1
|
Alfimova M, Gabaeva M, Lezheiko T, Plakunova V, Chaika Y, Golimbet V. Demographic, Premorbid, and Clinical Characteristics of Schizophrenia Spectrum Patients with High and Low Polygenic Liability to the Disorder. Diseases 2025; 13:66. [PMID: 40136606 PMCID: PMC11941017 DOI: 10.3390/diseases13030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Schizophrenia is a clinically heterogeneous complex disorder with a substantial polygenic basis. The discovery of phenotypes indexing genetic differences advances research into the schizophrenia etiology but has proven to be challenging. The study aimed to further clarify the relationships of schizophrenia polygenic risk scores (SZ-PRSs) with a comprehensive array of schizophrenia antecedents and presentations using a culturally and ethnically homogeneous sample of schizophrenia spectrum patients. METHODS The top and bottom deciles (n = 172) of the SZ-PRS distribution in a group of 861 patients were compared on information derived from medical records using logistic regression. RESULTS High SZ-PRSs were associated with female sex, family history of a wide range of neuropsychiatric conditions, moderately poor premorbid social and cognitive adjustment in childhood, the schizophrenia diagnosis, and positive and "abnormal" psychomotor symptoms. The low-SZ-PRS group demonstrated an accumulation of both individuals with milder forms of SZ spectrum disorders and those with severe premorbid abnormalities in the social, cognitive, and neurological domains. CONCLUSIONS The results highlight moderately poor premorbid social and cognitive adjustment as characteristic manifestations of the polygenic component of the schizophrenia etiology and provide the first piece of PRS-based evidence for the long-standing idea of a higher liability threshold in women. The presence of milder and severe cases in the bottom SZ-PRS decile, suggesting its etiological heterogeneity, might be an important source of the inconsistency in the previous research on SZ-PRSs' relationship with schizophrenia phenotypes and should be considered in future studies.
Collapse
Affiliation(s)
- Margarita Alfimova
- Mental Health Research Center, 115522 Moscow, Russia; (M.G.); (T.L.); (V.G.)
| | | | | | | | | | | |
Collapse
|
2
|
Gagnon L, Moreau C, Laprise C, Girard SL. Fine-scale genetic structure and rare variant frequencies. PLoS One 2024; 19:e0313133. [PMID: 39499706 PMCID: PMC11537391 DOI: 10.1371/journal.pone.0313133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/19/2024] [Indexed: 11/07/2024] Open
Abstract
In response to the current challenge in genetic studies to make new associations, we advocate for a shift toward leveraging population fine-scale structure. Our exploration brings to light distinct fine-structure within populations having undergone a founder effect such as the Ashkenazi Jews and the population of the Quebec' province. We leverage the fine-scale population structure to explore its impact on the frequency of rare variants. Notably, we observed an 8-fold increase in frequency for a variant associated with the Usher syndrome in one Quebec subpopulation. Our study underscores that smaller cohorts with greater genetic similarity demonstrate an important increase in rare variant frequencies, offering a promising avenue for new genetic variants' discovery.
Collapse
Affiliation(s)
- Laurence Gagnon
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Claudia Moreau
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intégré Universitaire en Santé et Services Sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Simon L. Girard
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre de recherche CERVO, Université Laval, Québec, Québec, Canada
| |
Collapse
|
3
|
Schiavon M, Burton BK, Hemager N, Greve AN, Spang KS, Ellersgaard D, Plessen KJ, Jepsen JRM, Thorup AAE, Werge T, Nordentoft M, Nudel R. Language, Motor Ability and Related Deficits in Children at Familial Risk of Schizophrenia or Bipolar Disorder. Schizophr Bull 2024:sbae181. [PMID: 39468758 DOI: 10.1093/schbul/sbae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
BACKGROUND It is known that impairments in linguistic ability and motor function tend to co-occur in children, and that children from families with parental mental illness such as schizophrenia tend to perform poorly in both domains, but the exact nature of these links has not yet been fully elucidated. DESIGN In this study, we leveraged the first wave of the Danish High Risk and Resilience Study (VIA 7), which includes both genetic data and measures covering multiple developmental domains. The VIA 7 cohort comprises 522 7-year-old children born to parents with schizophrenia (N = 202), bipolar disorder (N = 120) or neither (N = 200). We investigated the relationships between linguistic ability and motor function using correlation and regression analyses, focusing on developmental coordination disorder (DCD) and specific language impairment (SLI) and their potential associations with the three risk groups. RESULTS We found significant correlations between most measures of language and motor function and significant associations of DCD and SLI with language and movement measures, respectively, the largest effect being that of DCD on receptive language, with a significant interaction effect: DCD was associated with poorer performance in children from schizophrenia families compared to bipolar disorder and control families. Both disorders showed higher prevalence among children with familial high risk of mental illness. We did not find significant evidence of genetic overlap between DCD and SLI. CONCLUSIONS Our results suggest strong links between the domains of motor function and linguistic ability. Children of parents with schizophrenia are at high risk of comorbid language and movement disorders.
