1
|
Yin L, Cui L, Yu Y, Wang Q. A Heterogeneous Attractor Model for Neural Dynamical Mechanism of Movement Preparation. Int J Neural Syst 2025; 35:2550019. [PMID: 40170424 DOI: 10.1142/s0129065725500194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Preparatory activity is crucial for voluntary motor control, reducing reaction time and enhancing precision. To understand the neurodynamic mechanisms behind this, we construct a dynamical model within the motor cortex, which comprises coupled heterogeneous attractors to simulate delayed reaching tasks. This model replicates the neural activity patterns observed in the macaque motor cortex, within distinct attractor spaces for preparatory and executive activities. It can capture the transition from preparation to execution through shifts in an orthogonal subspace combined with a thresholding mechanism. Results show that the preparation duration modulates behavioral accuracy, with optimal preparation intervals enhancing performance. External inputs primarily shape the preparatory activity, while synaptic connections dominate execution. Our analysis of the network's multi-stable dynamics reveals that external inputs reshape the stable points of the heterogeneous attractor modules both before and after preparation, while synaptic strength affects dynamical stability and input sensitivity, allowing rapid and precise actions. Additionally, sensitivity to external perturbations decreases as preparatory time increases, emphasizing the importance of external inputs during preparation. Overall, this study provides insights into the neurodynamic mechanisms underlying the transition from motor preparation to execution and underscores the significance of preparatory activity for accurate motor control.
Collapse
Affiliation(s)
- Lining Yin
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
| | - Lanyun Cui
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
| | - Ying Yu
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, P. R. China
- Ningxia Basic Science Research Center of Mathematics, Ningxia University, Yinchuan, P. R. China
| |
Collapse
|
2
|
Zhang Y, Chen Y, Wang T, Cui H. Neural geometry from mixed sensorimotor selectivity for predictive sensorimotor control. eLife 2025; 13:RP100064. [PMID: 40310450 PMCID: PMC12045623 DOI: 10.7554/elife.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.
Collapse
Affiliation(s)
- Yiheng Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yun Chen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tianwei Wang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
| | - He Cui
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of SciencesShanghaiChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
3
|
Zheng C, Wang Q, Cui H. Continuous sensorimotor transformation enhances robustness of neural dynamics to perturbation in macaque motor cortex. Nat Commun 2025; 16:3213. [PMID: 40180984 PMCID: PMC11968799 DOI: 10.1038/s41467-025-58421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Neural activity in the motor cortex evolves dynamically to prepare and generate movement. Here, we investigate how motor cortical dynamics adapt to dynamic environments and whether these adaptations influence robustness against disruptions. We apply intracortical microstimulation (ICMS) in the motor cortex of monkeys performing delayed center-out reaches to either a static target (static) or a rotating target (moving) that required interception. While ICMS prolongs reaction times (RTs) in the static condition, it does not increase RTs in the moving condition, correlating with faster recovery of neural population activity post-perturbation. Neural dynamics suggests that the moving condition involves ongoing sensorimotor transformations during the delay period, whereas motor planning in the static condition is completed shortly. A neural network model shows that continuous feedback input rapidly corrects perturbation-induced errors in the moving condition. We conclude that continuous sensorimotor transformations enhance the motor cortex's resilience to perturbations, facilitating timely movement execution.
Collapse
Affiliation(s)
- Cong Zheng
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Qifan Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - He Cui
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Kudryashova N, Hurwitz C, Perich MG, Hennig MH. BAND: Behavior-Aligned Neural Dynamics is all you need to capture motor corrections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644350. [PMID: 40196470 PMCID: PMC11974739 DOI: 10.1101/2025.03.21.644350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Neural activity in motor cortical areas is well-explained by latent neural population dynamics: the motor preparation phase sets the initial condition for the movement while the dynamics that unfold during the motor execution phase orchestrate the sequence of muscle activations. While preparatory activity explains a large fraction of both neural and behavior variability during the execution of a planned movement, it cannot account for corrections and adjustments during movements as this requires sensory feedback not available during planning. Therefore, accounting for unplanned, sensory-guided movement requires knowledge of relevant inputs to the motor cortex from other brain areas. Here, we provide evidence that these inputs cause transient deviations from an autonomous neural population trajectory, and show that these dynamics cannot be found by unsupervised inference methods. We introduce the new Behavior-Aligned Neural Dynamics (BAND) model, which exploits semi-supervised learning to predict both planned and unplanned movements from neural activity in the motor cortex that can be missed by unsupervised inference methods. Our analysis using BAND suggests that 1) transient motor corrections are encoded in small neural variability; 2) motor corrections are encoded in a sparse sub-population of primary motor cortex neurons (M1); and 3) combining latent dynamical modeling with behavior supervision allows for capturing both the movement plan and corrections.
Collapse
Affiliation(s)
- Nina Kudryashova
- School of Informatics, University of Edinburgh; Informatics Forum, 10 Crichton St, Newington, Edinburgh EH8 9AB, United Kingdom
| | - Cole Hurwitz
- Zuckerman Institute, Columbia University; 3227 Broadway, New York, NY 10027, United States
| | - Matthew G Perich
- Département de neurosciences, Faculté de médecine, Université de Montréal; Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
- Mila, Quebec Artificial Intelligence Institute; 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | - Matthias H Hennig
- School of Informatics, University of Edinburgh; Informatics Forum, 10 Crichton St, Newington, Edinburgh EH8 9AB, United Kingdom
| |
Collapse
|
5
|
Zhang X, Mukherjee A, Halassa MM, Chen ZS. Mediodorsal thalamus regulates task uncertainty to enable cognitive flexibility. Nat Commun 2025; 16:2640. [PMID: 40097445 PMCID: PMC11914509 DOI: 10.1038/s41467-025-58011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
The mediodorsal (MD) thalamus is a critical partner for the prefrontal cortex (PFC) in cognitive control. Accumulating evidence has shown that the MD regulates task uncertainty in decision making and enhance cognitive flexibility. However, the computational mechanism of this cognitive process remains unclear. Here we trained biologically-constrained computational models to delineate the mechanistic role of MD in context-dependent decision making. We show that the addition of a feedforward MD structure to the recurrent PFC increases robustness to low cueing signal-to-noise ratio, enhances working memory, and enables rapid context switching. Incorporating genetically identified thalamocortical connectivity and interneuron cell types into the model replicates key neurophysiological findings in task-performing animals. Our model reveals computational mechanisms and geometric interpretations of MD in regulating cue uncertainty and context switching to enable cognitive flexibility. Our model makes experimentally testable predictions linking cognitive deficits with disrupted thalamocortical connectivity, prefrontal excitation-inhibition imbalance and dysfunctional inhibitory cell types.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Arghya Mukherjee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
6
|
Israely S, Ninou H, Rajchert O, Elmaleh L, Harel R, Mawase F, Kadmon J, Prut Y. Cerebellar output shapes cortical preparatory activity during motor adaptation. Nat Commun 2025; 16:2574. [PMID: 40089504 PMCID: PMC11910607 DOI: 10.1038/s41467-025-57832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.
