1
|
Miki Y, Inoue Y, Mori F, Tada M, Yoshida M, Lashley T, Warner TT, Kakita A, Wakabayashi K. TAF15 and Transportin 1 in Intranuclear Inclusions of Neuronal Intranuclear Inclusion Disease. Neuropathol Appl Neurobiol 2025; 51:e70021. [PMID: 40404483 DOI: 10.1111/nan.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Grants
- Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan
- 24K10654 Japan Society for the Promotion of Science
- 23K06802 Japan Society for the Promotion of Science
- 23K24209 Japan Society for the Promotion of Science
- JP23wm0425019 The Collaborative Research Project of the Brain Research Institute, Niigata University, Japan Agency for Medical Research and Development
- 24zf0127012 The Collaborative Research Project of the Brain Research Institute, Niigata University, Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yutaka Inoue
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
2
|
Ding N, Song Y, Zhang Y, Yu W, Li X, Li W, Li L. Heat-shock chaperone HSPB1 mitigates poly-glycine-induced neurodegeneration via restoration of autophagic flux. Autophagy 2025; 21:1298-1315. [PMID: 39936620 DOI: 10.1080/15548627.2025.2466144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
The CGG repeat expansions in the 5'-UTR regions of certain genes have been implicated in various neurodegenerative and muscular disorders. However, the underlying pathogenic mechanisms are not well understood. In this study, we explore the role of the small molecular chaperone HSPB1 in counteracting neurodegeneration induced by poly-glycine (poly-G) aggregates. Employing a reporter system, we demonstrate that CGG repeat expansions within the 5'-UTR of the GIPC1 gene produce poly-G proteins, by repeat-associated non-AUG (RAN) translation. Through proximity labeling and subsequent mass spectrometry analysis, we characterize the composition of poly-G insoluble aggregates and reveal that these aggregates sequester key macroautophagy/autophagy receptors, SQSTM1/p62 and TOLLIP. This sequestration disrupts MAP1LC3/LC3 recruitment and impairs autophagosome formation, thereby compromising the autophagic pathway. Importantly, we show that HSPB1 facilitates the dissociation of these receptors from poly-G aggregates and consequently restores autophagic function. Overexpressing HSPB1 alleviates poly-G-induced neurodegeneration in mouse models. Taken together, these findings highlight a mechanistic basis for the neuroprotective effects of HSPB1 and suggest its potential as a therapeutic target in treating poly-G-associated neurodegenerative diseases.Abbreviations: AD: Alzheimer disease; AIF1/Iba1: allograft inflammatory factor 1; Baf A1: bafilomycin A1; BFP: blue fluorescent protein; CQ: chloroquine; EIF2A/eIF-2α: eukaryotic translation initiation factor 2A; FRAP: fluorescence recovery after photobleaching; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; HSPB1: heat shock protein family B (small) member 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NOTCH2NLC: notch 2 N-terminal like C; PD: Parkinson disease; PFA: paraformaldehyde; poly-A: poly-alanine; poly-G: poly-glycine; poly-R: poly-arginine; RAN translation: repeat-associated non-AUG translation; RBFOX3/NeuN: RNA binding fox-1 homolog 3; STED: stimulated emission depletion; TARDBP/TDP-43: TAR DNA binding protein; TG: thapsigargin; TOLLIP: toll interacting protein.
Collapse
Affiliation(s)
- Ning Ding
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yijie Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuhang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinnan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Wei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
3
|
Chen Z, Morris HR, Polke J, Wood NW, Gandhi S, Ryten M, Houlden H, Tucci A. Repeat expansion disorders. Pract Neurol 2025; 25:204-216. [PMID: 39349043 DOI: 10.1136/pn-2023-003938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 10/02/2024]
Abstract
An increasing number of repeat expansion disorders have been found to cause both rare and common neurological disease. This is exemplified in recent discoveries of novel repeat expansions underlying a significant proportion of several late-onset neurodegenerative disorders, such as CANVAS (cerebellar ataxia, neuropathy and vestibular areflexia syndrome) and spinocerebellar ataxia type 27B. Most of the 60 described repeat expansion disorders to date are associated with neurological disease, providing substantial challenges for diagnosis, but also opportunities for management in a clinical neurology setting. Commonalities in clinical presentation, overarching diagnostic features and similarities in the approach to genetic testing justify considering these disorders collectively based on their unifying causative mechanism. In this review, we discuss the characteristics and diagnostic challenges of repeat expansion disorders for the neurologist and provide examples to highlight their clinical heterogeneity. With the ready availability of clinical-grade whole-genome sequencing for molecular diagnosis, we discuss the current approaches to testing for repeat expansion disorders and application in clinical practice.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - James Polke
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Mina Ryten
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Arianna Tucci
- William Harvey Institute, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Liu Y, Xia K. Aberrant Short Tandem Repeats: Pathogenicity, Mechanisms, Detection, and Roles in Neuropsychiatric Disorders. Genes (Basel) 2025; 16:406. [PMID: 40282366 PMCID: PMC12026680 DOI: 10.3390/genes16040406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
Short tandem repeat (STR) sequences are highly variable DNA segments that significantly contribute to human neurodegenerative disorders, highlighting their crucial role in neuropsychiatric conditions. This article examines the pathogenicity of abnormal STRs and classifies tandem repeat expansion disorders(TREDs), emphasizing their genetic characteristics, mechanisms of action, detection methods, and associated animal models. STR expansions exhibit complex genetic patterns that affect the age of onset and symptom severity. These expansions disrupt gene function through mechanisms such as gene silencing, toxic gain-of-function mutations leading to RNA and protein toxicity, and the generation of toxic peptides via repeat-associated non-AUG (RAN) translation. Advances in sequencing technologies-from traditional PCR and Southern blotting to next-generation and long-read sequencing-have enhanced the accuracy of STR variation detection. Research utilizing these technologies has linked STR expansions to a range of neuropsychiatric disorders, including autism spectrum disorders and schizophrenia, highlighting their contribution to disease risk and phenotypic expression through effects on genes involved in neurodevelopment, synaptic function, and neuronal signaling. Therefore, further investigation is essential to elucidate the intricate interplay between STRs and neuropsychiatric diseases, paving the way for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yuzhong Liu
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- MOE Key Lab of Rare Pediatric Diseases, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Kun Xia
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- MOE Key Lab of Rare Pediatric Diseases, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Ishiura H. Recent progress in oculopharyngodistal myopathy research from clinical and genetic viewpoints. J Neuromuscul Dis 2025:22143602251319164. [PMID: 40033734 DOI: 10.1177/22143602251319164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Oculopharyngodistal myopathy (OPDM) is a rare muscular disorder characterized by ocular symptoms, pharyngeal symptoms, facial weakness, and distal predominant limb muscle weakness. The cause of the disease was unknown for a long time. Recently, however, it has been reported that expansions of CGG or CCG repeats in LRP12, LOC642361/NUTM2B-AS1, GIPC1, NOTCH2NLC, RILPL1, and ABCD3 are the causes of the disease. Cases sometimes present with neurological symptoms, and the clinical spectrum of diseases caused by expansions of CGG or CCG repeats has been proposed to be called FNOP-spectrum disorder after the names of fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukoencephalopathy, and OPDM. In this article, the recent progress in the field of OPDM is reviewed, and remaining issues in OPDM are discussed.
Collapse
Affiliation(s)
- Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Lancaster CL, Moberg KH, Corbett AH. Post-Transcriptional Regulation of Gene Expression and the Intricate Life of Eukaryotic mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70007. [PMID: 40059537 PMCID: PMC11949413 DOI: 10.1002/wrna.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
In recent years, there has been a growing appreciation for how regulatory events that occur either co- or post-transcriptionally contribute to the control of gene expression. Messenger RNAs (mRNAs) are extensively regulated throughout their metabolism in a precise spatiotemporal manner that requires sophisticated molecular mechanisms for cell-type-specific gene expression, which dictates cell function. Moreover, dysfunction at any of these steps can result in a variety of human diseases, including cancers, muscular atrophies, and neurological diseases. This review summarizes the steps of the central dogma of molecular biology, focusing on the post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University Atlanta, Georgia, USA
| | - Kenneth H. Moberg
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Zhong S, Fei B, Liang J, Lian Y, Wang J, Liu Y, Zhang Y, Liu J, Wang X, Ding J. Spatial and Temporal Distribution of White Matter Lesions in NOTCH2NLC-Related Neuronal Intranuclear Inclusion Disease. Neurology 2025; 104:e213360. [PMID: 39899794 DOI: 10.1212/wnl.0000000000213360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/05/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND AND OBJECTIVES NOTCH2NLC-related neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease with characteristic white matter lesions (WMLs) visible on MRI. However, the distribution of WMLs and their clinical correlations remain poorly understood in NIID. This study aims to investigate the spatial and temporal distribution of WMLs in the brain of patients with NOTCH2NLC-related NIID. METHODS We retrospectively evaluated patients diagnosed with NOTCH2NLC-related NIID in Zhongshan Hospital, Fudan University. Detailed clinical information, including retrospective MRI data, was collected. Spatial distribution of WMLs with fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging (DWI) hyperintensities was quantified, and the relationship between WML distribution and clinical presentations was analyzed by the Fisher exact test. The volume of whole-brain WMLs was quantified using ITK-SNAP software. The relationship between phenotypes and WML volume was analyzed by the Student t test, Mann-Whitney test, or correlation analysis. WML development patterns were summarized based on the longitudinal observation of MRI characteristics. RESULTS This study evaluated 45 patients with NOTCH2NLC-related NIID, with a median age of 66 years (range 55-82 years) and consisting of 30 women. Patients exhibited diverse clinical manifestations, with cognitive decline, autonomic dysfunction, and tremor being the 3 most frequent presentations. Severe WMLs were observed in 43 patients, with FLAIR hyperintensities predominantly in the corona radiata, centrum semiovale, and other brain regions. The presence of DWI hyperintensities was common in the corticomedullary junction (91.1%) and corpus callosum (53.3%). Analysis showed significant correlations between FLAIR hyperintensity volume and both age (r = 0.312, p = 0.042) and Montreal Cognitive Assessment scores (r = -0.371, p = 0.048). Longitudinal MRI retrospection in 7 patients over an average of 9.6 ± 2.9 years revealed 3 gradually progressed WML patterns: periventricular-subcortical, periventricular-dominant, and corticomedullary junction-dominant. In addition, 3 patients experienced rapid WML expansion associated with mitochondrial encephalomyopathy with lactic acidosis and stroke (MELAS)-like episodes. DISCUSSION Our analysis revealed the radiologic characteristics and spatial distribution of WMLs and demonstrated significant correlations between FLAIR hyperintensity volume and age/cognitive levels in NIID. Long-term retrospection revealed 3 types of gradual WML expansion patterns while MELAS-like episodes cause rapid WML aggravation. Although results should be confirmed in a larger cohort, these insights enhance understanding of NIID's clinical-radiologic relationships and pathogenesis.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beini Fei
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingzhen Liang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianying Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; and
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Shen Y, Jiang K, Tan D, Zhu M, Qiu Y, Huang P, Zou W, Deng J, Wang Z, Xiong Y, Hong D. uN2CpolyG-mediated p65 nuclear sequestration suppresses the NF-κB-NLRP3 pathway in neuronal intranuclear inclusion disease. Cell Commun Signal 2025; 23:68. [PMID: 39920690 PMCID: PMC11806584 DOI: 10.1186/s12964-025-02079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/01/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is genetically linked to CGG repeat expansion in the 5'-untranslated region of the NOTCH2NLC gene, with nascent polyglycine-containing protein (uN2CpolyG) identified as a primary pathogenic factor. Emerging clinical evidence suggests that inflammation contributes to NIID pathogenesis, yet the underlying molecular mechanisms remain elusive. This study aimed to elucidate the molecular interaction between uN2CpolyG and the NF-κB-NLRP3 pathway. METHODS Single-cell RNA sequencing was conducted on the skin tissues of NIID patients to assess changes in the expression of genes involved in inflammatory pathways. Cell models (HEK-293T and U87-MG) transfected with CGG9/69/100 expansion vectors were used to investigate alterations in the NF-κB-NLRP3-autophagy pathway. Additionally, the therapeutic potential of NF-κB activators was evaluated in a Drosophila model with a CGG expansion knock-in. RESULTS Single-cell sequencing revealed a significant reduction in the expression of NFKBIA, encoding NF-κB inhibitor alpha (IkBa), which facilitates the nuclear translocation of p65, a key NF-κB component. uN2CpolyG directly interacted with and sequestered p65 in nuclear inclusions, leading to reduced phosphorylated p65 (p-p65) levels. This sequestration significantly downregulated the NF-κB-NLRP3 pathway, impairing autophagy, as indicated by decreased LC3II/LC3I ratios. Treatment of CGG100 cells with lipopolysaccharide (LPS) significantly increased p-p65, NLRP3, and LC3II/LC3I levels while reducing insoluble uN2CpolyG levels and intranuclear inclusions. In the Drosophila knock-in model, LPS significantly reduced the number of intranuclear inclusions and improved phenotypic manifestations. CONCLUSIONS This study revealed that uN2CpolyG directly interacts with and sequesters p65, thereby inhibiting the NF-κB-NLRP3 pathway and impairing autophagy. This mechanism highlights a novel therapeutic target for NIID and provides potentially broader insights into similar mechanisms in other neurodegenerative diseases characterized by misfolded protein aggregates.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China
| | - Kaiyan Jiang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China
- Institute of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Academy of Clinical Medical Science, Nanchang University, Nanchang, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China
- Institute of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Academy of Clinical Medical Science, Nanchang University, Nanchang, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusen Qiu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China
- Institute of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Academy of Clinical Medical Science, Nanchang University, Nanchang, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pencheng Huang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China
- Institute of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Academy of Clinical Medical Science, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenquan Zou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China
- Institute of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Academy of Clinical Medical Science, Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Ying Xiong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China.