Collapse
Affiliation(s)
- Marta Schiavon
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
| | - Birgitte K Burton
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
| | - Nicoline Hemager
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, 1357 Copenhagen, Denmark
| | - Aja N Greve
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Psychosis Research Unit, Department of Clinical Medicine, Aarhus University Hospital-Psychiatry, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, 8200 Aarhus University, Aarhus, Denmark
| | - Katrine S Spang
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
| | - Ditte Ellersgaard
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
| | - Kerstin Jessica Plessen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Hospital University Lausanne and Lausanne University, 1004 Lausanne, Switzerland
| | - Jens Richardt M Jepsen
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Services in the Capital Region of Denmark, 2600 Glostrup, Denmark
| | - Anne A E Thorup
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Mental Health Center for Child and Adolescent Psychiatry-Research unit, Mental Health Services in the Capital Region of Denmark, 2900 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, 4000 Roskilde, Denmark
| | - Merete Nordentoft
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Department of Psychology, University of Copenhagen, 1357 Copenhagen, Denmark
| | - Ron Nudel
- CORE-Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8210 Aarhus, Denmark
- Copenhagen Research Center for Biological and Precision Psychiatry, Mental Health Centre Copenhagen, Copenhagen University Hospital, 2900 Copenhagen, Denmark
| |
Collapse
|
4
|
Zhang Y, Wu B, Chen S, Yang L, Deng Y, Guo Y, Wu X, Liu W, Kang J, Feng J, Cheng W, Yu J. Whole exome sequencing analyses identified novel genes for Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7062-7078. [PMID: 39129223 PMCID: PMC11485319 DOI: 10.1002/alz.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The heritability of Alzheimer's disease (AD) is estimated to be 58%-79%. However, known genes can only partially explain the heritability. METHODS Here, we conducted gene-based exome-wide association study (ExWAS) of rare variants and single-variant ExWAS of common variants, utilizing data of 54,569 clinically diagnosed/proxy AD and related dementia (ADRD) and 295,421 controls from the UK Biobank. RESULTS Gene-based ExWAS identified 11 genes predicting a higher ADRD risk, including five novel ones, namely FRMD8, DDX1, DNMT3L, MORC1, and TGM2, along with six previously reported ones, SORL1, GRN, PSEN1, ABCA7, GBA, and ADAM10. Single-variant ExWAS identified two ADRD-associated novel genes, SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-β process pathways, microglia, and brain regions like hippocampus. The druggability evidence suggests that DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets. DISCUSSION Our study contributes to the current body of evidence on the genetic etiology of ADRD. HIGHLIGHTS Gene-based analyses of rare variants identified five novel genes for Alzheimer's disease and related dementia (ADRD), including FRMD8, DDX1, DNMT3L, MORC1, and TGM2. Single-variant analyses of common variants identified two novel genes for ADRD, including SLCO1C1 and NDNF. The identified genes were predominantly enriched in amyloid-β process pathways, microglia, and brain regions like hippocampus. DDX1, DNMT3L, TGM2, SLCO1C1, and NDNF could be effective drug targets.
