell LE, Moschak TM, Goosens KA, Friedman A. Model of a striatal circuit exploring biological mechanisms underlying decision-making during normal and disordered states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605535. [PMID: 39211231 PMCID: PMC11361035 DOI: 10.1101/2024.07.29.605535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Decision-making requires continuous adaptation to internal and external contexts. Changes in decision-making are reliable transdiagnostic symptoms of neuropsychiatric disorders. We created a computational model demonstrating how the striosome compartment of the striatum constructs a mathematical space for decision-making computations depending on context, and how the matrix compartment defines action value depending on the space. The model explains multiple experimental results and unifies other theories like reward prediction error, roles of the direct versus indirect pathways, and roles of the striosome versus matrix, under one framework. We also found, through new analyses, that striosome and matrix neurons increase their synchrony during difficult tasks, caused by a necessary increase in dimensionality of the space. The model makes testable predictions about individual differences in disorder susceptibility, decision-making symptoms shared among neuropsychiatric disorders, and differences in neuropsychiatric disorder symptom presentation. The model reframes the role of the striosomal circuit in neuroeconomic and disorder-affected decision-making. Highlights Striosomes prioritize decision-related data used by matrix to set action values. Striosomes and matrix have different roles in the direct and indirect pathways. Abnormal information organization/valuation alters disorder presentation. Variance in data prioritization may explain individual differences in disorders. eTOC Beck et al. developed a computational model of how a striatal circuit functions during decision-making. The model unifies and extends theories about the direct versus indirect pathways. It further suggests how aberrant circuit function underlies decision-making phenomena observed in neuropsychiatric disorders.
Collapse
|
8
|
Funk AT, Hassan AAO, Waugh JL. In humans, insulo-striate structural connectivity is largely biased toward either striosome-like or matrix-like striatal compartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588409. [PMID: 38645229 PMCID: PMC11030402 DOI: 10.1101/2024.04.07.588409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The insula is an integral component of sensory, motor, limbic, and executive functions, and insular dysfunction is associated with numerous human neuropsychiatric disorders. Insular afferents project widely, but insulo-striate projections are especially numerous. The targets of these insulo-striate projections are organized into tissue compartments, the striosome and matrix. These striatal compartments have distinct embryologic origins, afferent and efferent connectivity, dopamine pharmacology, and susceptibility to injury. Striosome and matrix appear to occupy separate sets of cortico-striato-thalamo-cortical loops, so a bias in insulo-striate projections towards one compartment may also embed an insular subregion in distinct regulatory and functional networks. Compartment-specific mapping of insulo-striate structural connectivity is sparse; the insular subregions are largely unmapped for compartment-specific projections. In 100 healthy adults, we utilized probabilistic diffusion tractography to map and quantify structural connectivity between 19 structurally-defined insular subregions and each striatal compartment. Insulo-striate streamlines that reached striosome-like and matrix-like voxels were concentrated in distinct insular zones (striosome: rostro- and caudoventral; matrix: caudodorsal) and followed different paths to reach the striatum. Though tractography was generated independently in each hemisphere, the spatial distribution and relative bias of striosome-like and matrix-like streamlines were highly similar in the left and right insula. 16 insular subregions were significantly biased towards one compartment: seven toward striosome-like voxels and nine toward matrix-like voxels. Striosome-favoring bundles had significantly higher streamline density, especially from rostroventral insular subregions. The biases in insulo-striate structural connectivity we identified mirrored the compartment-specific biases identified in prior studies that utilized injected tract tracers, cytoarchitecture, or functional MRI. Segregating insulo-striate structural connectivity through either striosome or matrix may be an anatomic substrate for functional specialization among the insular subregions.