- Institute of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Academy of Clinical Medical Science, Nanchang University, Nanchang, China.
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, China.
- Institute of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Jiangxi Academy of Clinical Medical Science, Nanchang University, Nanchang, China.
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
9
|
Bao L, Li X, Tian J, Wang L, Ji Y, Cui Y, Sun W, Zhang J, Xia M, Zhu P, Cui G, Chen H. GGC repeat expansions in NOTCH2NLC cause uN2CpolyG cerebral amyloid angiopathy. Brain 2025; 148:467-479. [PMID: 39167540 DOI: 10.1093/brain/awae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
The expansion of GGC repeats within NOTCH2NLC leads to translation of the uN2CpolyG protein, the primary pathogenic factor in neuronal intranuclear inclusion disease (NIID). The aim of this study was to explore the deposition of uN2CpolyG as an amyloid in the vessel wall, leading to uN2CpolyG cerebral amyloid angiopathy-related cerebral microbleeds (CMBs). A total of 97 patients with genetically confirmed NIID were enrolled in this study. We analysed the presence of CMBs using susceptibility-weighted imaging sequences and compared general clinical information, cerebrovascular risk factors, stroke history, antiplatelet medication use and MRI features between NIID patients with and without CMBs. We also performed haematoxylin and eosin, Perl's, Congo red and Thioflavin S staining, ubiquitin, p62 and uN2CpolyG immunostaining on brain tissue obtained from four NIID patients. A total of 354 CMBs were detected among 41 patients with NIID, with nearly half located in the deep brain, one-third in the lobes and ∼20% in the infratentorial area. No significant differences in cerebrovascular disease risk factors or history of antiplatelet drug use were observed between patients with and without CMBs. However, patients with CMBs had suffered a higher incidence of previous ischaemic and haemorrhagic stroke events. This group also had a higher incidence of recent subcortical infarcts and a higher proportion of white matter lesions in the external capsule and temporal pole. Conversely, patients without CMBs showed higher detection of high signals at the corticomedullary junction on diffusion-weighted imaging and more pronounced brain atrophy. Haematoxylin and eosin staining showed blood vessel leakage and haemosiderin-laden macrophage clusters, and Prussian blue staining revealed iron deposition in brain tissue. CMBs occurred more frequently in small vessels lacking intranuclear inclusions, and extensive degeneration of endothelial cells and smooth muscle fibres was observed mainly in vessels lacking inclusions. Congo red-positive amyloid deposition was observed in the cerebral vessels of NIID patients, with disordered filamentous fibres appearing under an electron microscope. Additionally, the co-localization of Thioflavin S-labelled amyloid and uN2CpolyG protein in the cerebral vascular walls of NIID patients further suggested that uN2CpolyG is the main pathogenic protein in this form of amyloid angiopathy. In conclusion, we reviewed patients with GGC repeat expansion of NOTCH2NLC from a new perspective, providing initial clinical, neuroimaging and pathological evidence suggesting that uN2CpolyG might contribute to a distinct type of cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Lei Bao
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Neurology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaowen Li
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Neurology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Tian
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Neurology, Xuzhou Medical University, Xuzhou 221004, China
| | - Lulu Wang
- Department of Pathology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Ji
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Neurology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yingying Cui
- Department of Pathology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| | - Wen Sun
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100000, China
| | - Man Xia
- Department of Neurological Intensive Care, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Pinyi Zhu
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210000, China
| | - Guiyun Cui
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Neurology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
10
|
Liu M, Liu R, Yuan Y, Liu X, Li L, Wang Y, Yuan J, Zhang K, Li S, Yang T, Wang Y, Gao Y, Liu H, Xue Y, Cheng L, Yang T, Kong Y, Liu C, Wang Y, Xu Y, Yang J. Identification of small fiber neuropathy in neuronal intranuclear inclusion disease: A clinicopathological study. Alzheimers Dement 2025; 21:e14596. [PMID: 39988644 PMCID: PMC11847649 DOI: 10.1002/alz.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Neuronal intranuclear inclusion disease (NIID) manifests as dementia combined with other neurological symptoms. However, small fiber neuropathy (SFN) and pathology remain unknown in NIID. METHODS A total of 294 subjects, including patients with NIID, Parkinson's disease, Alzheimer's disease, diabetic peripheral neuropathy, and healthy controls (HCs), were included. Clinical scales, sensory and autonomic function testing, and skin biopsy were performed. RESULTS NIID patients had more severe sensory and autonomic dysfunction than other groups. Substantial reductions in intraepidermal, sweat gland, and pilomotor nerve fiber densities were observed in NIID patients, with a non-length dependent pattern. Detailed analysis revealed marked reductions in noradrenergic, cholinergic, peptidergic, and regenerative nerve fibers. Small fiber densities showed high diagnostic accuracy in distinguishing NIID from HCs and other diseases. DISCUSSION This study is the first to reveal wide and severe loss of small fibers in NIID, suggesting the involvement of SFN in the pathogenesis of NIID. HIGHLIGHTS Our study is the first to identify wide and severe non-length dependent small fiber neuropathy in neuronal intranuclear inclusion disease (NIID) patients. Approximately 50% of NIID patients exhibited pure small fiber neuropathy without large fiber or mixed neuropathy. NIID patients showed a significant reduction in noradrenergic, cholinergic, peptidergic, and regenerative fiber innervation. Small fiber densities, especially intraepidermal nerve fiber density, demonstrated high diagnostic accuracy in distinguishing NIID patients from healthy controls and other disease groups. Findings suggest that small fiber neuropathy may play a role in the pathogenesis of NIID.
Collapse
Affiliation(s)
- Minglei Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ruoyu Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanpeng Yuan
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular DiseaseZhengzhouChina
| | - Xiaojing Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesZhengzhouChina
| | - Lanjun Li
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Medical Key Laboratory of Neurogenetic and Degenerative DiseasesZhengzhouChina
| | - Yangyang Wang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular DiseaseZhengzhouChina
| | - Jing Yuan
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular DiseaseZhengzhouChina
| | - Ke Zhang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular DiseaseZhengzhouChina
| | - Shuo Li
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Medical Key Laboratory of Neurogenetic and Degenerative DiseasesZhengzhouChina
| | - Ting Yang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesZhengzhouChina
| | - Yanlin Wang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesZhengzhouChina
| | - Yuan Gao
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular DiseaseZhengzhouChina
| | - Han Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Cerebrovascular DiseasesZhengzhouChina
| | - Yinge Xue
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Cheng
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tianyuan Yang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ying Kong
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Yuming Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular DiseaseZhengzhouChina
- Henan Medical Key Laboratory of Neurogenetic and Degenerative DiseasesZhengzhouChina
| | - Jing Yang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular DiseaseZhengzhouChina
- Henan Medical Key Laboratory of Neurogenetic and Degenerative DiseasesZhengzhouChina
| |
Collapse
|
11
|
Pellerin D, Iruzubieta P, Xu IRL, Danzi MC, Cortese A, Synofzik M, Houlden H, Zuchner S, Brais B. Recent Advances in the Genetics of Ataxias: An Update on Novel Autosomal Dominant Repeat Expansions. Curr Neurol Neurosci Rep 2025; 25:16. [PMID: 39820740 DOI: 10.1007/s11910-024-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias. This article reviews the recently identified repeat expansion SCAs and describes their molecular basis, epidemiology, and clinical features. RECENT FINDINGS Leveraging advanced bioinformatic tools and long-read sequencing, recent studies have identified novel pathogenic short tandem repeat expansions in FGF14, ZFHX3, and THAP11, associated with SCA27B, SCA4, and SCA51, respectively. SCA27B, caused by an intronic (GAA)•(TTC) repeat expansion, has emerged as one of the most common forms of adult-onset hereditary ataxias, especially in European populations. The coding GGC repeat expansion in ZFHX3 causing SCA4 was identified more than 25 years after the disorder's initial clinical description and appears to be a rare cause of ataxia outside northern Europe. SCA51, caused by a coding CAG repeat expansion, is overall rare and has been described in a small number of patients. The recent identification of three novel pathogenic repeat expansions underscores the importance of this class of genomic variation in the pathogenesis of SCAs. Progress in sequencing technologies holds promise for closing the diagnostic gap in SCAs and guiding the development of therapeutic strategies for ataxia.