Collapse
Affiliation(s)
- Ya‐Ru Zhang
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Liu Yang
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yue‐Ting Deng
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Guo
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Xin‐Rui Wu
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Wei‐Shi Liu
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Ju‐Jiao Kang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceFudan UniversityMinistry of EducationShanghaiChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceFudan UniversityMinistry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceFudan UniversityMinistry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological DisordersHuashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
5
|
Colijn MA, Carrion P, Poirier-Morency G, Rogic S, Torres I, Menon M, Lisonek M, Cook C, DeGraaf A, Thammaiah SP, Neelakant H, Willaeys V, Leonova O, White RF, Yip S, Mungall AJ, MacLeod PM, Gibson WT, Sullivan PF, Honer WG, Pavlidis P, Stowe RM. SETD1A variant-associated psychosis: A systematic review of the clinical literature and description of two new cases. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110888. [PMID: 37918557 DOI: 10.1016/j.pnpbp.2023.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE SETD1A encodes a histone methyltransferase involved in various cell cycle regulatory processes. Loss-of-function SETD1A variants have been associated with numerous neurodevelopmental phenotypes, including intellectual disability and schizophrenia. While the association between rare coding variants in SETD1A and schizophrenia has achieved genome-wide significance by rare variant burden testing, only a few studies have described the psychiatric phenomenology of such individuals in detail. This systematic review and case report aims to characterize the neurodevelopmental and psychiatric phenotypes of SETD1A variant-associated schizophrenia. METHODS A PubMed search was completed in July 2022 and updated in May 2023. Only studies that reported individuals with a SETD1A variant as well as a primary psychotic disorder were ultimately included. Additionally, another two previously unpublished cases of SETD1A variant-associated psychosis from our own sequencing cohort are described. RESULTS The search yielded 32 articles. While 15 articles met inclusion criteria, only five provided case descriptions. In total, phenotypic information was available for 11 individuals, in addition to our own two unpublished cases. Our findings suggest that although individuals with SETD1A variant-associated schizophrenia may share a number of common features, phenotypic variability nonetheless exists. Moreover, although such individuals may exhibit numerous other neurodevelopmental features suggestive of the syndrome, their psychiatric presentations appear to be similar to those of general schizophrenia populations. CONCLUSIONS Loss-of-function SETD1A variants may underlie the development of psychosis in a small percentage of individuals with schizophrenia. Identifying such individuals may become increasingly important, given the potential for advances in precision medicine treatment approaches.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.
| | - Prescilla Carrion
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Sanja Rogic
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Torres
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services, Vancouver, BC, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | | | - Courtney Cook
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ashley DeGraaf
- Heart Centre, St. Paul's Hospital and Providence Health, Vancouver, BC, Canada
| | | | - Harish Neelakant
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Olga Leonova
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Patrick M MacLeod
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Patrick F Sullivan
- Psychiatry and Genetics, University of North Carolina at Chapel Hill, NC, USA; Karolinska Institut, Stockholm, Sweden
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Paul Pavlidis
- Department of Psychiatry, Michael Smith Laboratories, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- Departments of Psychiatry and Neurology (Medicine), BC Neuropsychiatry Program, and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
McClellan JM, Zoghbi AW, Buxbaum JD, Cappi C, Crowley JJ, Flint J, Grice DE, Gulsuner S, Iyegbe C, Jain S, Kuo PH, Lattig MC, Passos-Bueno MR, Purushottam M, Stein DJ, Sunshine AB, Susser ES, Walsh CA, Wootton O, King MC. An evolutionary perspective on complex neuropsychiatric disease. Neuron 2024; 112:7-24. [PMID: 38016473 PMCID: PMC10842497 DOI: 10.1016/j.neuron.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
The forces of evolution-mutation, selection, migration, and genetic drift-shape the genetic architecture of human traits, including the genetic architecture of complex neuropsychiatric illnesses. Studying these illnesses in populations that are diverse in genetic ancestry, historical demography, and cultural history can reveal how evolutionary forces have guided adaptation over time and place. A fundamental truth of shared human biology is that an allele responsible for a disease in anyone, anywhere, reveals a gene critical to the normal biology underlying that condition in everyone, everywhere. Understanding the genetic causes of neuropsychiatric disease in the widest possible range of human populations thus yields the greatest possible range of insight into genes critical to human brain development. In this perspective, we explore some of the relationships between genes, adaptation, and history that can be illuminated by an evolutionary perspective on studies of complex neuropsychiatric disease in diverse populations.