Collapse
Affiliation(s)
- Sharon Israely
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Hugo Ninou
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
- Département D'Etudes Cognitives, Ecole Normale Supérieure, Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, PSL University, Paris, France
- Laboratoire de Physique de l'Ecole Normale Superieure, Ecole Normale Supérieure, PSL University, Paris, France
| | - Ori Rajchert
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lee Elmaleh
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, Tel Aviv, Israel
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Kadmon
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | - Yifat Prut
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
7
|
Israely S, Ninou H, Rajchert O, Elmaleh L, Harel R, Mawase F, Kadmon J, Prut Y. Cerebellar output shapes cortical preparatory activity during motor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.12.603354. [PMID: 40060411 PMCID: PMC11888169 DOI: 10.1101/2024.07.12.603354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.
Collapse
Affiliation(s)
- Sharon Israely
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Hugo Ninou
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Département D’Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France
- Laboratoire de Physique de l’Ecole Normale Superieure, Ecole Normale Supérieure, PSL University, Paris, France
| | - Ori Rajchert
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lee Elmaleh
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, 5262000 Tel Aviv, Israel
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Kadmon
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Yifat Prut
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| |
Collapse
|
8
|
Oby ER, Degenhart AD, Grigsby EM, Motiwala A, McClain NT, Marino PJ, Yu BM, Batista AP. Dynamical constraints on neural population activity. Nat Neurosci 2025; 28:383-393. [PMID: 39825141 PMCID: PMC11802451 DOI: 10.1038/s41593-024-01845-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
The manner in which neural activity unfolds over time is thought to be central to sensory, motor and cognitive functions in the brain. Network models have long posited that the brain's computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate. We leveraged a brain-computer interface to challenge monkeys to violate the naturally occurring time courses of neural population activity that we observed in the motor cortex. This included challenging animals to traverse the natural time course of neural activity in a time-reversed manner. Animals were unable to violate the natural time courses of neural activity when directly challenged to do so. These results provide empirical support for the view that activity time courses observed in the brain indeed reflect the underlying network-level computational mechanisms that they are believed to implement.
Collapse
Affiliation(s)
- Emily R Oby
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alan D Degenhart
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Rehabilitation and Neural Engineering Laboratory, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asma Motiwala
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nicole T McClain
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Patrick J Marino
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Byron M Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Aaron P Batista
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Menéndez JA, Hennig JA, Golub MD, Oby ER, Sadtler PT, Batista AP, Chase SM, Yu BM, Latham PE. A theory of brain-computer interface learning via low-dimensional control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.589952. [PMID: 38712193 PMCID: PMC11071278 DOI: 10.1101/2024.04.18.589952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A remarkable demonstration of the flexibility of mammalian motor systems is primates' ability to learn to control brain-computer interfaces (BCIs). This constitutes a completely novel motor behavior, yet primates are capable of learning to control BCIs under a wide range of conditions. BCIs with carefully calibrated decoders, for example, can be learned with only minutes to hours of practice. With a few weeks of practice, even BCIs with randomly constructed decoders can be learned. What are the biological substrates of this learning process? Here, we develop a theory based on a re-aiming strategy, whereby learning operates within a low-dimensional subspace of task-relevant inputs driving the local population of recorded neurons. Through comprehensive numerical and formal analysis, we demonstrate that this theory can provide a unifying explanation for disparate phenomena previously reported in three different BCI learning tasks, and we derive a novel experimental prediction that we verify with previously published data. By explicitly modeling the underlying neural circuitry, the theory reveals an interpretation of these phenomena in terms of biological constraints on neural activity.
Collapse
Affiliation(s)
- J. A. Menéndez
- Gatsby Computational Neuroscience Unit, University College London
| | | | | | | | | | | | | | | | - P. E. Latham
- Gatsby Computational Neuroscience Unit, University College London
| |
Collapse
|
10
|
Stroud JP, Wojcik M, Jensen KT, Kusunoki M, Kadohisa M, Buckley MJ, Duncan J, Stokes MG, Lengyel M. Effects of noise and metabolic cost on cortical task representations. eLife 2025; 13:RP94961. [PMID: 39836111 PMCID: PMC11750133 DOI: 10.7554/elife.94961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Cognitive flexibility requires both the encoding of task-relevant and the ignoring of task-irrelevant stimuli. While the neural coding of task-relevant stimuli is increasingly well understood, the mechanisms for ignoring task-irrelevant stimuli remain poorly understood. Here, we study how task performance and biological constraints jointly determine the coding of relevant and irrelevant stimuli in neural circuits. Using mathematical analyses and task-optimized recurrent neural networks, we show that neural circuits can exhibit a range of representational geometries depending on the strength of neural noise and metabolic cost. By comparing these results with recordings from primate prefrontal cortex (PFC) over the course of learning, we show that neural activity in PFC changes in line with a minimal representational strategy. Specifically, our analyses reveal that the suppression of dynamically irrelevant stimuli is achieved by activity-silent, sub-threshold dynamics. Our results provide a normative explanation as to why PFC implements an adaptive, minimal representational strategy.
Collapse
Affiliation(s)
- Jake Patrick Stroud
- Computational and Biological Learning Lab, Department of Engineering, University of CambridgeCambridgeUnited Kingdom
| | - Michal Wojcik
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Kristopher Torp Jensen
- Computational and Biological Learning Lab, Department of Engineering, University of CambridgeCambridgeUnited Kingdom
| | - Makoto Kusunoki
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Mikiko Kadohisa
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Mark J Buckley
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - Mark G Stokes
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of OxfordOxfordUnited Kingdom
| | - Mate Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of CambridgeCambridgeUnited Kingdom
- Center for Cognitive Computation, Department of Cognitive Science, Central European UniversityBudapestHungary
| |
Collapse
|
11
|
Orban de Xivry JJ, Hardwick RM. A control policy can be adapted to task demands during both motor execution and motor planning. J Neurophysiol 2025; 133:232-244. [PMID: 39607315 DOI: 10.1152/jn.00410.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Movement planning consists of several processes related to the preparation of a movement such as decision making, target selection, application of task demands, action selection, and specification of movement kinematics. These numerous processes are reflected in the reaction time, which is the time that it takes to start executing the movement. However, not all the processes that lead to motor planning increase reaction time. In this paper, we wanted to test whether tuning the control policy to task demands contributes to reaction time. Taking into account that the tuning of the control policy differs for narrow and wide targets, we used a timed response paradigm to track the amount of time needed to tune the control policy appropriately to task demands. We discovered that it does not take any time during motor planning and even that it can occur indistinguishably during motor planning or during motor execution. That is, the tuning the control policy was equally good when the narrow or wide target was displayed before than when it was displayed after the start of the movement. These results suggest that the frontier between motor planning and execution is not as clear cut as it is often depicted.NEW & NOTEWORTHY Movement preparation consists of different processes such as target selection and movement parameters selection. We investigate the time that it takes to tune movement parameters to task demands. We found that the brain does this instantaneously and that this can even happen during movement. Therefore, this suggests that there exists an overlap during movement planning and execution.