Collapse
Affiliation(s)
- AT Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
| | - AAO Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas
| | - JL Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
9
|
Day M, Belal M, Surmeier WC, Melendez A, Wokosin D, Tkatch T, Clarke VRJ, Surmeier DJ. GABAergic regulation of striatal spiny projection neurons depends upon their activity state. PLoS Biol 2024; 22:e3002483. [PMID: 38295323 PMCID: PMC10830145 DOI: 10.1371/journal.pbio.3002483] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Synaptic transmission mediated by GABAA receptors (GABAARs) in adult, principal striatal spiny projection neurons (SPNs) can suppress ongoing spiking, but its effect on synaptic integration at subthreshold membrane potentials is less well characterized, particularly those near the resting down-state. To fill this gap, a combination of molecular, optogenetic, optical, and electrophysiological approaches were used to study SPNs in mouse ex vivo brain slices, and computational tools were used to model somatodendritic synaptic integration. In perforated patch recordings, activation of GABAARs, either by uncaging of GABA or by optogenetic stimulation of GABAergic synapses, evoked currents with a reversal potential near -60 mV in both juvenile and adult SPNs. Transcriptomic analysis and pharmacological work suggested that this relatively positive GABAAR reversal potential was not attributable to NKCC1 expression, but rather to HCO3- permeability. Regardless, from down-state potentials, optogenetic activation of dendritic GABAergic synapses depolarized SPNs. This GABAAR-mediated depolarization summed with trailing ionotropic glutamate receptor (iGluR) stimulation, promoting dendritic spikes and increasing somatic depolarization. Simulations revealed that a diffuse dendritic GABAergic input to SPNs effectively enhanced the response to dendritic iGluR signaling and promoted dendritic spikes. Taken together, our results demonstrate that GABAARs can work in concert with iGluRs to excite adult SPNs when they are in the resting down-state, suggesting that their inhibitory role is limited to brief periods near spike threshold. This state-dependence calls for a reformulation for the role of intrastriatal GABAergic circuits.
Collapse
Affiliation(s)
- Michelle Day
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Marziyeh Belal
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - William C. Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandria Melendez
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States of America
| | - Vernon R. J. Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States of America
| | - D. James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States of America
| |
Collapse
|
10
|
Abstract
The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.
Collapse
Affiliation(s)
- Lisa Z Fang
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Meaghan C Creed
- Washington University Pain Center, Department of Anesthesiology, St. Louis, MO, USA.
- Departments of Psychiatry, Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
11
|
Malgady JM, Baez A, Hobel ZB, Jimenez K, Goldfried J, Prager EM, Wilking JA, Zhang Q, Feng G, Plotkin JL. Pathway-specific alterations in striatal excitability and cholinergic modulation in a SAPAP3 mouse model of compulsive motor behavior. Cell Rep 2023; 42:113384. [PMID: 37934666 PMCID: PMC10872927 DOI: 10.1016/j.celrep.2023.113384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/06/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Deletion of the obsessive-compulsive disorder (OCD)-associated gene SAP90/PSD-95-associated protein 3 (Sapap3), which encodes a postsynaptic anchoring protein at corticostriatal synapses, causes OCD-like motor behaviors in mice. While corticostriatal synaptic dysfunction is central to this phenotype, the striatum efficiently adapts to pathological changes, often in ways that expand upon the original circuit impairment. Here, we show that SAPAP3 deletion causes non-synaptic and pathway-specific alterations in dorsolateral striatum circuit function. While somatic excitability was elevated in striatal projection neurons (SPNs), dendritic excitability was exclusively enhanced in direct pathway SPNs. Layered on top of this, cholinergic modulation was altered in opposing ways: striatal cholinergic interneuron density and evoked acetylcholine release were elevated, while basal muscarinic modulation of SPNs was reduced. These data describe how SAPAP3 deletion alters the striatal landscape upon which impaired corticostriatal inputs will act, offering a basis for how pathological synaptic integration and unbalanced striatal output underlying OCD-like behaviors may be shaped.