Collapse
Affiliation(s)
- Jon M McClellan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Flint
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Conrad Iyegbe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | | | | | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Anna B Sunshine
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ezra S Susser
- Department of Epidemiology, Mailman School of Public Health, and New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA
| | - Christopher A Walsh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Wootton
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Messina A, Crescimanno C, Cuccì G, Caraci F, Signorelli MS. Cell adhesion molecules in the pathogenesis of the schizophrenia. Folia Med (Plovdiv) 2023; 65:707-712. [PMID: 38351751 DOI: 10.3897/folmed.65.e101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 02/16/2024] Open
Abstract
The causes of schizophrenia remain obscure and complex to identify. Alterations in dopaminergic and serotonergic neurotransmission are, to date, the primary pharmacological targets in treatment. Underlying abnormalities in neural networks have been identified as cell adhesion molecules (CAMs) involved in synaptic remodeling and interplay between neurons-neurons and neurons-glial cells. Among the CAMs, several families have been identified, such as integrins, selectins, cadherins, immunoglobulins, nectins, and the neuroligin-neurexin complex. In this paper, cell adhesion molecules involved in the pathogenesis of schizophrenia will be described.
Collapse
|
9
|
Kanwal A, Sheikh SA, Aslam F, Yaseen S, Beetham Z, Pankratz N, Clabots CR, Naz S, Pardo JV. Genome Sequencing of Consanguineous Family Implicates Ubiquitin-Specific Protease 53 ( USP53) Variant in Psychosis/Schizophrenia: Wild-Type Expression in Murine Hippocampal CA 1-3 and Granular Dentate with AMPA Synapse Interactions. Genes (Basel) 2023; 14:1921. [PMID: 37895270 PMCID: PMC10606770 DOI: 10.3390/genes14101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Psychosis is a severe mental disorder characterized by abnormal thoughts and perceptions (e.g., hallucinations) occurring quintessentially in schizophrenia and in several other neuropsychiatric disorders. Schizophrenia is widely considered as a neurodevelopmental disorder that onsets during teenage/early adulthood. A multiplex consanguineous Pakistani family was afflicted with severe psychosis and apparent autosomal recessive transmission. The first-cousin parents and five children were healthy, whereas two teenage daughters were severely affected. Structured interviews confirmed the diagnosis of DSM-V schizophrenia. Probands and father underwent next-generation sequencing. All available relatives were subjected to confirmatory Sanger sequencing. Homozygosity mapping and directed a priori filtering identified only one rare variant [MAF < 5(10)-5] at a residue conserved across vertebrates. The variant was a non-catalytic deubiquitinase, USP53 (p.Cys228Arg), predicted in silico as damaging. Genome sequencing did not identify any other potentially pathogenic single nucleotide variant or structural variant. Since the literature on USP53 lacked relevance to mental illness or CNS expression, studies were conducted which revealed USP53 localization in regions of the hippocampus (CA 1-3) and granular dentate. The staining pattern was like that seen with GRIA2/GluA2 and GRIP2 antibodies. All three proteins coimmunoprecipitated. These findings support the glutamate hypothesis of schizophrenia as part of the AMPA-R interactome. If confirmed, USP53 appears to be one of the few Mendelian variants potentially causal to a common-appearing mental disorder that is a rare genetic form of schizophrenia.
Collapse
Affiliation(s)
- Ambreen Kanwal
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.K.); (F.A.); (S.Y.)
- Cognitive Neuroimaging Unit, Minneapolis Veterans Health Care System, Minneapolis, MN 55417, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
| | - Sohail A. Sheikh
- Department of Psychiatry, Hawkes Bay Hospital, Hastings 4120, New Zealand;
| | - Faiza Aslam
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.K.); (F.A.); (S.Y.)
| | - Samina Yaseen
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.K.); (F.A.); (S.Y.)
| | - Zachary Beetham
- Division of Computational Pathology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (Z.B.)
| | - Nathan Pankratz
- Division of Computational Pathology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (Z.B.)
| | - Connie R. Clabots
- Medicine Patient Service Line, Minneapolis Veterans Health Care System, Minneapolis, MN 55417, USA;
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan; (A.K.); (F.A.); (S.Y.)