Collapse
Affiliation(s)
- Jean-Jacques Orban de Xivry
- KU Leuven Departement of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Robert M Hardwick
- KU Leuven Departement of Movement Sciences, KU Leuven, Leuven, Belgium
- Institute of Neuroscience, UC Louvain, Bruxelles, Belgium
| |
Collapse
|
12
|
Pemberton J, Chadderton P, Costa RP. Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation. Nat Commun 2024; 15:10913. [PMID: 39738061 PMCID: PMC11686095 DOI: 10.1038/s41467-024-55315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions. First, using sensorimotor tasks, we show that cerebellar feedback in the presence of stable cortical networks is sufficient for rapid task acquisition and switching. Next, we demonstrate that, when trained in working memory tasks, the cerebellum can also underlie the maintenance of cognitive-specific dynamics in the cortex, explaining a range of optogenetic and behavioural observations. Finally, using our model, we introduce a systems consolidation theory in which task information is gradually transferred from the cerebellum to the cortex. In summary, our findings suggest that cortico-cerebellar loops are an important component of task acquisition, switching, and consolidation in the brain.
Collapse
Affiliation(s)
- Joseph Pemberton
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Soldado-Magraner J, Mante V, Sahani M. Inferring context-dependent computations through linear approximations of prefrontal cortex dynamics. SCIENCE ADVANCES 2024; 10:eadl4743. [PMID: 39693450 DOI: 10.1126/sciadv.adl4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving monkeys. A class of models implementing linear dynamics driven by external inputs accurately captured PFC responses within contexts and revealed equally performing mechanisms. One model implemented context-dependent recurrent dynamics and relied on transient input amplification; the other relied on subtle contextual modulations of the inputs, providing constraints on the attentional effects in sensory areas required to explain flexible PFC responses and behavior. Both models revealed properties of inputs and recurrent dynamics that were not apparent from qualitative descriptions of PFC responses. By revealing mechanisms that are quantitatively consistent with complex cortical dynamics, our modeling approach provides a principled and general framework to link neural population activity and computation.
Collapse
Affiliation(s)
- Joana Soldado-Magraner
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland St, London W1T 4JG, UK
| | - Valerio Mante
- Institute of Neuroinformatics, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland St, London W1T 4JG, UK
| |
Collapse
|
14
|
Schuessler F, Mastrogiuseppe F, Ostojic S, Barak O. Aligned and oblique dynamics in recurrent neural networks. eLife 2024; 13:RP93060. [PMID: 39601404 DOI: 10.7554/elife.93060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network's output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.
Collapse
Affiliation(s)
- Friedrich Schuessler
- Faculty of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | | | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure-PSL Research University, Paris, France
| | - Omri Barak
- Rappaport Faculty of Medicine and Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Abdolkhaleghzadeh SM, Effati S, Rakhshan SA. Discrete-time optimal control problems with time delay argument: New discrete-time Euler-Lagrange equations with delay. ISA TRANSACTIONS 2024; 154:95-112. [PMID: 39214755 DOI: 10.1016/j.isatra.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Discrete-time optimal control problems are a crucial type of control problems that deal with a dynamic system evolving in discrete time-steps. This paper introduces a new technique for solving linear discrete-time optimal control problems with state delays, applicable to both finite and infinite time horizons. Our method employs a Riccati matrix equation, optimizing control strategies and ensuring system stability through bounded control inputs. We adopt a Bolza problem for the performance index, which guides the classification of control issues. The technique simplifies problems into manageable Riccati matrix equations using the Euler-Lagrange equations and Pontryagin maximum principle, ensuring stability and necessary condition compliance. The paper validates the approach with numerical examples from quantum mechanics and classical physics, demonstrating its practicality and potential for broader application.
Collapse
Affiliation(s)
| | - Sohrab Effati
- Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran; Center of Excellence of Soft Computing and Intelligent Information Processing (SCIIP), Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Ali Rakhshan
- Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
16
|
Smoulder AL, Marino PJ, Oby ER, Snyder SE, Miyata H, Pavlovsky NP, Bishop WE, Yu BM, Chase SM, Batista AP. A neural basis of choking under pressure. Neuron 2024; 112:3424-3433.e8. [PMID: 39270654 PMCID: PMC11791831 DOI: 10.1016/j.neuron.2024.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Incentives tend to drive improvements in performance. But when incentives get too high, we can "choke under pressure" and underperform right when it matters most. What neural processes might lead to choking under pressure? We studied rhesus monkeys performing a challenging reaching task in which they underperformed when an unusually large "jackpot" reward was at stake, and we sought a neural mechanism that might result in that underperformance. We found that increases in reward drive neural activity during movement preparation into, and then past, a zone of optimal performance. We conclude that neural signals of reward and motor preparation interact in the motor cortex (MC) in a manner that can explain why we choke under pressure.
Collapse
Affiliation(s)
- Adam L Smoulder
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Patrick J Marino
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily R Oby
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sam E Snyder
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hiroo Miyata
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nick P Pavlovsky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Bishop
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, GA, USA
| | - Byron M Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Steven M Chase
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Schimel M, Kao TC, Hennequin G. When and why does motor preparation arise in recurrent neural network models of motor control? eLife 2024; 12:RP89131. [PMID: 39316044 PMCID: PMC11421851 DOI: 10.7554/elife.89131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.
Collapse
Affiliation(s)
- Marine Schimel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Ta-Chu Kao
- Meta Reality Labs, Burlingame, United States
| | - Guillaume Hennequin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Sabatini DA, Kaufman MT. Reach-dependent reorientation of rotational dynamics in motor cortex. Nat Commun 2024; 15:7007. [PMID: 39143078 PMCID: PMC11325044 DOI: 10.1038/s41467-024-51308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
During reaching, neurons in motor cortex exhibit complex, time-varying activity patterns. Though single-neuron activity correlates with movement parameters, movement correlations explain neural activity only partially. Neural responses also reflect population-level dynamics thought to generate outputs. These dynamics have previously been described as "rotational," such that activity orbits in neural state space. Here, we reanalyze reaching datasets from male Rhesus macaques and find two essential features that cannot be accounted for with standard dynamics models. First, the planes in which rotations occur differ for different reaches. Second, this variation in planes reflects the overall location of activity in neural state space. Our "location-dependent rotations" model fits nearly all motor cortex activity during reaching, and high-quality decoding of reach kinematics reveals a quasilinear relationship with spiking. Varying rotational planes allows motor cortex to produce richer outputs than possible under previous models. Finally, our model links representational and dynamical ideas: representation is present in the state space location, which dynamics then convert into time-varying command signals.
Collapse
Affiliation(s)
- David A Sabatini
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Matthew T Kaufman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Yang Z, Inagaki M, Gerfen CR, Fontolan L, Inagaki HK. Integrator dynamics in the cortico-basal ganglia loop underlie flexible motor timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601348. [PMID: 39005437 PMCID: PMC11244898 DOI: 10.1101/2024.06.29.601348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Flexible control of motor timing is crucial for behavior. Before volitional movement begins, the frontal cortex and striatum exhibit ramping spiking activity, with variable ramp slopes anticipating movement onsets. This activity in the cortico-basal ganglia loop may function as an adjustable 'timer,' triggering actions at the desired timing. However, because the frontal cortex and striatum share similar ramping dynamics and are both necessary for timing behaviors, distinguishing their individual roles in this timer function remains challenging. To address this, we conducted perturbation experiments combined with multi-regional electrophysiology in mice performing a flexible lick-timing task. Following transient silencing of the frontal cortex, cortical and striatal activity swiftly returned to pre-silencing levels and resumed ramping, leading to a shift in lick timing close to the silencing duration. Conversely, briefly inhibiting the striatum caused a gradual decrease in ramping activity in both regions, with ramping resuming from post-inhibition levels, shifting lick timing beyond the inhibition duration. Thus, inhibiting the frontal cortex and striatum effectively paused and rewound the timer, respectively. These findings suggest the striatum is a part of the network that temporally integrates input from the frontal cortex and generates ramping activity that regulates motor timing.