Collapse
Affiliation(s)
- Jeffrey M Malgady
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, College of Arts & Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alexander Baez
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Zachary B Hobel
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Graduate Program in Neuroscience, College of Arts & Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kimberly Jimenez
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Jack Goldfried
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Eric M Prager
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Jennifer A Wilking
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Qiangge Zhang
- Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guoping Feng
- Yang Tan Collective and McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua L Plotkin
- Department of Neurobiology & Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
12
|
Funk AT, Hassan AAO, Brüggemann N, Sharma N, Breiter HC, Blood AJ, Waugh JL. In humans, striato-pallido-thalamic projections are largely segregated by their origin in either the striosome-like or matrix-like compartments. Front Neurosci 2023; 17:1178473. [PMID: 37954873 PMCID: PMC10634229 DOI: 10.3389/fnins.2023.1178473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 11/14/2023] Open
Abstract
Cortico-striato-thalamo-cortical (CSTC) loops are fundamental organizing units in mammalian brains. CSTCs process limbic, associative, and sensorimotor information in largely separated but interacting networks. CTSC loops pass through paired striatal compartments, striosome (aka patch) and matrix, segregated pools of medium spiny projection neurons with distinct embryologic origins, cortical/subcortical structural connectivity, susceptibility to injury, and roles in behaviors and diseases. Similarly, striatal dopamine modulates activity in striosome and matrix in opposite directions. Routing CSTCs through one compartment may be an anatomical basis for regulating discrete functions. We used differential structural connectivity, identified through probabilistic diffusion tractography, to distinguish the striatal compartments (striosome-like and matrix-like voxels) in living humans. We then mapped compartment-specific projections and quantified structural connectivity between each striatal compartment, the globus pallidus interna (GPi), and 20 thalamic nuclei in 221 healthy adults. We found that striosome-originating and matrix-originating streamlines were segregated within the GPi: striosome-like connectivity was significantly more rostral, ventral, and medial. Striato-pallido-thalamic streamline bundles that were seeded from striosome-like and matrix-like voxels transited spatially distinct portions of the white matter. Matrix-like streamlines were 5.7-fold more likely to reach the GPi, replicating animal tract-tracing studies. Striosome-like connectivity dominated in six thalamic nuclei (anteroventral, central lateral, laterodorsal, lateral posterior, mediodorsal-medial, and medial geniculate). Matrix-like connectivity dominated in seven thalamic nuclei (centromedian, parafascicular, pulvinar-anterior, pulvinar-lateral, ventral lateral-anterior, ventral lateral-posterior, ventral posterolateral). Though we mapped all thalamic nuclei independently, functionally-related nuclei were matched for compartment-level bias. We validated these results with prior thalamostriate tract tracing studies in non-human primates and other species; where reliable data was available, all agreed with our measures of structural connectivity. Matrix-like connectivity was lateralized (left > right hemisphere) in 18 thalamic nuclei, independent of handedness, diffusion protocol, sex, or whether the nucleus was striosome-dominated or matrix-dominated. Compartment-specific biases in striato-pallido-thalamic structural connectivity suggest that routing CSTC loops through striosome-like or matrix-like voxels is a fundamental mechanism for organizing and regulating brain networks. Our MRI-based assessments of striato-thalamic connectivity in humans match and extend the results of prior tract tracing studies in animals. Compartment-level characterization may improve localization of human neuropathologies and improve neurosurgical targeting in the GPi and thalamus.
Collapse
Affiliation(s)
- Adrian T. Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - Asim A. O. Hassan
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX, United States
| | - Norbert Brüggemann
- Department of Neurology and Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Hans C. Breiter
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anne J. Blood
- Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard University, Boston, MA, United States
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
13
|
Devoght J, Comhair J, Morelli G, Rigo JM, D'Hooge R, Touma C, Palme R, Dewachter I, vandeVen M, Harvey RJ, Schiffmann SN, Piccart E, Brône B. Dopamine-mediated striatal activity and function is enhanced in GlyRα2 knockout animals. iScience 2023; 26:107400. [PMID: 37554441 PMCID: PMC10404725 DOI: 10.1016/j.isci.2023.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
The glycine receptor alpha 2 (GlyRα2) is a ligand-gated ion channel which upon activation induces a chloride conductance. Here, we investigated the role of GlyRα2 in dopamine-stimulated striatal cell activity and behavior. We show that depletion of GlyRα2 enhances dopamine-induced increases in the activity of putative dopamine D1 receptor-expressing striatal projection neurons, but does not alter midbrain dopamine neuron activity. We next show that the locomotor response to d-amphetamine is enhanced in GlyRα2 knockout animals, and that this increase correlates with c-fos expression in the dorsal striatum. 3-D modeling revealed an increase in the neuronal ensemble size in the striatum in response to D-amphetamine in GlyRα2 KO mice. Finally, we show enhanced appetitive conditioning in GlyRα2 KO animals that is likely due to increased motivation, but not changes in associative learning or hedonic response. Taken together, we show that GlyRα2 is an important regulator of dopamine-stimulated striatal activity and function.