| | - José V. Pardo
- Cognitive Neuroimaging Unit, Minneapolis Veterans Health Care System, Minneapolis, MN 55417, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
| |
Collapse
|
10
|
Chen CY, Tian R, Ge T, Lam M, Sanchez-Andrade G, Singh T, Urpa L, Liu JZ, Sanderson M, Rowley C, Ironfield H, Fang T, Daly M, Palotie A, Tsai EA, Huang H, Hurles ME, Gerety SS, Lencz T, Runz H. The impact of rare protein coding genetic variation on adult cognitive function. Nat Genet 2023:10.1038/s41588-023-01398-8. [PMID: 37231097 DOI: 10.1038/s41588-023-01398-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Compelling evidence suggests that human cognitive function is strongly influenced by genetics. Here, we conduct a large-scale exome study to examine whether rare protein-coding variants impact cognitive function in the adult population (n = 485,930). We identify eight genes (ADGRB2, KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are associated with adult cognitive function through rare coding variants with large effects. Rare genetic architecture for cognitive function partially overlaps with that of neurodevelopmental disorders. In the case of KDM5B we show how the genetic dosage of one of these genes may determine the variability of cognitive, behavioral and molecular traits in mice and humans. We further provide evidence that rare and common variants overlap in association signals and contribute additively to cognitive function. Our study introduces the relevance of rare coding variants for cognitive function and unveils high-impact monogenic contributions to how cognitive function is distributed in the normal adult population.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Research and Development, Biogen Inc, Cambridge, MA, USA.
| | - Ruoyu Tian
- Research and Development, Biogen Inc, Cambridge, MA, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Max Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Tarjinder Singh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Lea Urpa
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jimmy Z Liu
- Research and Development, Biogen Inc, Cambridge, MA, USA
- GlaxoSmithKline, Philadelphia, PA, USA
| | | | | | | | - Terry Fang
- Research and Development, Biogen Inc, Cambridge, MA, USA
| | - Mark Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ellen A Tsai
- Research and Development, Biogen Inc, Cambridge, MA, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Heiko Runz
- Research and Development, Biogen Inc, Cambridge, MA, USA.
| |
Collapse
|
11
|
Abstract
Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors involved in its aetiology. Genetic liability contributing to the development of schizophrenia is a subject of extensive research activity, as reliable data regarding its aetiology would enable the improvement of its therapy and the development of new methods of treatment. A multitude of studies in this field focus on genetic variants, such as copy number variations (CNVs) or single-nucleotide variants (SNVs). Certain genetic disorders caused by CNVs including 22q11.2 microdeletion syndrome, Burnside-Butler syndrome (15q11.2 BP1-BP2 microdeletion) or 1q21.1 microduplication/microdeletion syndrome are associated with a higher risk of developing schizophrenia. In this article, we provide a unifying framework linking these CNVs and their associated genetic disorders with schizophrenia and its various neural and behavioural abnormalities.
Collapse
|
12
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Moreau C, Tremblay F, Wolking S, Girard A, Laprise C, Hamdan FF, Michaud JL, Minassian BA, Cossette P, Girard SL. Assessment of burden and segregation profiles of CNVs in patients with epilepsy. Ann Clin Transl Neurol 2022; 9:1050-1058. [PMID: 35678011 PMCID: PMC9268881 DOI: 10.1002/acn3.51598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Microdeletions are associated with different forms of epilepsy but show incomplete penetrance, which is not well understood. We aimed to assess whether unmasked variants or double CNVs could explain incomplete penetrance. Methods We analyzed copy number variants (CNVs) in 603 patients with four different subgroups of epilepsy and 945 controls. CNVs were called from genotypes and validated on whole‐genome (WGS) or whole‐exome sequences (WES). CNV burden difference between patients and controls was obtained by fitting a logistic regression. CNV burden was assessed for small and large (>1 Mb) deletions and duplications and for deletions overlapping different gene sets. Results Large deletions were enriched in genetic generalized epilepsies (GGE) compared to controls. We also found enrichment of deletions in epilepsy genes and hotspots for GGE. We did not find truncating or functional variants that could have been unmasked by the deletions. We observed a double CNV hit in two patients. One patient also carried a de novo deletion in the 22q11.2 hotspot. Interpretation We could corroborate previous findings of an enrichment of large microdeletions and deletions in epilepsy genes in GGE. We could also replicate that microdeletions show incomplete penetrance. However, we could not validate the hypothesis of unmasked variants nor the hypothesis of double CNVs to explain the incomplete penetrance. We found a de novo CNV on 22q11.2 that could be of interest. We also observed GGE families carrying a deletion on 15q13.3 hotspot that could be investigated in the Quebec founder population.