Collapse
|
20
|
Rostami V, Rost T, Schmitt FJ, van Albada SJ, Riehle A, Nawrot MP. Spiking attractor model of motor cortex explains modulation of neural and behavioral variability by prior target information. Nat Commun 2024; 15:6304. [PMID: 39060243 PMCID: PMC11282312 DOI: 10.1038/s41467-024-49889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
When preparing a movement, we often rely on partial or incomplete information, which can decrement task performance. In behaving monkeys we show that the degree of cued target information is reflected in both, neural variability in motor cortex and behavioral reaction times. We study the underlying mechanisms in a spiking motor-cortical attractor model. By introducing a biologically realistic network topology where excitatory neuron clusters are locally balanced with inhibitory neuron clusters we robustly achieve metastable network activity across a wide range of network parameters. In application to the monkey task, the model performs target-specific action selection and accurately reproduces the task-epoch dependent reduction of trial-to-trial variability in vivo where the degree of reduction directly reflects the amount of processed target information, while spiking irregularity remained constant throughout the task. In the context of incomplete cue information, the increased target selection time of the model can explain increased behavioral reaction times. We conclude that context-dependent neural and behavioral variability is a signum of attractor computation in the motor cortex.
Collapse
Affiliation(s)
- Vahid Rostami
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Thomas Rost
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | - Sacha Jennifer van Albada
- Institute of Zoology, University of Cologne, Cologne, Germany
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
| | - Alexa Riehle
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France
| | | |
Collapse
|
21
|
Ostojic S, Fusi S. Computational role of structure in neural activity and connectivity. Trends Cogn Sci 2024; 28:677-690. [PMID: 38553340 DOI: 10.1016/j.tics.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 07/05/2024]
Abstract
One major challenge of neuroscience is identifying structure in seemingly disorganized neural activity. Different types of structure have different computational implications that can help neuroscientists understand the functional role of a particular brain area. Here, we outline a unified approach to characterize structure by inspecting the representational geometry and the modularity properties of the recorded activity and show that a similar approach can also reveal structure in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent studies of model networks performing three classes of computations.
Collapse
Affiliation(s)
- Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005 Paris, France.
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Jensen KT, Hennequin G, Mattar MG. A recurrent network model of planning explains hippocampal replay and human behavior. Nat Neurosci 2024; 27:1340-1348. [PMID: 38849521 PMCID: PMC11239510 DOI: 10.1038/s41593-024-01675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
When faced with a novel situation, people often spend substantial periods of time contemplating possible futures. For such planning to be rational, the benefits to behavior must compensate for the time spent thinking. Here, we capture these features of behavior by developing a neural network model where planning itself is controlled by the prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences from its own policy, which we call 'rollouts'. In a spatial navigation task, the agent learns to plan when it is beneficial, which provides a normative explanation for empirical variability in human thinking times. Additionally, the patterns of policy rollouts used by the artificial agent closely resemble patterns of rodent hippocampal replays. Our work provides a theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by-and adaptively affect-prefrontal dynamics.
Collapse
Affiliation(s)
- Kristopher T Jensen
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
- Sainsbury Wellcome Centre, University College London, London, UK.
| | - Guillaume Hennequin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Marcelo G Mattar
- Department of Cognitive Science, University of California, San Diego, CA, USA
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
23
|
Stroud JP, Duncan J, Lengyel M. The computational foundations of dynamic coding in working memory. Trends Cogn Sci 2024; 28:614-627. [PMID: 38580528 DOI: 10.1016/j.tics.2024.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Working memory (WM) is a fundamental aspect of cognition. WM maintenance is classically thought to rely on stable patterns of neural activities. However, recent evidence shows that neural population activities during WM maintenance undergo dynamic variations before settling into a stable pattern. Although this has been difficult to explain theoretically, neural network models optimized for WM typically also exhibit such dynamics. Here, we examine stable versus dynamic coding in neural data, classical models, and task-optimized networks. We review principled mathematical reasons for why classical models do not, while task-optimized models naturally do exhibit dynamic coding. We suggest an update to our understanding of WM maintenance, in which dynamic coding is a fundamental computational feature rather than an epiphenomenon.
Collapse
Affiliation(s)
- Jake P Stroud
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
24
|
Jiang H, Bu X, Sui X, Tang H, Pan X, Chen Y. Spike Neural Network of Motor Cortex Model for Arm Reaching Control. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039622 DOI: 10.1109/embc53108.2024.10781802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Motor cortex modeling is crucial for understanding movement planning and execution. While interconnected recurrent neural networks have successfully described the dynamics of neural population activity, most existing methods utilize continuous signal-based neural networks, which do not reflect the biological spike neural signal. To address this limitation, we propose a recurrent spike neural network to simulate motor cortical activity during an arm-reaching task. Specifically, our model is built upon integrate-and-fire spiking neurons with conductance-based synapses. We carefully designed the interconnections of neurons with two different firing time scales - "fast" and "slow" neurons. Experimental results demonstrate the effectiveness of our method, with the model's neuronal activity in good agreement with monkey's motor cortex data at both single-cell and population levels. Quantitative analysis reveals a correlation coefficient 0.89 between the model's and real data. These results suggest the possibility of multiple timescales in motor cortical control.
Collapse
|
25
|
Chang JC, Perich MG, Miller LE, Gallego JA, Clopath C. De novo motor learning creates structure in neural activity that shapes adaptation. Nat Commun 2024; 15:4084. [PMID: 38744847 PMCID: PMC11094149 DOI: 10.1038/s41467-024-48008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.