Collapse
Affiliation(s)
- Jens Devoght
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| | - Joris Comhair
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| | - Giovanni Morelli
- Brain Development and Disease Laboratory, Instituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | - Rudi D'Hooge
- Laboratory for Biological Psychology, University of Leuven, 3000 Leuven, Belgium
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Rupert Palme
- Institute of Biochemistry, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Ilse Dewachter
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| | | | - Robert J. Harvey
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Serge N. Schiffmann
- Laboratory of Neurophysiology, Université libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Bert Brône
- Department of Neuroscience, UHasselt, 3500 Hasselt, Belgium
| |
Collapse
|
14
|
Kim MJ, Gibson DJ, Hu D, Mahar A, Schofield CJ, Sompolpong P, Yoshida T, Tran KT, Graybiel AM. Dopamine Release Plateau and Outcome Signals in Dorsal Striatum Contrast with Classic Reinforcement Learning Formulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553421. [PMID: 37645888 PMCID: PMC10462077 DOI: 10.1101/2023.08.15.553421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We recorded dopamine release signals in medial and lateral sectors of the striatum as mice learned consecutive visual cue-outcome conditioning tasks including cue association, cue discrimination, reversal, and probabilistic discrimination task versions. Dopamine release responses in medial and lateral sites exhibited learning-related changes within and across phases of acquisition. These were different for the medial and lateral sites. In neither sector could these be accounted for by classic reinforcement learning as applied to dopamine-containing neuron activity. Cue responses ranged from initial sharp peaks to modulated plateau responses. In the medial sector, outcome (reward) responses during cue conditioning were minimal or, initially, negative. By contrast, in lateral sites, strong, transient dopamine release responses occurred at both cue and outcome. Prolonged, plateau release responses to cues emerged in both regions when discriminative behavioral responses became required. In most sites, we found no evidence for a transition from outcome to cue signaling, a hallmark of temporal difference reinforcement learning as applied to midbrain dopamine activity. These findings delineate reshaping of dopamine release activity during learning and suggest that current views of reward prediction error encoding need review to accommodate distinct learning-related spatial and temporal patterns of striatal dopamine release in the dorsal striatum.
Collapse
|
15
|
Abstract
Striosomes form neurochemically specialized compartments of the striatum embedded in a large matrix made up of modules called matrisomes. Striosome-matrix architecture is multiplexed with the canonical direct-indirect organization of the striatum. Striosomal functions remain to be fully clarified, but key information is emerging. First, striosomes powerfully innervate nigral dopamine-containing neurons and can completely shut down their activity, with a following rebound excitation. Second, striosomes receive limbic and cognition-related corticostriatal afferents and are dynamically modulated in relation to value-based actions. Third, striosomes are spatially interspersed among matrisomes and interneurons and are influenced by local and global neuromodulatory and oscillatory activities. Fourth, striosomes tune engagement and the motivation to perform reinforcement learning, to manifest stereotypical behaviors, and to navigate valence conflicts and valence discriminations. We suggest that, at an algorithmic level, striosomes could serve as distributed scaffolds to provide formats of the striatal computations generated through development and refined through learning. We propose that striosomes affect subjective states. By transforming corticothalamic and other inputs to the functional formats of the striatum, they could implement state transitions in nigro-striato-nigral circuits to affect bodily and cognitive actions according to internal motives whose functions are compromised in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
16
|
Ferhat AT, Verpy E, Biton A, Forget B, De Chaumont F, Mueller F, Le Sourd AM, Coqueran S, Schmitt J, Rochefort C, Rondi-Reig L, Leboucher A, Boland A, Fin B, Deleuze JF, Boeckers TM, Ey E, Bourgeron T. Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Front Mol Neurosci 2023; 16:1139118. [PMID: 37008785 PMCID: PMC10061084 DOI: 10.3389/fnmol.2023.1139118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.