Collapse
Affiliation(s)
- Claudia Moreau
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Frédérique Tremblay
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Stefan Wolking
- Department of Neurology and Epileptology, University Hospital RWTH Aachen, Aachen, Germany
| | - Alexandre Girard
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Catherine Laprise
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montreal, Canada.,Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montreal, Canada.,Department of Neurosciences and Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Berge A Minassian
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada.,Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Patrick Cossette
- CHUM Research Center, Montreal, Canada.,Department of Neurosciences, University of Montreal, Montreal, Canada
| | - Simon L Girard
- Department of Fundamental Sciences, University of Quebec in Chicoutimi, Chicoutimi, Canada.,CERVO Research Center, Laval University, Quebec, Canada
| |
Collapse
|
14
|
Matsuzaka Y, Noguchi M, Kanamura S, Maeda K, Hisano T, Tanaka D, Ando Y, Yamamoto T, Morimoto Y, Ozawa H, Otsuka T. Combination therapy of modified electroconvulsive therapy and long-acting injectable aripiprazole for dopamine supersensitivity psychosis: a case report. Neurocase 2022; 28:310-313. [PMID: 35993136 DOI: 10.1080/13554794.2022.2114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In the treatment of schizophrenia, long-term pharmacotherapy with D2-receptor antagonists can induce dopamine supersensitivity psychosis (DSP). We report a male patient with schizophrenia with suspected DSP due to excessive polypharmacy. He was hospitalized for several years. Most psychotropic drugs were reduced and subsequently stopped without the exacerbation of symptoms by administering modified electroconvulsive therapy (mECT). Aripiprazole was then selected as the main drug for treatment, which was subsequently changed to the long-acting injection formulation. He was eventually discharged and returned home. Combination therapy with mECT and aripiprazole, especially the long-acting injectable formulation, may help improve and prevent DSP.
Collapse
Affiliation(s)
- Yusuke Matsuzaka
- Nagasaki Medical Center of Psychiatry, Omura, Japan.,Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | - Kengo Maeda
- Nagasaki Medical Center of Psychiatry, Omura, Japan.,Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Daizo Tanaka
- Nagasaki Medical Center of Psychiatry, Omura, Japan
| | | | | | - Yoshiro Morimoto
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroki Ozawa
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
15
|
Sun H, Xu J, Hu B, Liu Y, Zhai Y, Sun Y, Sun H, Li F, Wang J, Feng A, Tang Y, Zhao J. Association of DNA Methylation Patterns in 7 Novel Genes With Ischemic Stroke in the Northern Chinese Population. Front Genet 2022; 13:844141. [PMID: 35480311 PMCID: PMC9035884 DOI: 10.3389/fgene.2022.844141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is a highly complex disorder. This study aims to identify novel methylation changes in ischemic stroke.Methods: We carried out an epigenome-wide study of ischemic stroke using an Infinium HumanMethylation 850K array (cases:controls = 4:4). 10 CpG sites in 8 candidate genes from gene ontology analytics top-ranked pathway were selected to validate 850K BeadChip results (cases:controls = 20:20). We further qualified the methylation level of promoter regions in 8 candidate genes (cases:controls = 188:188). Besides, we performed subgroup analysis, dose-response relationship and diagnostic prediction polygenic model of candidate genes.Results: In the discovery stage, we found 462 functional DNA methylation positions to be associated with ischemic stroke. Gene ontology analysis highlighted the “calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules” item, including 8 candidate genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB6/PCDHB9). In the replication stage, we identified 5 differentially methylated loci in 20 paired samples and 7 differentially methylated genes (CDH2/PCDHB10/PCDHB11/PCDHB14/PCDHB16/PCDHB3/PCDHB9) in 188 paired samples. Subgroup analysis showed that the methylation level of above 7 genes remained significantly different in the male subgroup, large-artery atherosclerosis subgroup and right hemisphere subgroup. The methylation level of each gene was grouped into quartiles, and Q4 groups of the 7 genes were associated with higher risk of ischemic stroke than Q1 groups (p < 0.05). Besides, the polygenic model showed high diagnostic specificity (0.8723), sensitivity (0.883), and accuracy (0.8777).Conclusion: Our results demonstrate that DNA methylation plays a crucial part in ischemic stroke. The methylation of these 7 genes may be potential diagnostic biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Xu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Bifeng Hu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun Zhai
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyan Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongwei Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Anqi Feng
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| | - Jingbo Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
- *Correspondence: Jingbo Zhao, ; Ying Tang,
| |
Collapse
|
16
|
Morikawa R, Watanabe Y, Igeta H, Arta RK, Ikeda M, Okazaki S, Hoya S, Saito T, Otsuka I, Egawa J, Tanifuji T, Iwata N, Someya T. Novel missense SETD1A variants in Japanese patients with schizophrenia: Resequencing and association analysis. Psychiatry Res 2022; 310:114481. [PMID: 35235885 DOI: 10.1016/j.psychres.2022.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
SETD1A has been identified as a substantial risk gene for schizophrenia. To further investigate the role of SETD1A in the genetic etiology of schizophrenia in the Japanese population, we performed resequencing and association analyses. First, we resequenced the SETD1A coding regions of 974 patients with schizophrenia. Then, we genotyped variants, prioritized via resequencing, in 2,027 patients with schizophrenia and 2,664 controls. Next, we examined the association between SETD1A and schizophrenia in 3,001 patients with schizophrenia and 2,664 controls. Finally, we performed a retrospective chart review of patients with prioritized SETD1A variants. We identified two novel missense variants (p.Ser575Pro and p.Glu857Gln) via resequencing. We did not detect these variants in 4,691 individuals via genotyping. These variants were not significantly associated with schizophrenia in the association analysis. Additionally, we found that a schizophrenia patient with the p.Glu857Gln variant had developmental delays. In conclusion, novel SETD1A missense variants were exclusively identified in Japanese patients with schizophrenia. However, our study does not provide evidence for the contribution of these variants to the genetic etiology of schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan.