Collapse
Affiliation(s)
- David Pellerin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Pablo Iruzubieta
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Isaac R L Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Lu Y, Chen Y, Huang J, Jiang Z, Ge Y, Yao R, Zhang J, Geng S, Chen F, Jin Q, Chen G, Yang D. Advances of NOTCH2NLC Repeat Expansions and Associated Diseases: A Bibliometric and Meta-analysis. Mol Neurobiol 2024; 61:10227-10245. [PMID: 38709391 DOI: 10.1007/s12035-024-04193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The unclear pathogenic mechanisms of neurodegenerative disorders stemming from NOTCH2NLC GGC repeat expansions drive focused research. Thus, a bibliometric and meta-analysis was conducted to uncover research trends and positivity rates in NOTCH2NLC. We conducted systematic searches in the Web of Science, PubMed, Embase, and Scopus databases for studies related to NOTCH2NLC up until August 2, 2023. Information regarding countries, institutions, authors, journals, and keywords of studies included in the Web of Science was analyzed and visualized. The positivity rates of NOTCH2NLC GGC repeat expansions across all screened patients and patients' families were pooled under the random-effects model. Publication bias and its impact were examined using funnel plots, Egger's linear regression, and trim-and-fill method. The bibliometric analysis, revealing pronounced publication growth, comprised 119 studies, which came from China and Japan particularly. "Neuronal intranuclear inclusion disease" emerged as a frequently used keyword. The meta-analysis comprised 36 studies, indicating global positivity rates of 1.79% (95% CI, 0.75-3.17) for all patients and 2.00% (95% CI, 0.26-4.78) for patients' families. Subgroup analyses based on region and phenotype suggested the highest NOTCH2NLC positivity rates in Taiwan population (5.42%, 95% CI 0.08-16.89) and in leukoencephalopathy-dominant patients (8.25%, 95% CI, 3.01-15.60). Sensitivity analysis affirmed the robustness of results. In conclusion, NOTCH2NLC GGC repeat expansions exhibit rare globally, primarily in East Asia, and leukoencephalopathy-dominant patients, emphasizing regional and phenotypic distinctions. Emerging focal points in NOTCH2NLC researches underscore the need for collaborative exploration.
Collapse
Affiliation(s)
- Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yaoying Ge
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ruotong Yao
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinxiu Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shangze Geng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Feng Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qiaoqiao Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
13
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024; 61:10722-10735. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
14
|
Tu H, Yeo XY, Zhang ZW, Zhou W, Tan JY, Chi L, Chia SY, Li Z, Sim AY, Singh BK, Ma D, Zhou Z, Bonne I, Ling SC, Ng ASL, Jung S, Tan EK, Zeng L. NOTCH2NLC GGC intermediate repeat with serine induces hypermyelination and early Parkinson's disease-like phenotypes in mice. Mol Neurodegener 2024; 19:91. [PMID: 39609868 PMCID: PMC11603791 DOI: 10.1186/s13024-024-00780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The expansion of GGC repeats (typically exceeding 60 repeats) in the 5' untranslated region (UTR) of the NOTCH2NLC gene (N2C) is linked to N2C-related repeat expansion disorders (NREDs), such as neuronal intranuclear inclusion disease (NIID), frontotemporal dementia (FTD), essential tremor (ET), and Parkinson's disease (PD). These disorders share common clinical manifestations, including parkinsonism, dementia, seizures, and muscle weakness. Intermediate repeat sizes ranging from 40 to 60 GGC repeats, particularly those with AGC-encoded serine insertions, have been reported to be associated with PD; however, the functional implications of these intermediate repeats with serine insertion remain unexplored. METHODS Here, we utilized cellular models harbouring different sizes of N2C variant 2 (N2C2) GGC repeat expansion and CRISPR-Cas9 engineered transgenic mouse models carrying N2C2 GGC intermediate repeats with and without serine insertion to elucidate the underlying pathophysiology associated with N2C intermediate repeat with serine insertion in NREDs. RESULTS Our findings revealed that the N2C2 GGC intermediate repeat with serine insertion (32G13S) led to mitochondrial dysfunction and cell death in vitro. The neurotoxicity was influenced by the length of the repeat and was exacerbated by the presence of the serine insertion. In 12-month-old transgenic mice, 32G13S intensified intranuclear aggregation and exhibited early PD-like characteristics, including the formation of α-synuclein fibers in the midbrain and the loss of tyrosine hydroxylase (TH)-positive neurons in both the cortex and striatum. Additionally, 32G13S induced neuronal hyperexcitability and caused locomotor behavioural impairments. Transcriptomic analysis of the mouse cortex indicated dysregulation in calcium signaling and MAPK signaling pathways, both of which are critical for mitochondrial function. Notably, genes associated with myelin sheath components, including MBP and MOG, were dysregulated in the 32G13S mouse. Further investigations using immunostaining and transmission electron microscopy revealed that the N2C intermediate repeat with serine induced mitochondrial dysfunction-related hypermyelination in the cortex. CONCLUSIONS Our in vitro and in vivo investigations provide the first evidence that the N2C-GGC intermediate repeat with serine promotes intranuclear aggregation of N2C, leading to mitochondrial dysfunction-associated hypermyelination and neuronal hyperexcitability. These changes contribute to motor deficits in early PD-like neurodegeneration in NREDs.
Collapse
Affiliation(s)
- Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wei Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
| | - Jayne Yi Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Li Chi
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Zhihong Li
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Aik Yong Sim
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore, 169609, Singapore
| | - Zhidong Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Isabelle Bonne
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shuo-Chien Ling
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, 13488, Republic of Korea
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Novena Campus, 308232, Singapore.
| |
Collapse
|
15
|
Sun L, Zhou L, Ren L, Han C, Xue Q, Ma L. Neuronal intranuclear inclusion disease with subclinical peripheral neuropathy: A case report. Medicine (Baltimore) 2024; 103:e40636. [PMID: 39809216 PMCID: PMC11596595 DOI: 10.1097/md.0000000000040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
RATIONALE Neuronal intranuclear inclusion disease (NIID) is a slowly progressing neurodegenerative disease with various manifestations and high heterogeneity. Clinical characteristics, imaging, skin biopsy, and genetic testing are necessary for its diagnosis. Electromyography may also be a useful tool for diagnosing NIID. In this study, we report a patient with motor and sensory nerve demyelination changes accompanied by axonal damage. PATIENT CONCERNS A 64-year-old woman was admitted to our department with gradually worsening forgetfulness for over a year. After 6 years of follow-up, the symptoms progressively deteriorated. DIAGNOSES Cerebrospinal fluid analysis revealed increased protein levels. Brain magnetic resonance imaging showed characteristic "ribbon-like" high signals in the corticomedullary junction area on diffusion-weighted imaging. High-intensity signals in the white matter were also observed on T2 and fluid-attenuated inversion recovery imaging. Electromyography revealed multiple peripheral nerve damage and conduction changes, including motor and sensory nerve demyelination changes, accompanied by axonal damage. Skin biopsy revealed inclusion bodies with strong positive staining for P62 and ubiquitin antibodies in the nuclei of sweat gland cells, adipocytes, and fibroblasts. Genetic testing indicated that the number of GGC repeats in NOTCH2NLC alleles were 14 and 134, respectively. Consequently, the patient was diagnosed with NIID. INTERVENTIONS Currently, no effective treatment is available to delay the progression of the disease. LESSONS We report a case of NIID with subclinical peripheral neuropathy, although the patient did not experience sensory symptoms such as numbness in the extremities. Electromyography can be used to detect subclinical peripheral nerve damage.
Collapse
Affiliation(s)
- Lu Sun
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu, China
| | - Lihua Zhou
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu, China
| | - Liyan Ren
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu, China
| | - Chunru Han
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linqing Ma
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Chang WD, Yoon MJ, Yeo KH, Choe YJ. Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides. Mol Cell 2024; 84:4334-4349.e7. [PMID: 39488212 DOI: 10.1016/j.molcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Ribosomes translating damaged mRNAs may stall and prematurely split into their large and small subunits. The split large ribosome subunits can continue elongating stalled polypeptides. In yeast, this mRNA-independent translation appends the C-terminal alanine/threonine tail (CAT tail) to stalled polypeptides. If not degraded by the ribosome-associated quality control (RQC), CAT-tailed stalled polypeptides form aggregates. How the CAT tail, a low-complexity region composed of alanine and threonine, drives protein aggregation remains unknown. In this study, we demonstrate that C-terminal polythreonine or threonine-enriched tails form detergent-resistant aggregates. These aggregates exhibit a robust seeding effect on shorter tails with lower threonine content, elucidating how heterogeneous CAT tails co-aggregate. Polythreonine aggregates sequester molecular chaperones, disturbing proteostasis and provoking the heat shock response. Furthermore, polythreonine cross-seeds detergent-resistant polyserine aggregation, indicating structural similarity between the two aggregates. This study identifies polythreonine and polyserine as a distinct group of aggregation-prone protein motifs.
Collapse
Affiliation(s)
- Weili Denyse Chang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Mi-Jeong Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kian Hua Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Young-Jun Choe
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
17
|
Mohamed MT, Inoue D, Yoshimura S, Uematsu M, Mohamed YH, Kusano M, Tang D, Oishi A, Kitaoka T, Takeo G, Ohira A. Neuronal Intranuclear Inclusion Disease with a Corneal Disorder: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1730. [PMID: 39596915 PMCID: PMC11595896 DOI: 10.3390/medicina60111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Background: Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disorder characterized by the formation of intranuclear inclusions in cells. Adult-type NIID usually develops in elderly patients with various clinical manifestations and is sometimes accompanied by ocular symptoms. A case of adult-onset NIID with early and unique manifestations, including a progressive corneal defect and retinal changes, which are concerning at a young age, is reported. Case Presentation: A 29-year-old woman with adult sporadic NIID presented to our department with a progressive corneal disorder. Her neurological symptoms started at the age of 22 years, and she was diagnosed with NIID by skin biopsy and genetic testing. Ocular examination revealed bilateral corneal superficial punctate keratitis, right corneal opacity, decreased vision, nocturnal lagophthalmos, and early retinal changes. Corneal nerve fiber atrophy was detected by in vivo confocal microscopy. With a Cochet-Bonnet aesthesiometer, the progression of NIID and decreased corneal sensation were confirmed. Findings consistent with neurotrophic keratitis and keratoconjunctivitis due to nocturnal lagophthalmos were both suggested as being complications of her underlying NIID. Treatment with punctal plugs, sodium hyaluronate eye drops, diquafosol sodium eye drops, systemic and local antivirals, and local steroid medications resulted in the gradual improvement in the irregularity and opacity of the epithelium. Conclusions: NIID may lead to neurotrophic keratopathy due to impairment of the corneal sensory nerves. Nocturnal lagophthalmos is a remarkable finding in a case of NIID. The findings in the present case highlight the complex and multifaceted nature of NIID, with neurological and ocular manifestations requiring a multidisciplinary approach to management.