Collapse
Affiliation(s)
- Joanna C Chang
- Department of Bioengineering, Imperial College London, London, UK
| | - Matthew G Perich
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Mila, Québec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Lee E Miller
- Departments of Physiology, Biomedical Engineering and Physical Medicine and Rehabilitation, Northwestern University and Shirley Ryan Ability Lab, Chicago, IL, USA
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
26
|
Sadeghi M, Sharif Razavian R, Bazzi S, Chowdhury RH, Batista AP, Loughlin PJ, Sternad D. Inferring control objectives in a virtual balancing task in humans and monkeys. eLife 2024; 12:RP88514. [PMID: 38738986 PMCID: PMC11090506 DOI: 10.7554/elife.88514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Biology, Northeastern UniversityBostonUnited States
| | - Reza Sharif Razavian
- Department of Biology, Northeastern UniversityBostonUnited States
- Department of Electrical and Computer Engineering, Northeastern UniversityBostonUnited States
- Department of Mechanical Engineering, Northern Arizona UniversityFlagstaffUnited States
| | - Salah Bazzi
- Department of Biology, Northeastern UniversityBostonUnited States
- Department of Electrical and Computer Engineering, Northeastern UniversityBostonUnited States
- Institute for Experiential Robotics, Northeastern UniversityBostonUnited States
| | - Raeed H Chowdhury
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Aaron P Batista
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Patrick J Loughlin
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of PittsburghPittsburghUnited States
| | - Dagmar Sternad
- Department of Biology, Northeastern UniversityBostonUnited States
- Department of Electrical and Computer Engineering, Northeastern UniversityBostonUnited States
- Institute for Experiential Robotics, Northeastern UniversityBostonUnited States
- Department of Physics, Northeastern UniversityBostonUnited States
| |
Collapse
|
27
|
Lakshminarasimhan KJ, Xie M, Cohen JD, Sauerbrei BA, Hantman AW, Litwin-Kumar A, Escola S. Specific connectivity optimizes learning in thalamocortical loops. Cell Rep 2024; 43:114059. [PMID: 38602873 PMCID: PMC11104520 DOI: 10.1016/j.celrep.2024.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Thalamocortical loops have a central role in cognition and motor control, but precisely how they contribute to these processes is unclear. Recent studies showing evidence of plasticity in thalamocortical synapses indicate a role for the thalamus in shaping cortical dynamics through learning. Since signals undergo a compression from the cortex to the thalamus, we hypothesized that the computational role of the thalamus depends critically on the structure of corticothalamic connectivity. To test this, we identified the optimal corticothalamic structure that promotes biologically plausible learning in thalamocortical synapses. We found that corticothalamic projections specialized to communicate an efference copy of the cortical output benefit motor control, while communicating the modes of highest variance is optimal for working memory tasks. We analyzed neural recordings from mice performing grasping and delayed discrimination tasks and found corticothalamic communication consistent with these predictions. These results suggest that the thalamus orchestrates cortical dynamics in a functionally precise manner through structured connectivity.
Collapse
Affiliation(s)
| | - Marjorie Xie
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jeremy D Cohen
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27559, USA
| | - Britton A Sauerbrei
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adam W Hantman
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27559, USA
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Sean Escola
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
28
|
Churchland MM, Shenoy KV. Preparatory activity and the expansive null-space. Nat Rev Neurosci 2024; 25:213-236. [PMID: 38443626 DOI: 10.1038/s41583-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.
Collapse
Affiliation(s)
- Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Chae S, Sohn JW, Kim SP. Differential Formation of Motor Cortical Dynamics during Movement Preparation According to the Predictability of Go Timing. J Neurosci 2024; 44:e1353232024. [PMID: 38233217 PMCID: PMC10883619 DOI: 10.1523/jneurosci.1353-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The motor cortex not only executes but also prepares movement, as motor cortical neurons exhibit preparatory activity that predicts upcoming movements. In movement preparation, animals adopt different strategies in response to uncertainties existing in nature such as the unknown timing of when a predator will attack-an environmental cue informing "go." However, how motor cortical neurons cope with such uncertainties is less understood. In this study, we aim to investigate whether and how preparatory activity is altered depending on the predictability of "go" timing. We analyze firing activities of the anterior lateral motor cortex in male mice during two auditory delayed-response tasks each with predictable or unpredictable go timing. When go timing is unpredictable, preparatory activities immediately reach and stay in a neural state capable of producing movement anytime to a sudden go cue. When go timing is predictable, preparation activity reaches the movement-producible state more gradually, to secure more accurate decisions. Surprisingly, this preparation process entails a longer reaction time. We find that as preparatory activity increases in accuracy, it takes longer for a neural state to transition from the end of preparation to the start of movement. Our results suggest that the motor cortex fine-tunes preparatory activity for more accurate movement using the predictability of go timing.
Collapse
Affiliation(s)
- Soyoung Chae
- Ulsan National Institute of Science and Technology, Ulsan 44929, South Korea
| | - Jeong-Woo Sohn
- Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Sung-Phil Kim
- Ulsan National Institute of Science and Technology, Ulsan 44929, South Korea
| |
Collapse
|
30
|
Zimnik AJ, Cora Ames K, An X, Driscoll L, Lara AH, Russo AA, Susoy V, Cunningham JP, Paninski L, Churchland MM, Glaser JI. Identifying Interpretable Latent Factors with Sparse Component Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578988. [PMID: 38370650 PMCID: PMC10871230 DOI: 10.1101/2024.02.05.578988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In many neural populations, the computationally relevant signals are posited to be a set of 'latent factors' - signals shared across many individual neurons. Understanding the relationship between neural activity and behavior requires the identification of factors that reflect distinct computational roles. Methods for identifying such factors typically require supervision, which can be suboptimal if one is unsure how (or whether) factors can be grouped into distinct, meaningful sets. Here, we introduce Sparse Component Analysis (SCA), an unsupervised method that identifies interpretable latent factors. SCA seeks factors that are sparse in time and occupy orthogonal dimensions. With these simple constraints, SCA facilitates surprisingly clear parcellations of neural activity across a range of behaviors. We applied SCA to motor cortex activity from reaching and cycling monkeys, single-trial imaging data from C. elegans, and activity from a multitask artificial network. SCA consistently identified sets of factors that were useful in describing network computations.
Collapse
Affiliation(s)
- Andrew J Zimnik
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - K Cora Ames
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Xinyue An
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA
| | - Laura Driscoll
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Allen Institute for Neural Dynamics, Allen Institute, Seattle, CA, USA
| | - Antonio H Lara
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Abigail A Russo
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Vladislav Susoy
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John P Cunningham
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Liam Paninski
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Mark M Churchland
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY, USA
| | - Joshua I Glaser
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| |
Collapse
|
31
|
Oby ER, Degenhart AD, Grigsby EM, Motiwala A, McClain NT, Marino PJ, Yu BM, Batista AP. Dynamical constraints on neural population activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573543. [PMID: 38260549 PMCID: PMC10802336 DOI: 10.1101/2024.01.03.573543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The manner in which neural activity unfolds over time is thought to be central to sensory, motor, and cognitive functions in the brain. Network models have long posited that the brain's computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate. We leveraged a brain-computer interface (BCI) to challenge monkeys to violate the naturally-occurring time courses of neural population activity that we observed in motor cortex. This included challenging animals to traverse the natural time course of neural activity in a time-reversed manner. Animals were unable to violate the natural time courses of neural activity when directly challenged to do so. These results provide empirical support for the view that activity time courses observed in the brain indeed reflect the underlying network-level computational mechanisms that they are believed to implement.