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Reza K Arta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Satoshi Hoya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| | - Takaki Tanifuji
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
17
|
Nudel R, Appadurai V, Buil A, Nordentoft M, Werge T. Pleiotropy between language impairment and broader behavioral disorders-an investigation of both common and rare genetic variants. J Neurodev Disord 2021; 13:54. [PMID: 34773992 PMCID: PMC8590378 DOI: 10.1186/s11689-021-09403-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Language plays a major role in human behavior. For this reason, neurodevelopmental and psychiatric disorders in which linguistic ability is impaired could have a big impact on the individual's social interaction and general wellbeing. Such disorders tend to have a strong genetic component, but most past studies examined mostly the linguistic overlaps across these disorders; investigations into their genetic overlaps are limited. The aim of this study was to assess the potential genetic overlap between language impairment and broader behavioral disorders employing methods capturing both common and rare genetic variants. METHODS We employ polygenic risk scores (PRS) trained on specific language impairment (SLI) to evaluate genetic overlap across several disorders in a large case-cohort sample comprising ~13,000 autism spectrum disorder (ASD) cases, including cases of childhood autism and Asperger's syndrome, ~15,000 attention deficit/hyperactivity disorder (ADHD) cases, ~3000 schizophrenia cases, and ~21,000 population controls. We also examine rare variants in SLI/language-related genes in a subset of the sample that was exome-sequenced using the SKAT-O method. RESULTS We find that there is little evidence for genetic overlap between SLI and ADHD, schizophrenia, and ASD, the latter being in line with results of linguistic analyses in past studies. However, we observe a small, significant genetic overlap between SLI and childhood autism specifically, which we do not observe for SLI and Asperger's syndrome. Moreover, we observe that childhood autism cases have significantly higher SLI-trained PRS compared to Asperger's syndrome cases; these results correspond well to the linguistic profiles of both disorders. Our rare variant analyses provide suggestive evidence of association for specific genes with ASD, childhood autism, and schizophrenia. CONCLUSIONS Our study provides, for the first time, to our knowledge, genetic evidence for ASD subtypes based on risk variants for language impairment.
Collapse
Affiliation(s)
- Ron Nudel
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CORE - Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CORE - Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Dunn CD. The population frequency of human mitochondrial DNA variants is highly dependent upon mutational bias. Biol Open 2021; 10:272468. [PMID: 34643212 PMCID: PMC8565468 DOI: 10.1242/bio.059072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/23/2022] Open
Abstract
Next-generation sequencing can quickly reveal genetic variation potentially linked to heritable disease. As databases encompassing human variation continue to expand, rare variants have been of high interest, since the frequency of a variant is expected to be low if the genetic change leads to a loss of fitness or fecundity. However, the use of variant frequency when seeking genomic changes linked to disease remains very challenging. Here, I explored the role of selection in controlling human variant frequency using the HelixMT database, which encompasses hundreds of thousands of mitochondrial DNA (mtDNA) samples. I found that a substantial number of synonymous substitutions, which have no effect on protein sequence, were never encountered in this large study, while many other synonymous changes are found at very low frequencies. Further analyses of human and mammalian mtDNA datasets indicate that the population frequency of synonymous variants is predominantly determined by mutational biases rather than by strong selection acting upon nucleotide choice. My work has important implications that extend to the interpretation of variant frequency for non-synonymous substitutions.