Collapse
Affiliation(s)
- Mohamed Talaat Mohamed
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Daisuke Inoue
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Shunsuke Yoshimura
- Department of Neurology and Strokology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan
| | - Masafumi Uematsu
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Yasser Helmy Mohamed
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Mao Kusano
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Diya Tang
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Takashi Kitaoka
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
| | - Gou Takeo
- Department of Neurology, Sasebo Chuo Hospital, 15 Yamatocho, Sasebo City 857-1195, Japan;
| | - Akihiro Ohira
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City 852-8501, Japan; (M.T.M.); (M.U.); (Y.H.M.); (M.K.); (D.T.); (A.O.); (T.K.); (A.O.)
- Department of Ophthalmology, Sasebo Chuo Hospital, 15 Yamatocho, Sasebo City 857-1195, Japan
- Department of Ophthalmology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| |
Collapse
|
18
|
Maltby CJ, Krans A, Grudzien SJ, Palacios Y, Muiños J, Suárez A, Asher M, Willey S, Van Deynze K, Mumm C, Boyle AP, Cortese A, Ndayisaba A, Khurana V, Barmada SJ, Dijkstra AA, Todd PK. AAGGG repeat expansions trigger RFC1-independent synaptic dysregulation in human CANVAS neurons. SCIENCE ADVANCES 2024; 10:eadn2321. [PMID: 39231235 PMCID: PMC11373605 DOI: 10.1126/sciadv.adn2321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited neurodegenerative disorder caused by intronic biallelic, nonreference CCCTT/AAGGG repeat expansions within RFC1. To investigate how these repeats cause disease, we generated patient induced pluripotent stem cell-derived neurons (iNeurons). CCCTT/AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway function. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins. However, these proteins and repeat RNA foci were not detected in iNeurons, and overexpression of these repeats failed to induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded AAGGG allele. These deficits were neither replicated by RFC1 knockdown in control iNeurons nor rescued by RFC1 reprovision in CANVAS iNeurons. These findings support a repeat-dependent but RFC1 protein-independent cause of neuronal dysfunction in CANVAS, with implications for therapeutic development in this currently untreatable condition.
Collapse
Affiliation(s)
- Connor J. Maltby
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yomira Palacios
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Muiños
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- UM SMART Undergraduate Summer Program, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Suárez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Asher
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Willey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kinsey Van Deynze
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Camille Mumm
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P. Boyle
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia 27100, Italy
| | - Alain Ndayisaba
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vikram Khurana
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anke A. Dijkstra
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Peter K. Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Shen Y, Jiang K, Liang H, Xiong Y, Song Z, Wang B, Zhu M, Qiu Y, Tan D, Wu C, Deng J, Wang Z, Hong D. Encephalitis-like episodes with cortical edema and enhancement in patients with neuronal intranuclear inclusion disease. Neurol Sci 2024; 45:4501-4511. [PMID: 38532189 DOI: 10.1007/s10072-024-07492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVES Neuronal intranuclear inclusion disease (NIID) exhibited significant clinical heterogeneities. However, the clinical features, radiographic changes, and prognosis of patients with encephalitis-like NIID have yet to be systematically elucidated. METHODS Clinical data including medical history, physical examination, and laboratory examinations were collected and analyzed. Skin and sural nerve biopsies were conducted on the patient. Repeat-primed PCR (RP-PCR) and fluorescence amplicon length PCR (AL-PCR) were used to detect the expansion of CGG repeat. We also reviewed the clinical and genetic data of NIID patients with cortical enhancement. RESULTS A 54-year-old woman presented with encephalitis-like NIID, characterized by severe headache and agitative psychiatric symptoms. The brain MRI showed cortical swelling in the temporo-occipital lobes and significant enhancement of the cortical surface and dura, but without hyperintensities along the corticomedullary junction on diffusion-weighted image (DWI). A biopsy of the sural nerve revealed a demyelinating pathological change. The intranuclear inclusions were detected in nerve and skin tissues using the p62 antibody and electron microscopy. RP-PCR and AL-PCR unveiled the pathogenic expansion of CGG repeats in the NOTCH2NLC gene. A review of the literature indicated that nine out of the 16 patients with cortical lesions and linear enhancement exhibited encephalitis-like NIID. CONCLUSION This study indicated that patients with encephalitis-like NIID typically exhibited headache and excitatory psychiatric symptoms, often accompanied by cortical edema and enhancement of posterior lobes, and responded well to glucocorticoid treatment. Furthermore, some patients may not exhibit hyperintensities along the corticomedullary junction on DWI, potentially leading to misdiagnosis.
Collapse
Affiliation(s)
- Yu Shen
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Kaiyan Jiang
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Hanlin Liang
- Queen Mary College, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
| | - Ziwei Song
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bo Wang
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yusen Qiu
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China
| | - Dandan Tan
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Yong Wai Zheng Street 17#, Nanchang, 330006, People's Republic of China.
- Rare Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Key Laboratory of Rare, Neurological Diseases of Jiangxi Provincial Health Commission, Nanchang, China.
| |
Collapse
|
20
|
Paucar M, Nilsson D, Engvall M, Laffita-Mesa J, Söderhäll C, Skorpil M, Halldin C, Fazio P, Lagerstedt-Robinson K, Solders G, Angeria M, Varrone A, Risling M, Jiao H, Nennesmo I, Wedell A, Svenningsson P. Spinocerebellar ataxia type 4 is caused by a GGC expansion in the ZFHX3 gene and is associated with prominent dysautonomia and motor neuron signs. J Intern Med 2024; 296:234-248. [PMID: 38973251 DOI: 10.1111/joim.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - José Laffita-Mesa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Skorpil
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Göran Solders
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Angeria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Zhong S, Lian Y, Zhou B, Ren R, Duan L, Pan Y, Gong Y, Wu X, Cheng D, Zhang P, Lu B, Wang X, Ding J. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol 2024; 148:21. [PMID: 39150562 DOI: 10.1007/s00401-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Binbin Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiqing Ren
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lewei Duan
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyin Pan
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boxun Lu
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
22
|
Cortese A, Beecroft SJ, Facchini S, Curro R, Cabrera-Serrano M, Stevanovski I, Chintalaphani SR, Gamaarachchi H, Weisburd B, Folland C, Monahan G, Scriba CK, Dofash L, Johari M, Grosz BR, Ellis M, Fearnley LG, Tankard R, Read J, Merve A, Dominik N, Vegezzi E, Schnekenberg RP, Fernandez-Eulate G, Masingue M, Giovannini D, Delatycki MB, Storey E, Gardner M, Amor DJ, Nicholson G, Vucic S, Henderson RD, Robertson T, Dyke J, Fabian V, Mastaglia F, Davis MR, Kennerson M, Quinlivan R, Hammans S, Tucci A, Bahlo M, McLean CA, Laing NG, Stojkovic T, Houlden H, Hanna MG, Deveson IW, Lockhart PJ, Lamont PJ, Fahey MC, Bugiardini E, Ravenscroft G. A CCG expansion in ABCD3 causes oculopharyngodistal myopathy in individuals of European ancestry. Nat Commun 2024; 15:6327. [PMID: 39068203 PMCID: PMC11283466 DOI: 10.1038/s41467-024-49950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness.
Collapse
Affiliation(s)
- Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Sarah J Beecroft
- Pawsey Supercomputing Research Centre, Kensington, WA, Australia
| | - Stefano Facchini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Riccardo Curro
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Macarena Cabrera-Serrano
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Department of Neurology and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC, Sevilla, 41013, Spain
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Sanjog R Chintalaphani
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Hasindu Gamaarachchi
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Carolin K Scriba
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Lein Dofash
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mridul Johari
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Liam G Fearnley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC3052, Australia
| | - Rick Tankard
- Department of Mathematics and Statistics, Curtin University, Perth, WA, Australia
| | - Justin Read
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Ashirwad Merve
- Department of Neuropathology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Natalia Dominik
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Ricardo P Schnekenberg
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Gorka Fernandez-Eulate
- Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Hôpital Pitié-Salpêtrière, Institut de Myologie, APHP, Paris, France
| | - Marion Masingue
- Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Hôpital Pitié-Salpêtrière, Institut de Myologie, APHP, Paris, France
| | - Diane Giovannini
- CHU Grenoble Alpes, Grenoble Institut Neurosciences, INSERM, U1216, Université Grenoble Alpes, Grenoble, France
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Elsdon Storey
- Neurology Department, The Alfred Hospital, Melbourne, VIC, Australia
| | - Mac Gardner
- The Laboratory for Genomic Medicine, University of Otago, Dunedin, New Zealand
| | - David J Amor
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, 2139, Australia
| | - Steve Vucic
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
- Brain and Nerve Research Centre, Concord Repatriation General Hospital, Sydney, NSW, 2139, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital, Herston, QLD, Australia
- UQ Centre for Clinical Research, Herston, QLD, Australia
| | - Thomas Robertson
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jason Dyke
- PathWest Neuropathology, Royal Perth Hospital, Perth, WA, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Vicki Fabian
- PathWest Neuropathology, Royal Perth Hospital, Perth, WA, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Mark R Davis
- Neurogenetics Unit, Diagnostic Genomics, PathWest, Nedlands, WA, Australia
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, 2139, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, 2139, Australia
| | - Ros Quinlivan
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & MRC Centre for Neuromuscular Diseases, London, United Kingdom
| | - Simon Hammans
- Wessex Neurological Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Arianna Tucci
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, VIC3052, Australia
| | - Catriona A McLean
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Tanya Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Hôpital Pitié-Salpêtrière, Institut de Myologie, APHP, Paris, France
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | | | - Michael C Fahey
- Department of Paediatrics Monash Children's Hospital, Victoria, Australia
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
- Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
23
|
Vegezzi E, Ishiura H, Bragg DC, Pellerin D, Magrinelli F, Currò R, Facchini S, Tucci A, Hardy J, Sharma N, Danzi MC, Zuchner S, Brais B, Reilly MM, Tsuji S, Houlden H, Cortese A. Neurological disorders caused by novel non-coding repeat expansions: clinical features and differential diagnosis. Lancet Neurol 2024; 23:725-739. [PMID: 38876750 DOI: 10.1016/s1474-4422(24)00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 06/16/2024]
Abstract
Nucleotide repeat expansions in the human genome are a well-known cause of neurological disease. In the past decade, advances in DNA sequencing technologies have led to a better understanding of the role of non-coding DNA, that is, the DNA that is not transcribed into proteins. These techniques have also enabled the identification of pathogenic non-coding repeat expansions that cause neurological disorders. Mounting evidence shows that adult patients with familial or sporadic presentations of epilepsy, cognitive dysfunction, myopathy, neuropathy, ataxia, or movement disorders can be carriers of non-coding repeat expansions. The description of the clinical, epidemiological, and molecular features of these recently identified non-coding repeat expansion disorders should guide clinicians in the diagnosis and management of these patients, and help in the genetic counselling for patients and their families.