Collapse
Affiliation(s)
- Allain-Thibeault Ferhat
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Elisabeth Verpy
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Biton
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoît Forget
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Fabrice De Chaumont
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Florian Mueller
- Imagerie et Modélisation, Institut Pasteur, CNRS UMR 3691, Paris, France
| | - Anne-Marie Le Sourd
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Sabrina Coqueran
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Julien Schmitt
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Christelle Rochefort
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Laure Rondi-Reig
- Cerebellum Navigation and Memory Team, Institut de Biologie Paris Seine, Neurosciences Paris Seine, CNRS UMR 8246, Inserm UMR-S 1130, Sorbonne Université, Paris, France
| | - Aziliz Leboucher
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Bertrand Fin
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA, Université Paris-Saclay, Evry, France
- Centre d’Étude du Polymorphisme Humain, Paris, France
| | - Tobias M. Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Elodie Ey
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Inserm UMR-S 1258, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, CNRS UMR 3571, IUF, Université Paris Cité, Paris, France
| |
Collapse
|
17
|
Day M, Belal M, Surmeier WC, Melendez A, Wokosin D, Tkatch T, Clarke VRJ, Surmeier DJ. State-dependent GABAergic regulation of striatal spiny projection neuron excitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532627. [PMID: 36993489 PMCID: PMC10055173 DOI: 10.1101/2023.03.14.532627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Synaptic transmission mediated by GABA A receptors (GABA A Rs) in adult, principal striatal spiny projection neurons (SPNs) can suppress ongoing spiking, but its effect on synaptic integration at sub-threshold membrane potentials is less well characterized, particularly those near the resting down-state. To fill this gap, a combination of molecular, optogenetic, optical and electrophysiological approaches were used to study SPNs in mouse ex vivo brain slices, and computational tools were used to model somatodendritic synaptic integration. Activation of GABA A Rs, either by uncaging of GABA or by optogenetic stimulation of GABAergic synapses, evoked currents with a reversal potential near -60 mV in perforated patch recordings from both juvenile and adult SPNs. Molecular profiling of SPNs suggested that this relatively positive reversal potential was not attributable to NKCC1 expression, but rather to a dynamic equilibrium between KCC2 and Cl-/HCO3-cotransporters. Regardless, from down-state potentials, optogenetic activation of dendritic GABAergic synapses depolarized SPNs. This GABAAR-mediated depolarization summed with trailing ionotropic glutamate receptor (iGluR) stimulation, promoting dendritic spikes and increasing somatic depolarization. Simulations revealed that a diffuse dendritic GABAergic input to SPNs effectively enhanced the response to coincident glutamatergic input. Taken together, our results demonstrate that GABA A Rs can work in concert with iGluRs to excite adult SPNs when they are in the resting down-state, suggesting that their inhibitory role is limited to brief periods near spike threshold. This state-dependence calls for a reformulation of the role intrastriatal GABAergic circuits.
Collapse
|
18
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Chen APF, Malgady JM, Chen L, Shi KW, Cheng E, Plotkin JL, Ge S, Xiong Q. Nigrostriatal dopamine pathway regulates auditory discrimination behavior. Nat Commun 2022; 13:5942. [PMID: 36209150 PMCID: PMC9547888 DOI: 10.1038/s41467-022-33747-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The auditory striatum, the tail portion of dorsal striatum in basal ganglia, is implicated in perceptual decision-making, transforming auditory stimuli to action outcomes. Despite its known connections to diverse neurological conditions, the dopaminergic modulation of sensory striatal neuronal activity and its behavioral influences remain unknown. We demonstrated that the optogenetic inhibition of dopaminergic projections from the substantia nigra pars compacta to the auditory striatum specifically impairs mouse choice performance but not movement in an auditory frequency discrimination task. In vivo dopamine and calcium imaging in freely behaving mice revealed that this dopaminergic projection modulates striatal tone representations, and tone-evoked striatal dopamine release inversely correlated with the evidence strength of tones. Optogenetic inhibition of D1-receptor expressing neurons and pharmacological inhibition of D1 receptors in the auditory striatum dampened choice performance accuracy. Our study uncovers a phasic mechanism within the nigrostriatal system that regulates auditory decisions by modulating ongoing auditory perception. The auditory striatum, the tail portion of dorsal striatum, is implicated in decision-making. This study uncovers a phasic mechanism within the nigrostriatal system that regulates auditory decisions by modulating ongoing auditory perception.