Collapse
Affiliation(s)
- Cory D Dunn
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
19
|
Lam M, Chen CY, Ge T, Xia Y, Hill DW, Trampush JW, Yu J, Knowles E, Davies G, Stahl EA, Huckins L, Liewald DC, Djurovic S, Melle I, Christoforou A, Reinvang I, DeRosse P, Lundervold AJ, Steen VM, Espeseth T, Räikkönen K, Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Hartmann AM, Roussos P, Giakoumaki S, Burdick KE, Payton A, Ollier W, Chiba-Falek O, Koltai DC, Need AC, Cirulli ET, Voineskos AN, Stefanis NC, Avramopoulos D, Hatzimanolis A, Smyrnis N, Bilder RM, Freimer NB, Cannon TD, London E, Poldrack RA, Sabb FW, Congdon E, Conley ED, Scult MA, Dickinson D, Straub RE, Donohoe G, Morris D, Corvin A, Gill M, Hariri AR, Weinberger DR, Pendleton N, Bitsios P, Rujescu D, Lahti J, Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Huang H, Liu C, Malhotra AK, Lencz T. Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics. Neuropsychopharmacology 2021; 46:1788-1801. [PMID: 34035472 PMCID: PMC8357785 DOI: 10.1038/s41386-021-01023-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.
Collapse
Affiliation(s)
- Max Lam
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Institute of Mental Health, Singapore, Singapore
| | - Chia-Yen Chen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Biogen, Inc, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY, USA
| | - David W Hill
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Joey W Trampush
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jin Yu
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Emma Knowles
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychic Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Gail Davies
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Eli A Stahl
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Huckins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David C Liewald
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Andrea Christoforou
- Spaulding Rehabilitation Hospital Boston, Charlestown, MA, USA
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Pamela DeRosse
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Thomas Espeseth
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Johan G Eriksson
- Department of General Practice, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Folkhälsan Research Center, Helsinki, Finland
| | - Ina Giegling
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Bettina Konte
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Annette M Hartmann
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Katherine E Burdick
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry - Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, The University of Manchester, Manchester, UK
| | - William Ollier
- Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, UK
- School of Healthcare Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Bryan Alzheimer's Disease Research Center, and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Deborah C Koltai
- Psychiatry and Behavioral Sciences, Division of Medical Psychology, and Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Anna C Need
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Aristotle N Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Nikos C Stefanis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens Medical School, University General Hospital "ATTIKON", Athens, Greece
- University Mental Health Research Institute, Athens, Greece
- Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, Greece
| | - Dimitrios Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex Hatzimanolis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens Medical School, University General Hospital "ATTIKON", Athens, Greece
- University Mental Health Research Institute, Athens, Greece
- Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, Greece
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, National and Kapodistrian University of Athens Medical School, University General Hospital "ATTIKON", Athens, Greece
- University Mental Health Research Institute, Athens, Greece
| | - Robert M Bilder
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Nelson B Freimer
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Edythe London
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Fred W Sabb
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA
| | - Eliza Congdon
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Matthew A Scult
- Weill Cornell Psychiatry at NewYork-Presbyterian, Weill Cornell Medical Center, New York, NY, USA
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Gary Donohoe
- Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - Derek Morris
- Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology/School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, GR, Greece
| | - Dan Rujescu
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychic Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anil K Malhotra
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA.
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
20
|
Gozes I. A Different Outlook at Psychiatric and Neurological Diseases: Brain Somatic Mutations Are Implicated in Schizophrenia. Biol Psychiatry 2021; 90:6-8. [PMID: 34140120 DOI: 10.1016/j.biopsych.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
21
|
Abstract
Severe neuropsychiatric disorders are so genetically heterogeneous that virtually every unrelated patient harbors different clinically significant alleles. By studying schizophrenia in the Ashkenazi Jewish founder population, Lencz and co-authors identified rare severe alleles each shared by a few patients. Experimental evaluation of an implicated protocadherin allele revealed failure to form homophilic cellular aggregates as a possible mechanism for defective development of neural circuits.
Collapse
Affiliation(s)
- Jon M McClellan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|