Collapse
|
32
|
Stroud JP, Watanabe K, Suzuki T, Stokes MG, Lengyel M. Optimal information loading into working memory explains dynamic coding in the prefrontal cortex. Proc Natl Acad Sci U S A 2023; 120:e2307991120. [PMID: 37983510 PMCID: PMC10691340 DOI: 10.1073/pnas.2307991120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 11/22/2023] Open
Abstract
Working memory involves the short-term maintenance of information and is critical in many tasks. The neural circuit dynamics underlying working memory remain poorly understood, with different aspects of prefrontal cortical (PFC) responses explained by different putative mechanisms. By mathematical analysis, numerical simulations, and using recordings from monkey PFC, we investigate a critical but hitherto ignored aspect of working memory dynamics: information loading. We find that, contrary to common assumptions, optimal loading of information into working memory involves inputs that are largely orthogonal, rather than similar, to the late delay activities observed during memory maintenance, naturally leading to the widely observed phenomenon of dynamic coding in PFC. Using a theoretically principled metric, we show that PFC exhibits the hallmarks of optimal information loading. We also find that optimal information loading emerges as a general dynamical strategy in task-optimized recurrent neural networks. Our theory unifies previous, seemingly conflicting theories of memory maintenance based on attractor or purely sequential dynamics and reveals a normative principle underlying dynamic coding.
Collapse
Affiliation(s)
- Jake P. Stroud
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Kei Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Communication and Information Technology, Osaka565-0871, Japan
| | - Mark G. Stokes
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, BudapestH-1051, Hungary
| |
Collapse
|
33
|
Sadeghi M, Razavian RS, Bazzi S, Chowdhury R, Batista A, Loughlin P, Sternad D. Inferring control objectives in a virtual balancing task in humans and monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539055. [PMID: 37205497 PMCID: PMC10187212 DOI: 10.1101/2023.05.02.539055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different control objectives. Given only observations of behavior, is it possible to infer the control strategy that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular control strategy. This study presents a threepronged approach to infer an animal's control strategy from behavior. First, both humans and monkeys performed a virtual balancing task for which different control objectives could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control strategies to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer strategies from animal subjects. Being able to positively identify a subject's control objective from behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Biology, Northeastern University
- Department of Electrical and Computer Engineering, Northeastern University
| | | | - Salah Bazzi
- Institute for Experiential Robotics, Northeastern University
| | - Raeed Chowdhury
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
| | - Aaron Batista
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
| | - Patrick Loughlin
- Department of Bioengineering, and Center for the Neural Basis of Cognition, University of Pittsburgh, PA, USA
| | - Dagmar Sternad
- Department of Biology, Northeastern University
- Department of Electrical and Computer Engineering, Northeastern University
- Institute for Experiential Robotics, Northeastern University
- Department of Physics, Northeastern University
| |
Collapse
|
34
|
Athalye VR, Khanna P, Gowda S, Orsborn AL, Costa RM, Carmena JM. Invariant neural dynamics drive commands to control different movements. Curr Biol 2023; 33:2962-2976.e15. [PMID: 37402376 PMCID: PMC10527529 DOI: 10.1016/j.cub.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023]
Abstract
It has been proposed that the nervous system has the capacity to generate a wide variety of movements because it reuses some invariant code. Previous work has identified that dynamics of neural population activity are similar during different movements, where dynamics refer to how the instantaneous spatial pattern of population activity changes in time. Here, we test whether invariant dynamics of neural populations are actually used to issue the commands that direct movement. Using a brain-machine interface (BMI) that transforms rhesus macaques' motor-cortex activity into commands for a neuroprosthetic cursor, we discovered that the same command is issued with different neural-activity patterns in different movements. However, these different patterns were predictable, as we found that the transitions between activity patterns are governed by the same dynamics across movements. These invariant dynamics are low dimensional, and critically, they align with the BMI, so that they predict the specific component of neural activity that actually issues the next command. We introduce a model of optimal feedback control (OFC) that shows that invariant dynamics can help transform movement feedback into commands, reducing the input that the neural population needs to control movement. Altogether our results demonstrate that invariant dynamics drive commands to control a variety of movements and show how feedback can be integrated with invariant dynamics to issue generalizable commands.
Collapse
Affiliation(s)
- Vivek R Athalye
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY 10027, USA.
| | - Preeya Khanna
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Suraj Gowda
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amy L Orsborn
- Departments of Bioengineering, Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA 98195, USA
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology, Columbia University, New York, NY 10027, USA.
| | - Jose M Carmena
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; UC Berkeley-UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Abstract
Flexible behavior requires the creation, updating, and expression of memories to depend on context. While the neural underpinnings of each of these processes have been intensively studied, recent advances in computational modeling revealed a key challenge in context-dependent learning that had been largely ignored previously: Under naturalistic conditions, context is typically uncertain, necessitating contextual inference. We review a theoretical approach to formalizing context-dependent learning in the face of contextual uncertainty and the core computations it requires. We show how this approach begins to organize a large body of disparate experimental observations, from multiple levels of brain organization (including circuits, systems, and behavior) and multiple brain regions (most prominently the prefrontal cortex, the hippocampus, and motor cortices), into a coherent framework. We argue that contextual inference may also be key to understanding continual learning in the brain. This theory-driven perspective places contextual inference as a core component of learning.
Collapse
Affiliation(s)
- James B Heald
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; ,
| | - Daniel M Wolpert
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; ,
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom;
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom;
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
36
|
Bachschmid-Romano L, Hatsopoulos NG, Brunel N. Interplay between external inputs and recurrent dynamics during movement preparation and execution in a network model of motor cortex. eLife 2023; 12:77690. [PMID: 37166452 PMCID: PMC10174693 DOI: 10.7554/elife.77690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2023] [Indexed: 05/12/2023] Open
Abstract
The primary motor cortex has been shown to coordinate movement preparation and execution through computations in approximately orthogonal subspaces. The underlying network mechanisms, and the roles played by external and recurrent connectivity, are central open questions that need to be answered to understand the neural substrates of motor control. We develop a recurrent neural network model that recapitulates the temporal evolution of neuronal activity recorded from the primary motor cortex of a macaque monkey during an instructed delayed-reach task. In particular, it reproduces the observed dynamic patterns of covariation between neural activity and the direction of motion. We explore the hypothesis that the observed dynamics emerges from a synaptic connectivity structure that depends on the preferred directions of neurons in both preparatory and movement-related epochs, and we constrain the strength of both synaptic connectivity and external input parameters from data. While the model can reproduce neural activity for multiple combinations of the feedforward and recurrent connections, the solution that requires minimum external inputs is one where the observed patterns of covariance are shaped by external inputs during movement preparation, while they are dominated by strong direction-specific recurrent connectivity during movement execution. Our model also demonstrates that the way in which single-neuron tuning properties change over time can explain the level of orthogonality of preparatory and movement-related subspaces.
Collapse
Affiliation(s)
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
- Committee on Computational Neuroscience, University of Chicago, Chicago, United States
| | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, United States
- Department of Physics, Duke University, Durham, United States
- Duke Institute for Brain Sciences, Duke University, Durham, United States
- Center for Cognitive Neuroscience, Duke University, Durham, United States
| |
Collapse
|
37
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
38
|
Meirhaeghe N, Riehle A, Brochier T. Parallel movement planning is achieved via an optimal preparatory state in motor cortex. Cell Rep 2023; 42:112136. [PMID: 36807145 DOI: 10.1016/j.celrep.2023.112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/16/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
How do patterns of neural activity in the motor cortex contribute to the planning of a movement? A recent theory developed for single movements proposes that the motor cortex acts as a dynamical system whose initial state is optimized during the preparatory phase of the movement. This theory makes important yet untested predictions about preparatory dynamics in more complex behavioral settings. Here, we analyze preparatory activity in non-human primates planning not one but two movements simultaneously. As predicted by the theory, we find that parallel planning is achieved by adjusting preparatory activity within an optimal subspace to an intermediate state reflecting a trade-off between the two movements. The theory quantitatively accounts for the relationship between this intermediate state and fluctuations in the animals' behavior down at the trial level. These results uncover a simple mechanism for planning multiple movements in parallel and further point to motor planning as a controlled dynamical process.