Collapse
Affiliation(s)
- Allen P F Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.,Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jeffrey M Malgady
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kaiyo W Shi
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eileen Cheng
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.,Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Joshua L Plotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
20
|
Dorman DB, Blackwell KT. Synaptic Plasticity Is Predicted by Spatiotemporal Firing Rate Patterns and Robust to In Vivo-like Variability. Biomolecules 2022; 12:1402. [PMID: 36291612 PMCID: PMC9599115 DOI: 10.3390/biom12101402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Synaptic plasticity, the experience-induced change in connections between neurons, underlies learning and memory in the brain. Most of our understanding of synaptic plasticity derives from in vitro experiments with precisely repeated stimulus patterns; however, neurons exhibit significant variability in vivo during repeated experiences. Further, the spatial pattern of synaptic inputs to the dendritic tree influences synaptic plasticity, yet is not considered in most synaptic plasticity rules. Here, we investigate how spatiotemporal synaptic input patterns produce plasticity with in vivo-like conditions using a data-driven computational model with a plasticity rule based on calcium dynamics. Using in vivo spike train recordings as inputs to different size clusters of spines, we show that plasticity is strongly robust to trial-to-trial variability of spike timing. In addition, we derive general synaptic plasticity rules describing how spatiotemporal patterns of synaptic inputs control the magnitude and direction of plasticity. Synapses that strongly potentiated have greater firing rates and calcium concentration later in the trial, whereas strongly depressing synapses have hiring firing rates early in the trial. The neighboring synaptic activity influences the direction and magnitude of synaptic plasticity, with small clusters of spines producing the greatest increase in synaptic strength. Together, our results reveal that calcium dynamics can unify diverse plasticity rules and reveal how spatiotemporal firing rate patterns control synaptic plasticity.
Collapse
Affiliation(s)
- Daniel B. Dorman
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Kim T. Blackwell
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
- Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
21
|
Jiang Y, Qin L, Lu A, Chen J, Wang J, Zhang Q, Lu Y, Gong Q, Gao J, Ma H, Tan D, He Y. CYP3A1 metabolism-based neurotoxicity of strychnine in rat. Toxicology 2022; 471:153156. [PMID: 35358606 DOI: 10.1016/j.tox.2022.153156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Strychnine is one of the main bioactive and toxic constituents of Semen Strychni. In the present study, the neurotoxic effects of strychnine, and the role of individual differences in metabolism on susceptibility to neurotoxicity of strychnine were investigated. The acute toxicity was observed by a single dose of strychnine (2.92 mg/kg, i.g.) in rats, the epileptic stages of rats were scored according to Racine's scale. The neurotoxicity of strychnine was evaluated by the levels of ROS, MDA, SOD and GSH in hippocampus, striatum, and cortex tissues measurements and histopathological analysis. The concentrations of strychnine in the plasma, hippocampus, striatum, and cortex tissues were determined using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The expressions of the cytochrome P450, which is the most critical protein family involved in drugs metabolism, were detected by proteomics. The mechanism of susceptibility to neurotoxicity of strychnine was elucidated by correlation analysis among above indicators. The results indicated that striatum and cortex were the main toxic targets of strychnine, and the CYP3A1 might be a susceptible biomarker to neurotoxicity of strychnine. These results provide valuable insights into the neurotoxic susceptibility of strychnine that will aid in the rational clinical use of strychnine (possibly including Semen Strychni).