Collapse
Affiliation(s)
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Riccardo Currò
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stefano Facchini
- IRCCS Mondino Foundation, Pavia, Italy; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Arianna Tucci
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| | - John Hardy
- Department of Neurogedengerative Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt C Danzi
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
24
|
Lee S, Yoon JG, Hong J, Kim T, Kim N, Vandrovcova J, Yau WY, Cho J, Kim S, Kim MJ, Kim SY, Lee ST, Chu K, Lee SK, Kim HJ, Choi J, Moon J, Chae JH. Prevalence and Characterization of NOTCH2NLC GGC Repeat Expansions in Koreans: From a Hospital Cohort Analysis to a Population-Wide Study. Neurol Genet 2024; 10:e200147. [PMID: 38779172 PMCID: PMC11110025 DOI: 10.1212/nxg.0000000000200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024]
Abstract
Background and Objectives GGC repeat expansions in the NOTCH2NLC gene are associated with a broad spectrum of progressive neurologic disorders, notably, neuronal intranuclear inclusion disease (NIID). We aimed to investigate the population-wide prevalence and clinical manifestations of NOTCH2NLC-related disorders in Koreans. Methods We conducted a study using 2 different cohorts from the Korean population. Patients with available brain MRI scans from Seoul National University Hospital (SNUH) were thoroughly reviewed, and NIID-suspected patients presenting the zigzag edging signs underwent genetic evaluation for NOTCH2NLC repeats by Cas9-mediated nanopore sequencing. In addition, we analyzed whole-genome sequencing data from 3,887 individuals in the Korea Biobank cohort to estimate the distribution of the repeat counts in Koreans and to identify putative patients with expanded alleles and neurologic phenotypes. Results In the SNUH cohort, among 90 adult-onset leukoencephalopathy patients with unknown etiologies, we found 20 patients with zigzag edging signs. Except for 2 diagnosed with fragile X-associated tremor/ataxia syndrome and 2 with unavailable samples, all 16 patients (17.8%) were diagnosed with NIID (repeat range: 87-217). By analyzing the Korea Biobank cohort, we estimated the distribution of repeat counts and threshold (>64) for Koreans, identifying 6 potential patients with NIID. Furthermore, long-read sequencing enabled the elucidation of transmission and epigenetic patterns of NOTCH2NLC repeats within a family affected by pediatric-onset NIID. Discussion This study presents the population-wide distribution of NOTCH2NLC repeats and the estimated prevalence of NIID in Koreans, providing valuable insights into the association between repeat counts and disease manifestations in diverse neurologic disorders.
Collapse
Affiliation(s)
| | | | | | - Taekeun Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Narae Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Jana Vandrovcova
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Wai Yan Yau
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Jaeso Cho
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Sheehyun Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Man Jin Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Soo Yeon Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Soon-Tae Lee
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Kon Chu
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Sang Kun Lee
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Han-Joon Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | | | | | | |
Collapse
|
25
|
Charlet-Berguerand N. An unexpected polyglycine route to spinocerebellar ataxia. Nat Genet 2024; 56:1039-1041. [PMID: 38811843 DOI: 10.1038/s41588-024-01770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U-1258, CNRS UMR-7104, University of Strasbourg, Illkirch, France.
| |
Collapse
|
26
|
Qiuyun L, Qiang L, Benju Z, Xu C. Neuronal intranuclear inclusion disease with multisystem involvement after long-term bladder dysfunction: a case report. Acta Neurol Belg 2024; 124:1103-1107. [PMID: 38145429 DOI: 10.1007/s13760-023-02469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Affiliation(s)
- Lu Qiuyun
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Li Qiang
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zhu Benju
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Chen Xu
- Department of Neurology, Shanghai Eighth People's Hospital, Shanghai, China.
| |
Collapse
|
27
|
Figueroa KP, Gross C, Buena-Atienza E, Paul S, Gandelman M, Kakar N, Sturm M, Casadei N, Admard J, Park J, Zühlke C, Hellenbroich Y, Pozojevic J, Balachandran S, Händler K, Zittel S, Timmann D, Erdlenbruch F, Herrmann L, Feindt T, Zenker M, Klopstock T, Dufke C, Scoles DR, Koeppen A, Spielmann M, Riess O, Ossowski S, Haack TB, Pulst SM. A GGC-repeat expansion in ZFHX3 encoding polyglycine causes spinocerebellar ataxia type 4 and impairs autophagy. Nat Genet 2024; 56:1080-1089. [PMID: 38684900 DOI: 10.1038/s41588-024-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Despite linkage to chromosome 16q in 1996, the mutation causing spinocerebellar ataxia type 4 (SCA4), a late-onset sensory and cerebellar ataxia, remained unknown. Here, using long-read single-strand whole-genome sequencing (LR-GS), we identified a heterozygous GGC-repeat expansion in a large Utah pedigree encoding polyglycine (polyG) in zinc finger homeobox protein 3 (ZFHX3), also known as AT-binding transcription factor 1 (ATBF1). We queried 6,495 genome sequencing datasets and identified the repeat expansion in seven additional pedigrees. Ultrarare DNA variants near the repeat expansion indicate a common distant founder event in Sweden. Intranuclear ZFHX3-p62-ubiquitin aggregates were abundant in SCA4 basis pontis neurons. In fibroblasts and induced pluripotent stem cells, the GGC expansion led to increased ZFHX3 protein levels and abnormal autophagy, which were normalized with small interfering RNA-mediated ZFHX3 knockdown in both cell types. Improving autophagy points to a therapeutic avenue for this novel polyG disease. The coding GGC-repeat expansion in an extremely G+C-rich region was not detectable by short-read whole-exome sequencing, which demonstrates the power of LR-GS for variant discovery.
Collapse
Affiliation(s)
- Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Caspar Gross
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Elena Buena-Atienza
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Naseebullah Kakar
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
- Department of Biotechnology, FLS&I, BUITEMS, Quetta, Pakistan
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Christine Zühlke
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Yorck Hellenbroich
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Jelena Pozojevic
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Saranya Balachandran
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Kristian Händler
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Laura Herrmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg and Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Klopstock
- Department of Neurology with Friedrich-Baur-Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Claudia Dufke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Malte Spielmann
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Lübeck, Kiel, Lübeck, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- NGS Competence Center Tübingen, Tübingen, Germany.
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA.
- Clinical Neurosciences Center, University of Utah Hospitals and Clinics, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Zhang T, Bao L, Chen H. Review of Phenotypic Heterogeneity of Neuronal Intranuclear Inclusion Disease and NOTCH2NLC-Related GGC Repeat Expansion Disorders. Neurol Genet 2024; 10:e200132. [PMID: 38586597 PMCID: PMC10997217 DOI: 10.1212/nxg.0000000000200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 04/09/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is an underdiagnosed neurodegenerative disorder caused by pathogenic GGC expansions in NOTCH2NLC. However, an increasing number of reports of NOTCH2NLC GGC expansions in patients with Alzheimer disease, essential tremor, Parkinson disease, amyotrophic lateral sclerosis, and oculopharyngodistal myopathy have led to the proposal of a new concept known as NOTCH2NLC-related GGC repeat expansion disorders (NREDs). The majority of studies have mainly focused on screening for NOTCH2NLC GGC repeat variation in populations previously diagnosed with the associated disease, subsequently presenting it as a novel causative gene for the condition. These studies appear to be clinically relevant but do have their limitations because they may incorrectly regard the lack of MRI abnormalities as an exclusion criterion for NIID or overlook concomitant clinical presentations not typically observed in the associated diseases. Besides, in many instances within these reports, patients lack pathologic evidence or undergo long-term follow-up to conclusively rule out NIID. In this review, we will systematically review the research on NOTCH2NLC 5' untranslated region GGC repeat expansions and their association with related neurologic disorders, explaining the limitations of the relevant reports. Furthermore, we will integrate subsequent studies to further demonstrate that these patients actually experienced distinct clinical phenotypes of NIID.