Collapse
Affiliation(s)
- Nicolas Meirhaeghe
- Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, 13005 Marseille, France.
| | - Alexa Riehle
- Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, 13005 Marseille, France; Institute of Neuroscience and Medicine (INM-6), Jülich Research Centre, 52428 Jülich, Germany
| | - Thomas Brochier
- Institut de Neurosciences de la Timone (INT), UMR 7289, CNRS, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
39
|
Machado VG, Brun ABS, Manffra EF. Effects of the radio electric asymmetric conveyer (REAC) on motor disorders: An integrative review. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1122245. [PMID: 36923595 PMCID: PMC10009233 DOI: 10.3389/fmedt.2023.1122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction The radio electric asymmetric conveyer (REAC) is a technology that has the purpose of restoring the cellular polarity triggering the rebalancing of the endogenous bioelectric field, which considering the neurological dysfunctions, affects the neural communication mechanisms. The studies published so far show that the REAC neuromodulation technology has positive effects in treating these dysfunctions, with the principles of endogenous bioelectricity as a basis to achieve these effects. Objectives This study aims to review the literature that explored the effects of REAC protocols on motor control and to identify which mechanisms would be involved. Materials and methods This integrative review considered studies that used REAC as a therapeutic intervention directed at human motor control and experimental research with animals that applied REAC to obtain effects related to motor behavior. Results Ten articles were included, eight clinical and two experimental studies. The clinical studies used the neuro postural optimization (NPO) protocol in 473 patients, of which 53 were healthy subjects, 91 were Alzheimer's disease patients, 128 were patients with atypical swallowing, 12 subjects with neurological diseases, and 189 were without the specification of disease. The experimental studies used the antalgic neuromodulation and neurodegeneration protocols in animal models. Conclusion The information integrated in this review made it possible to consider REAC technology a promising resource for treating motor control dysfunctions. It is possible to infer that the technology promotes functional optimization of neuronal circuits that may be related to more efficient strategies to perform motor tasks.
Collapse
Affiliation(s)
- Vinícius Gomes Machado
- Health Technology Graduate Program, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | | |
Collapse
|
40
|
Jensen KT, Kadmon Harpaz N, Dhawale AK, Wolff SBE, Ölveczky BP. Long-term stability of single neuron activity in the motor system. Nat Neurosci 2022; 25:1664-1674. [PMID: 36357811 PMCID: PMC11152193 DOI: 10.1038/s41593-022-01194-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
How an established behavior is retained and consistently produced by a nervous system in constant flux remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time provided that the population dynamics are constrained to produce the same behavior. To arbitrate between these possibilities, we recorded single-unit activity in motor cortex and striatum continuously for several weeks as rats performed stereotyped motor behaviors-both learned and innate. We found long-term stability in single neuron activity patterns across both brain regions. A small amount of drift in neural activity, observed over weeks of recording, could be explained by concomitant changes in task-irrelevant aspects of the behavior. These results suggest that long-term stable behaviors are generated by single neuron activity patterns that are themselves highly stable.
Collapse
Affiliation(s)
- Kristopher T Jensen
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Naama Kadmon Harpaz
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
41
|
Ujfalussy BB, Orbán G. Sampling motion trajectories during hippocampal theta sequences. eLife 2022; 11:e74058. [PMID: 36346218 PMCID: PMC9643003 DOI: 10.7554/elife.74058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Efficient planning in complex environments requires that uncertainty associated with current inferences and possible consequences of forthcoming actions is represented. Representation of uncertainty has been established in sensory systems during simple perceptual decision making tasks but it remains unclear if complex cognitive computations such as planning and navigation are also supported by probabilistic neural representations. Here, we capitalized on gradually changing uncertainty along planned motion trajectories during hippocampal theta sequences to capture signatures of uncertainty representation in population responses. In contrast with prominent theories, we found no evidence of encoding parameters of probability distributions in the momentary population activity recorded in an open-field navigation task in rats. Instead, uncertainty was encoded sequentially by sampling motion trajectories randomly and efficiently in subsequent theta cycles from the distribution of potential trajectories. Our analysis is the first to demonstrate that the hippocampus is well equipped to contribute to optimal planning by representing uncertainty.
Collapse
Affiliation(s)
- Balazs B Ujfalussy
- Laboratory of Biological Computation, Institute of Experimental MedicineBudapestHungary
- Laboratory of Neuronal Signalling, Institute of Experimental Medicine, BudapestBudapestHungary
| | - Gergő Orbán
- Computational Systems Neuroscience Lab, Wigner Research Center for Physics, BudapestBudapestHungary
| |
Collapse
|
42
|
Yang W, Tipparaju SL, Chen G, Li N. Thalamus-driven functional populations in frontal cortex support decision-making. Nat Neurosci 2022; 25:1339-1352. [PMID: 36171427 PMCID: PMC9534763 DOI: 10.1038/s41593-022-01171-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/18/2022] [Indexed: 12/02/2022]
Abstract
Neurons in frontal cortex exhibit diverse selectivity representing sensory, motor and cognitive variables during decision-making. The neural circuit basis for this complex selectivity remains unclear. We examined activity mediating a tactile decision in mouse anterior lateral motor cortex in relation to the underlying circuits. Contrary to the notion of randomly mixed selectivity, an analysis of 20,000 neurons revealed organized activity coding behavior. Individual neurons exhibited prototypical response profiles that were repeatable across mice. Stimulus, choice and action were coded nonrandomly by distinct neuronal populations that could be delineated by their response profiles. We related distinct selectivity to long-range inputs from somatosensory cortex, contralateral anterior lateral motor cortex and thalamus. Each input connects to all functional populations but with differing strength. Task selectivity was more strongly dependent on thalamic inputs than cortico-cortical inputs. Our results suggest that the thalamus drives subnetworks within frontal cortex coding distinct features of decision-making.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
Small, correlated changes in synaptic connectivity may facilitate rapid motor learning. Nat Commun 2022; 13:5163. [PMID: 36056006 PMCID: PMC9440011 DOI: 10.1038/s41467-022-32646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Animals rapidly adapt their movements to external perturbations, a process paralleled by changes in neural activity in the motor cortex. Experimental studies suggest that these changes originate from altered inputs (Hinput) rather than from changes in local connectivity (Hlocal), as neural covariance is largely preserved during adaptation. Since measuring synaptic changes in vivo remains very challenging, we used a modular recurrent neural network to qualitatively test this interpretation. As expected, Hinput resulted in small activity changes and largely preserved covariance. Surprisingly given the presumed dependence of stable covariance on preserved circuit connectivity, Hlocal led to only slightly larger changes in activity and covariance, still within the range of experimental recordings. This similarity is due to Hlocal only requiring small, correlated connectivity changes for successful adaptation. Simulations of tasks that impose increasingly larger behavioural changes revealed a growing difference between Hinput and Hlocal, which could be exploited when designing future experiments.