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Anjing Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juan Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jianmei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qianru Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yanliu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hong Ma
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Daopeng Tan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuqi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
22
|
Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol Dis 2022; 168:105697. [DOI: 10.1016/j.nbd.2022.105697] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
23
|
Nadel JA, Pawelko SS, Scott JR, McLaughlin R, Fox M, Ghanem M, van der Merwe R, Hollon NG, Ramsson ES, Howard CD. Optogenetic stimulation of striatal patches modifies habit formation and inhibits dopamine release. Sci Rep 2021; 11:19847. [PMID: 34615966 PMCID: PMC8494762 DOI: 10.1038/s41598-021-99350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/23/2021] [Indexed: 11/12/2022] Open
Abstract
Habits are inflexible behaviors that develop after extensive repetition, and overreliance on habits is a hallmark of many pathological states. The striatum is involved in the transition from flexible to inflexible responding, and interspersed throughout the striatum are patches, or striosomes, which make up ~15% of the volume of the striatum relative to the surrounding matrix compartment. Previous studies have suggested that patches are necessary for normal habit formation, but it remains unknown exactly how patches contribute to habit formation and expression. Here, using optogenetics, we stimulated striatal patches in Sepw1-NP67 mice during variable interval training (VI60), which is used to establish habitual responding. We found that activation of patches at reward retrieval resulted in elevated responding during VI60 training by modifying the pattern of head entry and pressing. Further, this optogenetic manipulation reduced subsequent responding following reinforcer devaluation, suggesting modified habit formation. However, patch stimulation did not generally increase extinction rates during a subsequent extinction probe, but did result in a small 'extinction burst', further suggesting goal-directed behavior. On the other hand, this manipulation had no effect in omission trials, where mice had to withhold responses to obtain rewards. Finally, we utilized fast-scan cyclic voltammetry to investigate how patch activation modifies evoked striatal dopamine release and found that optogenetic activation of patch projections to the substantia nigra pars compacta (SNc) is sufficient to suppress dopamine release in the dorsal striatum. Overall, this work provides novel insight into the role of the patch compartment in habit formation, and provides a potential mechanism for how patches modify habitual behavior by exerting control over dopamine signaling.
Collapse
Affiliation(s)
- J A Nadel
- Neuroscience Department, Oberlin College, Oberlin, OH, USA
| | - S S Pawelko
- Neuroscience Department, Oberlin College, Oberlin, OH, USA
| | - J R Scott
- Neuroscience Department, Oberlin College, Oberlin, OH, USA
| | - R McLaughlin
- Neuroscience Department, Oberlin College, Oberlin, OH, USA
| | - M Fox
- Neuroscience Department, Oberlin College, Oberlin, OH, USA
| | - M Ghanem
- Neuroscience Department, Oberlin College, Oberlin, OH, USA
| | | | - N G Hollon
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - E S Ramsson
- Department of Biomedical Science, Grand Valley State University, Allendale, MI, USA
| | - C D Howard
- Neuroscience Department, Oberlin College, Oberlin, OH, USA.
| |
Collapse
|
24
|
Cirnaru MD, Song S, Tshilenge KT, Corwin C, Mleczko J, Galicia Aguirre C, Benlhabib H, Bendl J, Apontes P, Fullard J, Creus-Muncunill J, Reyahi A, Nik AM, Carlsson P, Roussos P, Mooney SD, Ellerby LM, Ehrlich ME. Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. eLife 2021; 10:e65979. [PMID: 34609283 PMCID: PMC8492065 DOI: 10.7554/elife.65979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Many diseases are linked to dysregulation of the striatum. Striatal function depends on neuronal compartmentation into striosomes and matrix. Striatal projection neurons are GABAergic medium spiny neurons (MSNs), subtyped by selective expression of receptors, neuropeptides, and other gene families. Neurogenesis of the striosome and matrix occurs in separate waves, but the factors regulating compartmentation and neuronal differentiation are largely unidentified. We performed RNA- and ATAC-seq on sorted striosome and matrix cells at postnatal day 3, using the Nr4a1-EGFP striosome reporter mouse. Focusing on the striosome, we validated the localization and/or role of Irx1, Foxf2, Olig2, and Stat1/2 in the developing striosome and the in vivo enhancer function of a striosome-specific open chromatin region 4.4 Kb downstream of Olig2. These data provide novel tools to dissect and manipulate the networks regulating MSN compartmentation and differentiation, including in human iPSC-derived striatal neurons for disease modeling and drug discovery.