Collapse
Affiliation(s)
- Tao Zhang
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Lei Bao
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Hao Chen
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| |
Collapse
|
29
|
Bao L, Zuo D, Qu X, Cui Y, Li K, Dong J, Chen R, Zhang Z, Cui G, Chen H. Immune system involvement in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol 2024; 50:e12976. [PMID: 38576100 DOI: 10.1111/nan.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Lei Bao
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Dandan Zuo
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoying Qu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
| | - Yingying Cui
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Keke Li
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Dong
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Rudaks LI, Yeow D, Kumar KR. SCA4 Unravelled After More than 25 Years Using Advanced Genomic Technologies. Mov Disord 2024; 39:457-461. [PMID: 38525586 DOI: 10.1002/mds.29738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Affiliation(s)
- Laura Ivete Rudaks
- Translational Neurogenomics Group, Concord Repatriation General Hospital, Concord, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, Australia
- Concord Clinical School, Faculty of Medicine and Health, The University of Sydney, Concord, Australia
- Genomic and Inherited Disease Program, The Garvan Institute of Medical Research, Darlinghurst, Australia
- Clinical Genetics Unit, Royal North Shore Hospital, St Leonards, Australia
| | - Dennis Yeow
- Translational Neurogenomics Group, Concord Repatriation General Hospital, Concord, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, Australia
- Concord Clinical School, Faculty of Medicine and Health, The University of Sydney, Concord, Australia
- Genomic and Inherited Disease Program, The Garvan Institute of Medical Research, Darlinghurst, Australia
- Neurodegenerative Service, Prince of Wales Hospital, Randwick, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Kishore Raj Kumar
- Translational Neurogenomics Group, Concord Repatriation General Hospital, Concord, Australia
- Molecular Medicine Laboratory and Neurology Department, Concord Repatriation General Hospital, Concord, Australia
- Concord Clinical School, Faculty of Medicine and Health, The University of Sydney, Concord, Australia
- Genomic and Inherited Disease Program, The Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent's Healthcare Campus, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Darlinghurst, Australia
| |
Collapse
|
31
|
Chen Z, Gustavsson EK, Macpherson H, Anderson C, Clarkson C, Rocca C, Self E, Alvarez Jerez P, Scardamaglia A, Pellerin D, Montgomery K, Lee J, Gagliardi D, Luo H, Hardy J, Polke J, Singleton AB, Blauwendraat C, Mathews KD, Tucci A, Fu YH, Houlden H, Ryten M, Ptáček LJ. Adaptive Long-Read Sequencing Reveals GGC Repeat Expansion in ZFHX3 Associated with Spinocerebellar Ataxia Type 4. Mov Disord 2024; 39:486-497. [PMID: 38197134 DOI: 10.1002/mds.29704] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 4 (SCA4) is an autosomal dominant ataxia with invariable sensory neuropathy originally described in a family with Swedish ancestry residing in Utah more than 25 years ago. Despite tight linkage to the 16q22 region, the molecular diagnosis has since remained elusive. OBJECTIVES Inspired by pathogenic structural variation implicated in other 16q-ataxias with linkage to the same locus, we revisited the index SCA4 cases from the Utah family using novel technologies to investigate structural variation within the candidate region. METHODS We adopted a targeted long-read sequencing approach with adaptive sampling on the Oxford Nanopore Technologies (ONT) platform that enables the detection of segregating structural variants within a genomic region without a priori assumptions about any variant features. RESULTS Using this approach, we found a heterozygous (GGC)n repeat expansion in the last coding exon of the zinc finger homeobox 3 (ZFHX3) gene that segregates with disease, ranging between 48 and 57 GGC repeats in affected probands. This finding was replicated in a separate family with SCA4. Furthermore, the estimation of this GGC repeat size in short-read whole genome sequencing (WGS) data of 21,836 individuals recruited to the 100,000 Genomes Project in the UK and our in-house dataset of 11,258 exomes did not reveal any pathogenic repeats, indicating that the variant is ultrarare. CONCLUSIONS These findings support the utility of adaptive long-read sequencing as a powerful tool to decipher causative structural variation in unsolved cases of inherited neurological disease. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Claire Anderson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Chris Clarkson
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Clarissa Rocca
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Eleanor Self
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pilar Alvarez Jerez
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Annarita Scardamaglia
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David Pellerin
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kylie Montgomery
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Jasmaine Lee
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Delia Gagliardi
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Huihui Luo
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Reta Lila Weston Institute, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - James Polke
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ying-Hui Fu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, California, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Louis J Ptáček
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, California, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
Zeng T, Chen Y, Huang H, Li S, Huang J, Xie H, Lin S, Chen S, Chen G, Yang D. Neuronal Intranuclear Inclusion Disease with NOTCH2NLC GGC Repeat Expansion: A Systematic Review and Challenges of Phenotypic Characterization. Aging Dis 2024; 16:AD.2024.0131-1. [PMID: 38377026 PMCID: PMC11745434 DOI: 10.14336/ad.2024.0131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a highly clinically heterogeneous neurodegenerative disorder primarily attributed to abnormal GGC repeat expansions in the NOTCH2NLC gene. This study aims to comprehensively explore its phenotypic characteristics and genotype-phenotype correlation. A literature search was conducted in PubMed, Embase, and the Cochrane Library from September 1, 2019, to December 31, 2022, encompassing reported NIID cases confirmed by pathogenic NOTCH2NLC mutations. Linear regressions and trend analyses were performed. Analyzing 635 cases from 85 included studies revealed that familial cases exhibited significantly larger GGC repeat expansions than sporadic cases (p < 0.001), and this frequency significantly increased with expanding GGC repeats (p trend < 0.001). Age at onset (AAO) showed a negative correlation with GGC repeat expansions (p < 0.001). The predominant initial symptoms included tremor (31.70%), cognitive impairment (14.12%), and muscle weakness (10.66%). The decreased or absent tendon reflex (DTR/ATR) emerged as a notable clinical indicator of NIID due to its high prevalence. U-fiber was observed in 79.11% of patients, particularly prominent in paroxysmal disease-dominant (87.50%) and dementia-dominant cases (81.08%). Peripheral neuropathy-dominant cases exhibited larger GGC repeat expansions (median = 123.00) and an earlier AAO (median = 33.00) than other phenotypes. Moreover, a significant genetic anticipation of 3.5 years was observed (p = 0.039). This study provides a comprehensive and up-to-date compilation of genotypic and phenotypic information on NIID since the identification of the causative gene NOTCH2NLC. We contribute a novel diagnostic framework for NIID to support clinical practice.
Collapse
Affiliation(s)
- Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Shenyi Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
33
|
Yu W, Li Y, Zhong F, Deng Z, Wu J, Yu W, Lü Y. Disease-Associated Neurotoxic Astrocyte Markers in Alzheimer Disease Based on Integrative Single-Nucleus RNA Sequencing. Cell Mol Neurobiol 2024; 44:20. [PMID: 38345650 PMCID: PMC10861702 DOI: 10.1007/s10571-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Alzheimer disease (AD) is an irreversible neurodegenerative disease, and astrocytes play a key role in its onset and progression. The aim of this study is to analyze the characteristics of neurotoxic astrocytes and identify novel molecular targets for slowing down the progression of AD. Single-nucleus RNA sequencing (snRNA-seq) data were analyzed from various AD cohorts comprising about 210,654 cells from 53 brain tissue. By integrating snRNA-seq data with bulk RNA-seq data, crucial astrocyte types and genes associated with the prognosis of patients with AD were identified. The expression of neurotoxic astrocyte markers was validated using 5 × FAD and wild-type (WT) mouse models, combined with experiments such as western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence. A group of neurotoxic astrocytes closely related to AD pathology was identified, which were involved in inflammatory responses and pathways related to neuron survival. Combining snRNA and bulk tissue data, ZEP36L, AEBP1, WWTR1, PHYHD1, DST and RASL12 were identified as toxic astrocyte markers closely related to disease severity, significantly elevated in brain tissues of 5 × FAD mice and primary astrocytes treated with Aβ. Among them, WWTR1 was significantly increased in astrocytes of 5 × FAD mice, driving astrocyte inflammatory responses, and has been identified as an important marker of neurotoxic astrocytes. snRNA-seq analysis reveals the biological functions of neurotoxic astrocytes. Six genes related to AD pathology were identified and validated, among which WWTR1 may be a novel marker of neurotoxic astrocytes.
Collapse
Affiliation(s)
- Wuhan Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Zhangjing Deng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
34
|
Liu Q, Chen J, Xue J, Zhou X, Tian Y, Xiao Q, Huang W, Pan Y, Zhou X, Li J, Zhao Y, Pan H, Wang Y, He R, Xiang Y, Tu T, Xu Q, Sun Q, Tan J, Yan X, Li J, Guo J, Shen L, Duan R, Tang B, Liu Z. GGC expansions in NOTCH2NLC contribute to Parkinson disease and dopaminergic neuron degeneration. Eur J Neurol 2024; 31:e16145. [PMID: 37975799 PMCID: PMC11235938 DOI: 10.1111/ene.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/24/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Juan Chen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jin Xue
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Xun Zhou
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Tian
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiao Xiao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Wen Huang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Yongcheng Pan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jian Li
- Department of Nuclear Medicine, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuwen Zhao
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hongxu Pan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yige Wang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Runcheng He
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yaqin Xiang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Tian Tu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qian Xu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiying Sun
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Xinxiang Yan
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jinchen Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Lu Shen
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina
| | - Beisha Tang
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhenhua Liu
- Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
35
|
Shi Y, Cao C, Zeng Y, Ding Y, Chen L, Zheng F, Chen X, Zhou F, Yang X, Li J, Xu L, Xu G, Lin M, Ishiura H, Tsuji S, Wang N, Wang Z, Chen WJ, Yang K. CGG repeat expansion in LOC642361/NUTM2B-AS1 typically presents as oculopharyngodistal myopathy. J Genet Genomics 2024; 51:184-196. [PMID: 38159879 DOI: 10.1016/j.jgg.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
CGG repeat expansions in LOC642361/NUTM2B-AS1 have recently been identified as a cause of oculopharyngeal myopathy with leukoencephalopathy. However, since only three patients from a single family were reported, it remains unknown whether their clinicopathological features are typical for CGG repeat expansions in LOC642361/NUTM2B-AS1. Here, using repeat-primed-polymerase chain reaction and long-read sequencing, we identify 12 individuals from 3 unrelated families with CGG repeat expansions in LOC642361/NUTM2B-AS1, typically presenting with oculopharyngodistal myopathy. The CGG repeat expansions range from 161 to 669 repeat units. Most of the patients present with ptosis, restricted eye movements, dysphagia, dysarthria, and diffuse limb muscle weakness. Only one patient shows T2-weighted hyperintensity in the cerebellar white matter surrounding the deep cerebellar nuclei on brain magnetic resonance imaging. Muscle biopsies from three patients show a myopathic pattern and rimmed vacuoles. Analyses of muscle biopsies suggest that CGG repeat expansions in LOC642361/NUTM2B-AS1 may deleteriously affect aggrephagic capacity, suggesting that RNA toxicity and mitochondrial dysfunction may contribute to pathogenesis. Our study thus expands the phenotypic spectrum for the CGG repeat expansion of LOC642361/NUTM2B-AS1 and indicates that this genetic variant typically manifests as oculopharyngodistal myopathy with chronic myopathic changes with rimmed vacuoles and filamentous intranuclear inclusions in muscle fibers.
Collapse
Affiliation(s)
- Yan Shi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Chunyan Cao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Yiheng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Yuanliang Ding
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Fuze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Xuejiao Chen
- Department of Neurology, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Fanggui Zhou
- Department of Neurology, Jian'ou Municipal Hospital of Fujian Province, Jian'ou, Fujian 353100, China
| | - Xiefeng Yang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jinjing Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Liuqing Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Minting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba 286-0048, Japan
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Zhiqiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| | - Kang Yang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China.
| |
Collapse
|
36
|
Wallenius J, Kafantari E, Jhaveri E, Gorcenco S, Ameur A, Karremo C, Dobloug S, Karrman K, de Koning T, Ilinca A, Landqvist Waldö M, Arvidsson A, Persson S, Englund E, Ehrencrona H, Puschmann A. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: A poly-glycine disease. Am J Hum Genet 2024; 111:82-95. [PMID: 38035881 PMCID: PMC10806739 DOI: 10.1016/j.ajhg.2023.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.