Collapse
|
44
|
Deng X, Liufu M, Xu J, Yang C, Li Z, Chen J. Understanding implicit and explicit sensorimotor learning through neural dynamics. Front Comput Neurosci 2022; 16:960569. [PMID: 35990367 PMCID: PMC9381967 DOI: 10.3389/fncom.2022.960569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xueqian Deng
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Mengzhan Liufu
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, United States
| | - Jingyue Xu
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, United States
| | - Chen Yang
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Zina Li
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Juan Chen
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
45
|
Valente A, Ostojic S, Pillow J. Probing the Relationship Between Latent Linear Dynamical Systems and Low-Rank Recurrent Neural Network Models. Neural Comput 2022; 34:1871-1892. [PMID: 35896161 DOI: 10.1162/neco_a_01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/15/2022] [Indexed: 11/04/2022]
Abstract
A large body of work has suggested that neural populations exhibit low-dimensional dynamics during behavior. However, there are a variety of different approaches for modeling low-dimensional neural population activity. One approach involves latent linear dynamical system (LDS) models, in which population activity is described by a projection of low-dimensional latent variables with linear dynamics. A second approach involves low-rank recurrent neural networks (RNNs), in which population activity arises directly from a low-dimensional projection of past activity. Although these two modeling approaches have strong similarities, they arise in different contexts and tend to have different domains of application. Here we examine the precise relationship between latent LDS models and linear low-rank RNNs. When can one model class be converted to the other, and vice versa? We show that latent LDS models can only be converted to RNNs in specific limit cases, due to the non-Markovian property of latent LDS models. Conversely, we show that linear RNNs can be mapped onto LDS models, with latent dimensionality at most twice the rank of the RNN. A surprising consequence of our results is that a partially observed RNN is better represented by an LDS model than by an RNN consisting of only observed units.
Collapse
Affiliation(s)
- Adrian Valente
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure-PSL Research University, 75005 Paris, France
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure-PSL Research University, 75005 Paris, France
| | - Jonathan Pillow
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, U.S.A.
| |
Collapse
|
46
|
Efficient coding of cognitive variables underlies dopamine response and choice behavior. Nat Neurosci 2022; 25:738-748. [PMID: 35668173 DOI: 10.1038/s41593-022-01085-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
Reward expectations based on internal knowledge of the external environment are a core component of adaptive behavior. However, internal knowledge may be inaccurate or incomplete due to errors in sensory measurements. Some features of the environment may also be encoded inaccurately to minimize representational costs associated with their processing. In this study, we investigated how reward expectations are affected by features of internal representations by studying behavior and dopaminergic activity while mice make time-based decisions. We show that several possible representations allow a reinforcement learning agent to model animals' overall performance during the task. However, only a small subset of highly compressed representations simultaneously reproduced the co-variability in animals' choice behavior and dopaminergic activity. Strikingly, these representations predict an unusual distribution of response times that closely match animals' behavior. These results inform how constraints of representational efficiency may be expressed in encoding representations of dynamic cognitive variables used for reward-based computations.
Collapse
|
47
|
Dynamics on the manifold: Identifying computational dynamical activity from neural population recordings. Curr Opin Neurobiol 2021; 70:163-170. [PMID: 34837752 DOI: 10.1016/j.conb.2021.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022]
Abstract
The question of how the collective activity of neural populations gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, decision making, and motor control. It is thought that such computations are implemented through the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. At the same time, interpreting this structure in light of the computation of interest is essential for linking the time-varying activity patterns of the neural population to ongoing computational processes. Here, we review methods that aim to quantify structure in neural population recordings through a dynamical system defined in a low-dimensional latent variable space. We discuss advantages and limitations of different modelling approaches and address future challenges for the field.
Collapse
|
48
|
Kalidindi HT, Cross KP, Lillicrap TP, Omrani M, Falotico E, Sabes PN, Scott SH. Rotational dynamics in motor cortex are consistent with a feedback controller. eLife 2021; 10:e67256. [PMID: 34730516 PMCID: PMC8691841 DOI: 10.7554/elife.67256] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have identified rotational dynamics in motor cortex (MC), which many assume arise from intrinsic connections in MC. However, behavioral and neurophysiological studies suggest that MC behaves like a feedback controller where continuous sensory feedback and interactions with other brain areas contribute substantially to MC processing. We investigated these apparently conflicting theories by building recurrent neural networks that controlled a model arm and received sensory feedback from the limb. Networks were trained to counteract perturbations to the limb and to reach toward spatial targets. Network activities and sensory feedback signals to the network exhibited rotational structure even when the recurrent connections were removed. Furthermore, neural recordings in monkeys performing similar tasks also exhibited rotational structure not only in MC but also in somatosensory cortex. Our results argue that rotational structure may also reflect dynamics throughout the voluntary motor system involved in online control of motor actions.
Collapse
Affiliation(s)
| | - Kevin P Cross
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - Timothy P Lillicrap
- Centre for Computation, Mathematics and Physics, University College LondonLondonUnited Kingdom
| | - Mohsen Omrani
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant'AnnaPisaItaly
| | - Philip N Sabes
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's UniversityKingstonCanada
| |
Collapse
|
49
|
De Kock R, Gladhill KA, Ali MN, Joiner WM, Wiener M. How movements shape the perception of time. Trends Cogn Sci 2021; 25:950-963. [PMID: 34531138 PMCID: PMC9991018 DOI: 10.1016/j.tics.2021.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
In order to keep up with a changing environment, mobile organisms must be capable of deciding both where and when to move. This precision necessitates a strong sense of time, as otherwise we would fail in many of our movement goals. Yet, despite this intrinsic link, only recently have researchers begun to understand how these two features interact. Primarily, two effects have been observed: movements can bias time estimates, but they can also make them more precise. Here we review this literature and propose that both effects can be explained by a Bayesian cue combination framework, in which movement itself affords the most precise representation of time, which can influence perception in either feedforward or active sensing modes.
Collapse
|
50
|
Jazayeri M, Ostojic S. Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Curr Opin Neurobiol 2021; 70:113-120. [PMID: 34537579 PMCID: PMC8688220 DOI: 10.1016/j.conb.2021.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
The ongoing exponential rise in recording capacity calls for new approaches for analysing and interpreting neural data. Effective dimensionality has emerged as an important property of neural activity across populations of neurons, yet different studies rely on different definitions and interpretations of this quantity. Here, we focus on intrinsic and embedding dimensionality, and discuss how they might reveal computational principles from data. Reviewing recent works, we propose that the intrinsic dimensionality reflects information about the latent variables encoded in collective activity while embedding dimensionality reveals the manner in which this information is processed. We conclude by highlighting the role of network models as an ideal substrate for testing more specifically various hypotheses on the computational principles reflected through intrinsic and embedding dimensionality.
Collapse
Affiliation(s)
- Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure - PSL Research University, 75005, Paris, France.
| |
Collapse
|