Collapse
Affiliation(s)
- Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sicheng Song
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Justyna Mleczko
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Pasha Apontes
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Ali M Nik
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mental Illness Research, Education, and Clinical Center (VISN 2 South)BronxUnited States
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
25
|
Karunakaran KB, Amemori S, Balakrishnan N, Ganapathiraju MK, Amemori KI. Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes. Sci Rep 2021; 11:18392. [PMID: 34526518 PMCID: PMC8443595 DOI: 10.1038/s41598-021-97418-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Satoko Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - N Balakrishnan
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, USA.
| | - Ken-Ichi Amemori
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
26
|
Sugiyama K, Kuroiwa M, Shuto T, Ohnishi YN, Kawahara Y, Miyamoto Y, Fukuda T, Nishi A. Subregion-Specific Regulation of Dopamine D1 Receptor Signaling in the Striatum: Implication for L-DOPA-Induced Dyskinesia. J Neurosci 2021; 41:6388-6414. [PMID: 34131032 PMCID: PMC8318081 DOI: 10.1523/jneurosci.0373-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
The striatum is the main structure of the basal ganglia. The striatum receives inputs from various cortical areas, and its subregions play distinct roles in motor and emotional functions. Recently, striatal maps based on corticostriatal connectivity and striosome-matrix compartmentalization were developed, and we were able to subdivide the striatum into seven subregions. Dopaminergic modulation of the excitability of medium spiny neurons (MSNs) is critical for striatal function. In this study, we investigated the functional properties of dopamine signaling in seven subregions of the striatum from male mice. By monitoring the phosphorylation of PKA substrates including DARPP-32 in mouse striatal slices, we identified two subregions with low D1 receptor signaling: the dorsolateral portion of the intermediate/rostral part (DL-IR) and the intermediate/caudal part (IC). Low D1 receptor signaling in the two subregions was maintained by phosphodiesterase (PDE)10A and muscarinic M4 receptors. In an animal model of 6-hydroxydopamine (6-OHDA)-induced hemi-parkinsonism, D1 receptor signaling was upregulated in almost all subregions including the DL-IR, but not in the IC. When L-DOPA-induced dyskinesia (LID) was developed, D1 receptor signaling in the IC was upregulated and correlated with the severity of LID. Our results suggest that the function of the striatum is maintained through the subregion-specific regulation of dopamine D1 receptor signaling and that the aberrant activation of D1 receptor signaling in the IC is involved in LID. Future studies focusing on D1 receptor signaling in the IC of the striatum will facilitate the development of novel therapeutics for LID.SIGNIFICANCE STATEMENT Recent progress in striatal mapping based on corticostriatal connectivity and striosome-matrix compartmentalization allowed us to subdivide the striatum into seven subregions. Analyses of D1 receptor signaling in the seven subregions identified two unique subregions with low D1 receptor signaling: the dorsolateral portion of the intermediate/rostral part (DL-IR) and the intermediate/caudal part (IC). Aberrant activation of D1 receptor signaling in the IC is involved in L-DOPA-induced dyskinesia (LID). Previous studies of LID have mainly focused on the DL-IR, but not on the IC of the striatum. Future studies to clarify aberrant D1 receptor signaling in the IC are required to develop novel therapeutics for LID.
Collapse
Affiliation(s)
- Keita Sugiyama
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yoshinori N Ohnishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto 860-8556, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
27
|
Graybiel AM, Matsushima A. The Ups and Downs of the Striatum: Dopamine Biases Upstate Balance of Striosomes and Matrix. Neuron 2020; 108:1013-1015. [PMID: 33357415 DOI: 10.1016/j.neuron.2020.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Prager et al. demonstrate an opposite regulation of activity in striosomes and matrix of the striatum. By a D1-receptor-linked L-VGCC-dependent mechanism, dopamine release can extend upstates in matrix D1-expressing direct pathway projection neurons (dSPNs) but shorten them in striosomal dSPNs.
Collapse
Affiliation(s)
- Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|