Collapse
Affiliation(s)
- Joel Wallenius
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Efthymia Kafantari
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Emma Jhaveri
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sorina Gorcenco
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Christin Karremo
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Sigurd Dobloug
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; Department of Neurology, Helsingborg General Hospital, 252 23 Helsingborg, Sweden
| | - Kristina Karrman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Tom de Koning
- Pediatrics, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreea Ilinca
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Andreas Arvidsson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Staffan Persson
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden; Pathology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 222 42 Lund, Sweden; Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 221 85 Lund, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, 222 42 Lund, Sweden; SciLifeLab National Research Infrastructure, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
37
|
Luo H, Gustavsson EK, Macpherson H, Dominik N, Zhelcheska K, Montgomery K, Anderson C, Yau WY, Efthymiou S, Turner C, DeTure M, Dickson DW, Josephs KA, Revesz T, Lashley T, Halliday G, Rowe DB, McCann E, Blair I, Lees AJ, Tienari PJ, Suomalainen A, Molina-Porcel L, Kovacs GG, Gelpi E, Hardy J, Haltia MJ, Tucci A, Jaunmuktane Z, Ryten M, Houlden H, Chen Z. Letter to the editor on: Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions by Park et al. (2022). Acta Neuropathol Commun 2024; 12:2. [PMID: 38167323 PMCID: PMC10759526 DOI: 10.1186/s40478-023-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Huihui Luo
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Hannah Macpherson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Natalia Dominik
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Kristina Zhelcheska
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Kylie Montgomery
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Claire Anderson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Wai Yan Yau
- The Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Stephanie Efthymiou
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Chris Turner
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Keith A Josephs
- Neurodegenerative Research Group, Mayo Clinic, Rochester, MN, USA
| | - Tamas Revesz
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Glenda Halliday
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dominic B Rowe
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emily McCann
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew J Lees
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, Wakefield Street, London, UK
| | - Pentti J Tienari
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290, Helsinki, Finland
- Neuroscience CenterHiLife, University of Helsinki, 00290, Helsinki, Finland
- HUSlab, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital ClínicFundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomediques August Pi I Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Hospital Clinic-IFRCB-IDIBAPS-Biobank, Barcelona, Spain
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, Wakefield Street, London, UK
- Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Matti J Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Zhongbo Chen
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, University College London, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
38
|
Wang H, Zheng Y, Yu J, Meng L, Zhang W, Hong D, Wang Z, Yuan Y, Deng J. Pathologic changes in neuronal intranuclear inclusion disease are linked to aberrant FUS interaction under hyperosmotic stress. Neurobiol Dis 2024; 190:106391. [PMID: 38145851 DOI: 10.1016/j.nbd.2023.106391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
CGG repeat expansion in NOTCH2NLC is the genetic cause of neuronal intranuclear inclusion disease (NIID). Previous studies indicated that the CGG repeats can be translated into polyglycine protein (N2CpolyG) which was toxic to neurons by forming intranuclear inclusions (IIs). However, little is known about the factors governing polyG IIs formation as well as its molecular pathogenesis. Considering that neurogenetic disorders usually involve interactions between genetic and environmental stresses, we investigated the effect of stress on the formation of IIs. Our results revealed that under hyperosmotic stress, N2CpolyG translocated from the cytoplasm to the nucleus and formed IIs in SH-SY5Y cells, recapitulating the pathological hallmark of NIID patients. Furthermore, N2CpolyG interacted/ co-localized with an RNA-binding protein FUS in the IIs of cellular model and NIID patient tissues, thereby disrupting stress granule formation in cytoplasm under hyperosmotic stress. Consequently, dysregulated expression of microRNAs was found both in NIID patients and cellular model, which could be restored by FUS overexpression in cultured cells. Overall, our findings indicate a mechanism of stress-induced pathological changes as well as neuronal damage, and a potential strategy for the treatment of NIID.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yilei Zheng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China.
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing 100034, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| |
Collapse
|
39
|
Bao L, Zuo D, Yin Z, Mao Z, Yu C, Cui C, Sun W, Cui G, Chen H. Utility of labial salivary gland biopsy in the histological diagnosis of neuronal intranuclear inclusion disease. Eur J Neurol 2024; 31:e16102. [PMID: 37823700 PMCID: PMC11235644 DOI: 10.1111/ene.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE Neuronal intranuclear inclusion disease (NIID) poses a diagnostic challenge because of its diverse clinical manifestations. Detection of intranuclear inclusions remains the primary diagnostic criterion for NIID. Skin biopsies have traditionally been used, but concerns exist regarding postoperative complications and scarring. We sought to investigate the diagnostic utility of labial salivary gland biopsy, a less invasive alternative. METHODS This study included a total of 19 patients and 11 asymptomatic carriers who underwent labial gland biopsies, while 10 patients opted for skin biopsies. All these individuals were confirmed to have pathogenic GGC repeat expansions in the NOTCH2NLC gene. The control group comprised 20 individuals matched for age and sex, all with nonpathogenic GGC repeat expansions, and their labial gland tissue was sourced from oral surgery specimens. RESULTS Labial gland biopsies proved to be a highly effective diagnostic method in detecting eosinophilic intranuclear inclusions in NIID patients. The inclusions showed positive staining for p62 and ubiquitin, confirming their pathological significance. The presence of uN2CpolyG protein in the labial gland tissue further supported the diagnosis. Importantly, all patients who underwent lip gland biopsy experienced fast wound healing without any noticeable scarring. In contrast, skin biopsies led to varying degrees of scarring and one instance of a localized infection. CONCLUSION Labial salivary gland biopsy emerged as a minimally invasive, efficient diagnostic method for NIID, with rapid healing and excellent sensitivity.
Collapse
Affiliation(s)
- Lei Bao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Dandan Zuo
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Zichang Yin
- Department of Pathology GuangzhouGuangzhou KingMed Laboratory CenterGuangzhouChina
| | - Zhifeng Mao
- Neuroimmunology GroupKingMed Diagnostic LaboratoryGuangzhouChina
- Department of Clinical Medicine, Medical SchoolXiangnan UniversityChenzhouChina
| | - Changshun Yu
- Tianjin KingMed Center for Clinical LaboratoryTianjinChina
| | - Chenchen Cui
- Department of NeurosurgeryThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Wen Sun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| | - Hao Chen
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhou CityChina
| |
Collapse
|
40
|
Maltby CJ, Krans A, Grudzien SJ, Palacios Y, Muiños J, Suárez A, Asher M, Khurana V, Barmada SJ, Dijkstra AA, Todd PK. AAGGG repeat expansions trigger RFC1-independent synaptic dysregulation in human CANVAS Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571345. [PMID: 38168171 PMCID: PMC10760133 DOI: 10.1101/2023.12.13.571345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a late onset, recessively inherited neurodegenerative disorder caused by biallelic, non-reference pentameric AAGGG(CCCTT) repeat expansions within the second intron of replication factor complex subunit 1 (RFC1). To investigate how these repeats cause disease, we generated CANVAS patient induced pluripotent stem cell (iPSC) derived neurons (iNeurons) and utilized calcium imaging and transcriptomic analysis to define repeat-elicited gain-of-function and loss-of-function contributions to neuronal toxicity. AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway functions. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins that selectively accumulate in CANVAS patient brains. However, neither these proteins nor repeat RNA foci were detected in iNeurons, and overexpression of these repeats in isolation did not induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded allele. These phenotypic deficits were not replicated by knockdown of RFC1 in control neurons and were not rescued by ectopic expression of RFC1. These findings support a repeat-dependent but RFC1-independent cause of neuronal dysfunction in CANVAS, with important implications for therapeutic development in this currently untreatable condition.
Collapse
Affiliation(s)
- Connor J. Maltby
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yomira Palacios
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Muiños
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- UM SMART Undergraduate Summer Program, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Suárez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Asher
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vikram Khurana
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anke A. Dijkstra
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter K. Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Li C, Wang H, Tang Y, Wu J. Characterization of the circRNA Landscape in Interleukin-4 Induced Anti-Inflammatory Microglia. Biomedicines 2023; 11:3239. [PMID: 38137460 PMCID: PMC10740700 DOI: 10.3390/biomedicines11123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Microglia are resident innate immune cells that play an essential role in the development and surveillance of the central nervous system as well as the shared pathogenesis of neurodegenerative diseases. Microglia rapidly respond to multiple inflammatory stimuli and activate towards different phenotypes, such as pro-inflammatory and anti-inflammatory phenotypes. Cytokines, epigenetic and long non-coding RNA modulations have been shown to regulate microglial activation; however, the role of circRNAs in microglia-mediated neuroinflammation remains elusive. Here, we performed circRNA sequencing in IL-4-treated anti-inflammatory microglia and discovered 120 differentially expressed circRNAs. We systemically verified the identities of circRNAs by assays of PCR, RNase R treatment and fluorescent in situ hybridization (FISH), among others. We found that circAdgre1 promoted IL-4-induced anti-inflammatory responses and further conferred neuroprotective effects upon lipopolysaccharide (LPS) stimuli. Taken together, our results show that circRNAs might be possible therapeutic targets for microglia-mediated neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (C.L.); (H.W.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (C.L.); (H.W.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (C.L.); (H.W.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
42
|
Ren X, Tan D, Deng J, Wang Z, Hong D. Skin biopsy and neuronal intranuclear inclusion disease. J Dermatol 2023; 50:1367-1372. [PMID: 37718652 DOI: 10.1111/1346-8138.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease with variable clinical phenotypes. There is a considerable delay in the definite diagnosis, which primarily depends on postmortem brain pathological examination. Although CGG repeat expansion in the 5'-untranslated region of NOTCH2NLC has been identified as a disease-associated variant, the pathological diagnosis is still required in certain NIID cases. Intranuclear inclusions found in the skin tissue of patients with NIID dramatically increased its early detection rate. Skin biopsy, as a minimally invasive method, has become widely accepted as a routine examination to confirm the pathogenicity of the repeat expansion in patients with suspected NIID. In addition, the shared developmental origin of the skin and nerve system provided a new insight into the pathological changes observed in patients with NIID. In this review, we systematically discuss the role of skin biopsy for NIID diagnosis, the procedure of skin biopsy, and the pathophysiological mechanism of intranuclear inclusion in the skin.
Collapse
Affiliation(s)
- Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
43
|
Liu M, Gao Y, Yuan Y, Liu X, Wang Y, Li L, Zhang X, Jiang C, Wang Q, Wang Y, Shi C, Xu Y, Yang J. A comprehensive study of clinicopathological and genetic features of neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:3545-3556. [PMID: 37184590 DOI: 10.1007/s10072-023-06845-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The discovery of skin intranuclear inclusions and GGC repeat expansion of NOTCH2NLC has greatly promoted the diagnosis of neuronal intranuclear inclusion disease (NIID). With highly heterogeneous clinical manifestations, NIID patients tend to be underdiagnosed at early stages. METHODS This study comprehensively studied clinical manifestations, magnetic resonance imaging (MRI), and peripheral nerve conduction in 24 NIID and 166 other neurodegenerative disease (ND) subjects. The nomogram was plotted using the "rms" package, and the t-distributed stochastic neighbor embedding algorithm was performed. Associations between skin intranuclear inclusions and NOTCH2NLC GGC repeats were further analyzed. RESULTS The clinical, MRI, and peripheral nerve conduction features seriously overlapped in NIID and ND patients; they were assigned variables according to their frequency and specificity in NIID patients. A nomogram that could distinguish NIID from ND was constructed according to the assigned variables and cutoff values of the above features. The occurrence of skin intranuclear inclusions and NOTCH2NLC GGC repeats ≥ 60 showed 100% consistency, and intranuclear inclusion frequency positively correlated with NOTCH2NLC GGC repeats. A hierarchical diagnostic flowchart for definite NIID was further established. CONCLUSION We provide a novel nomogram with the potential to realize early identification and update the diagnostic flowchart for definitive diagnosis. Moreover, this is the first study to define the association between skin pathology and NOTCH2NLC genetics in NIID.
Collapse
Affiliation(s)
- Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
44
|
Podar IV, Gutmann DAP, Harmuth F, Haack TB, Ossowski S, Hengel H, Bornemann A, Schöls L, Neuhaus O. First case of adult onset neuronal intranuclear inclusion disease with both typical radiological signs and NOTCH2NLC repeat expansions in a Caucasian individual. Eur J Neurol 2023; 30:2854-2858. [PMID: 37271829 DOI: 10.1111/ene.15905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND PURPOSE Adult onset neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder with a heterogeneous clinical presentation that can mimic stroke and various forms of dementia. To date, it has been described almost exclusively in Asian individuals. METHODS This case presentation includes magnetic resonance imaging (MRI) of the neurocranium, histology by skin biopsy, and long-read genome sequencing. RESULTS A 75-year-old Caucasian female presented with paroxysmal encephalopathy twice within a 14-month period. Brain MRI revealed high-intensity signals at the cerebral corticomedullary junction (diffusion-weighted imaging) and the paravermal area (fluid-attenuated inversion recovery), a typical distribution observed in adult onset NIID. The diagnosis was corroborated by skin biopsy, which demonstrated eosinophilic intranuclear inclusion bodies, and confirmed by long-read genome sequencing, showing an expansion of the GGC repeat in exon 1 of NOTCH2NLC. CONCLUSIONS Our case proves adult onset NOTCH2NLC-GGC-positive NIID with typical findings on MRI and histology in a Caucasian patient and underscores the need to consider this diagnosis in non-Asian individuals.
Collapse
Affiliation(s)
- Iulian V Podar
- Department of Diagnostic and Interventional Radiology, SRH Krankenhaus Sigmaringen, Sigmaringen, Germany
| | - Daniel A P Gutmann
- Department of Diagnostic and Interventional Radiology, SRH Krankenhaus Sigmaringen, Sigmaringen, Germany
| | - Florian Harmuth
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
- Centre for Rare Diseases, Eberhard Karls University, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Holger Hengel
- Centre for Rare Diseases, Eberhard Karls University, Tübingen, Germany
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
| | - Antje Bornemann
- Department of Neuropathology, Eberhard Karls University, Tübingen, Germany
| | - Ludger Schöls
- Centre for Rare Diseases, Eberhard Karls University, Tübingen, Germany
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
| | - Oliver Neuhaus
- Department of Neurology, SRH Krankenhaus Sigmaringen, Sigmaringen, Germany
| |
Collapse
|
45
|
Pan Y, Jiang Y, Wan J, Hu Z, Jiang H, Shen L, Tang B, Tian Y, Liu Q. Expression of expanded GGC repeats within NOTCH2NLC causes cardiac dysfunction in mouse models. Cell Biosci 2023; 13:157. [PMID: 37644522 PMCID: PMC10466825 DOI: 10.1186/s13578-023-01111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by widespread intranuclear inclusions in the nervous system as well as multiple visceral organs. In 2019, expanded GGC repeats within the 5' untranslated region of the NOTCH2NLC gene was identified as the causative factor. NIID is a heterogeneous disorder with variable clinical manifestations including cognitive impairment, cerebellar ataxia, parkinsonism, paroxysmal symptoms, autonomic dysfunction, and muscle weakness. Although NIID primarily affects the central and peripheral nervous systems, growing evidence suggests potential cardiac abnormalities in NIID. However, the link between expanded GGC repeats within NOTCH2NLC and cardiac dysfunction remains uncertain. RESULTS In this study, we utilized two transgenic mouse models, expressing NOTCH2NLC-(GGC)98 ubiquitously or specifically in cardiomyocytes, and identified p62 (also known as sequestosome 1, SQSTM1)-positive intranuclear NOTCH2NLC-polyG inclusions in cardiomyocytes in two mouse models. We observed that both models exhibited cardiac-related pathological and echocardiographic changes, albeit exhibiting varying degrees of severity. Transcriptomic analysis revealed shared downregulation of genes related to ion channels and mitochondria in both models, with the cardiomyocyte-specific mice showing a more pronounced downregulation of mitochondria and energy metabolism-related pathways. Further investigations revealed decreased expression of mitochondria-related genes and electron transport chain activity. At last, we conducted a retrospective review of cardiac-related examination results from NIID patients at our hospital and also identified some cardiac abnormalities in NIID patients. CONCLUSIONS Our study provided the first in vivo evidence linking GGC repeat expansions within NOTCH2NLC to cardiac abnormalities and highlighted the contribution of mitochondrial dysfunction in the development of cardiac abnormalities.
Collapse
Affiliation(s)
- Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
| | - Ying Jiang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Juan Wan
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhengmao Hu
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yun Tian
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
46
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
47
|
Fitrah YA, Higuchi Y, Hara N, Tokutake T, Kanazawa M, Sanpei K, Taneda T, Nakajima A, Koide S, Tsuboguchi S, Watanabe M, Fukumoto J, Ando S, Sato T, Iwafuchi Y, Sato A, Hayashi H, Ishiguro T, Takeda H, Takahashi T, Fukuhara N, Kasuga K, Miyashita A, Onodera O, Ikeuchi T. Heterogenous Genetic, Clinical, and Imaging Features in Patients with Neuronal Intranuclear Inclusion Disease Carrying NOTCH2NLC Repeat Expansion. Brain Sci 2023; 13:955. [PMID: 37371433 DOI: 10.3390/brainsci13060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that is caused by the abnormal expansion of non-coding trinucleotide GGC repeats in NOTCH2NLC. NIID is clinically characterized by a broad spectrum of clinical presentations. To date, the relationship between expanded repeat lengths and clinical phenotype in patients with NIID remains unclear. Thus, we aimed to clarify the genetic and clinical spectrum and their association in patients with NIID. For this purpose, we genetically analyzed Japanese patients with adult-onset NIID with characteristic clinical and neuroimaging findings. Trinucleotide repeat expansions of NOTCH2NLC were examined by repeat-primed and amplicon-length PCR. In addition, long-read sequencing was performed to determine repeat size and sequence. The expanded GGC repeats ranging from 94 to 361 in NOTCH2NLC were found in all 15 patients. Two patients carried biallelic repeat expansions. There were marked heterogenous clinical and imaging features in NIID patients. Patients presenting with cerebellar ataxia or urinary dysfunction had a significantly larger GGC repeat size than those without. This significant association disappeared when these parameters were compared with the total trinucleotide repeat number. ARWMC score was significantly higher in patients who had a non-glycine-type trinucleotide interruption within expanded poly-glycine motifs than in those with a pure poly-glycine expansion. These results suggested that the repeat length and sequence in NOTCH2NLC may partly modify some clinical and imaging features of NIID.
Collapse
Affiliation(s)
- Yusran Ady Fitrah
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yo Higuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Joetsu General Hospital, Joetsu 943-0172, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kazuhiro Sanpei
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Tomone Taneda
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akihiko Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shin Koide
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shintaro Tsuboguchi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Midori Watanabe
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Junki Fukumoto
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomoe Sato
- Department of Neurology, Tsubame Rosai Hospital, Tsubame 959-1228, Japan
| | - Yohei Iwafuchi
- Department of Neurology, Niigata City General Hospital, Niigata 950-1197, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata 950-1197, Japan
| | - Hideki Hayashi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Takanobu Ishiguro
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Hayato Takeda
- Department of Neurology, Tsukuba University, Tsukuba 950-1197, Japan
| | | | - Nobuyoshi Fukuhara
- Department of Neurology, Joetsu General Hospital, Joetsu 943-0172, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
48
|
Yang J, Wu X, Song Y. Recent advances in novel mutation genes of Parkinson's disease. J Neurol 2023:10.1007/s00415-023-11781-4. [PMID: 37222843 DOI: 10.1007/s00415-023-11781-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
With increasing life expectancy, a growing number of individuals are being affected by Parkinson's Disease (PD), a Neurodegenerative Disease (ND). Approximately, 5-10% of PD is explained by genetic causes linked to known PD genes. With improvements in genetic testing and high-throughput technologies, more PD-associated susceptibility genes have been reported in recent years. However, a comprehensive review of the pathogenic mechanisms and physiological roles of these genes is still lacking. This article reviews novel genes with putative or confirmed pathogenic mutations in PD reported since 2019, summarizes the physiological functions and potential associations with PD. Newly reported PD-related genes include ANK2, DNAH1, STAB1, NOTCH2NLC, UQCRC1, ATP10B, TFG, CHMP1A, GIPC1, KIF21B, KIF24, SLC25A39, SPTBN1 and TOMM22. However, the evidence for pathogenic effects of many of these genes is inconclusive. A variety of novel PD-associated genes have been identified through clinical cases of PD patients and analysis of Genome-Wide Association Studies (GWAS). However, more evidence is needed in confirm the strong association of novel genes with disease.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Xinyu Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China.
| |
Collapse
|
49
|
Sone J, Ueno S, Akagi A, Miyahara H, Tamai C, Riku Y, Yabata H, Koizumi R, Hattori T, Hirose H, Koyanagi Y, Kobayashi R, Okada H, Kishimoto Y, Hashizume Y, Sobue G, Yoshida M, Iwasaki Y. NOTCH2NLC GGC repeat expansion causes retinal pathology with intranuclear inclusions throughout the retina and causes visual impairment. Acta Neuropathol Commun 2023; 11:71. [PMID: 37131242 PMCID: PMC10152767 DOI: 10.1186/s40478-023-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
The retinal pathology of genetically confirmed neuronal intranuclear inclusion disease (NIID) is yet unknown. We report the ocular findings in four NIID patients with NOTCH2NLC GGC repeat expansion to investigate the pathology of retinopathy. All four NIID patients were diagnosed by skin biopsy and NOTCH2NLC GGC repeat analysis. Ocular findings in patients with NIID were studied using fundus photographs, optical coherence tomographic images (OCT), and full-field electroretinograms (ERGs). The histopathology of the retina was studied on autopsy samples from two cases with immunohistochemistry. All patients had an expansion of the GGC repeat (87-134 repeats) in the NOTCH2NLC. Two patients were legally blind and had been diagnosed with retinitis pigmentosa prior to the diagnosis of NIID and assessed with whole exome sequencing to rule out comorbidity with other retinal diseases. Fundus photographs around the posterior pole showed chorioretinal atrophy in the peripapillary regions. OCT showed thinning of the retina. ERGs showed various abnormalities in cases. The histopathology of autopsy samples showed diffusely scattered intranuclear inclusions throughout the retina from the retinal pigment epithelium to the ganglion cell layer, and optic nerve glial cells. And severe gliosis was observed in retina and optic nerve. The NOTCH2NLC GGC repeat expansion causes numerous intranuclear inclusions in the retina and optic nerve cells and gliosis. Visual dysfunction could be the first sign of NIID. We should consider NIID as one of the causes of retinal dystrophy and investigate the GGC repeat expansion in NOTCH2NLC.
Collapse
Affiliation(s)
- Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan.
- Department of Neurology, National Hospital Organization Suzuka National Hospital, 3-2-1, Kasado, Suzuka, Mie, 513-8501, Japan.
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, Aomori, 036-8562, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Chisato Tamai
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Shiga University of Medical Science. Seta-Tsukinowa, Otsu, 520-2192, Japan
| | - Ryuichi Koizumi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 22-2 Seto, Kanazawa-Ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Tomohiro Hattori
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hiroshi Hirose
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Rei Kobayashi
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Hisashi Okada
- Department of Neurology, National Hospital Organization Nagoya Medical Center, 4-1-1, Sannomaru, Naka-Ku, Nagoya, Aichi, 460-0001, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, 19-14, Yamanaka, Noyori, Toyohashi, Aichi, 441-8124, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8560, Japan
- Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
50
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|